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When comparing different temperaments or temper-
ament families, it’s useful to know how closely they
approximate just intonation. There are different ways
of doing this. In the absence of sound, empirical data
to tell us what measures work best, the safest thing is
to choose the simplest one that works reasonably well.
Finding it is surprisingly difficult.

I assume you have some background in both math-
ematics and tuning theory. The mathematics isn’t very
advanced but there are a lot of equations. Partly this
is to make it easier to understand by not skipping in-
termediate steps. But you should still note that there’s
far more detail here than most people are ever going
to need. So it’s for people who aren’t afraid of mathe-
matics, but aren’t necessarily experts in it either.

The original ideas here arose from discussions on
the tuning-math mailing list at Yahoo! Groups, http:
//groups.yahoo.com/group/tuning-math and re-
lated lists. I also had a private e-mail discussion with
William Sethares and some real world conversations
with members of the mathematics department of Huai-
hai Institute of Technology, Lianyungang.
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1 Basic Ideas

1.1 Qualitative Properties of Tuning Error

Before leaping into a quantitative discussion of the er-
rors of different temperaments, it may be worth think-
ing about what it means for a tuning to have an error.
Error relative to what, and why should we care? With-
out surveying the relevant literature (which is far from
conclusive anyway) I hope we can agree on the follow-
ing qualitative properties.

1. Simple ratios have a desirable affect.

2. The closer to a ratio the stronger the affect.

3. Moderate errors stand out more than small ones.

4. Large errors are irrelevant.

The first point may appear obvious – of course we
prefer simple ratios! Then again, you may instantly
object to it. If so, I don’t see any point in arguing with
you. If you’re undecided, listening to examples (ide-
ally of your own making) will be more persuasive than
any arguments I could make, or any authorities I could
quote. If your conclusion is that one interval’s as good
as another you can save yourself some trouble by stop-
ping reading here.

I’ll leave aside for now the problems of inharmonic
timbres, or preference for stretched or compressed
harmonic series. To an extent the harmonic series is
represented by free parameters in these models, and
you can tweak the parameters if the harmonic series
isn’t what you wanted. I’ll deal with this when the
time is right. For now, let’s assume that the true ra-
tios really are the ones we want because it makes the
descriptions easier.

I hope the second point is obvious. Note that it
doesn’t state that the best tuning is always the ex-
act one. Only that the affect of true ratio-ness will
be stronger the closer you get to a true ratio. That
doesn’t mean that the desirable affect becomes more
desirable; you can have too much of a good thing.

The third point says that we’ll tolerate small mistun-
ings a lot more than moderate ones. Where you draw
the line between “small” and “moderate” is up to you.
But if one note in a chord or melody is much more out
of tune than the others I hope you’ll agree that it’s the
one you’ll notice the most.

Finally, I’m simply observing that if a mistuning gets
stupidly large, an interval won’t be heard as an ap-
proximation of the ratio you’re measuring it relative

to. As an extreme example, calling a semitone an ap-
proximation to 3:2 is meaningless. Saying that a whole
tone has a smaller error as a 3:2 is also meaningless.
It’s better to say that neither of them will sound at all
like a 3:2.

1.2 Tuning of Prime Limits

If a tuning system approximates a prime limit, the tun-
ing of the approximation to any interval within the
prime limit can be determined if you know the tuning
of the intervals that approximate the prime numbers.
By “prime intervals” I usually mean prime number ra-
tios or approximations thereof. For conventional just
intonation, the prime intervals are 2:1, 3:1, and 5:1,
and so on. I use the coefficients of the prime factoriza-
tion, xi, of the frequency ratio n:d such that

n

d
=
∏

i

pxi
i (1)

where pi is the ith prime number.
The size of an interval measured in log-frequency

units is
s(x) =

∑
i

xihi (2)

where hi are the prime intervals in whatever log-
frequency units you choose to use. For 5-limit just in-
tonation,

h0 = log2(2)octaves

h1 = log2(3)octaves

h2 = log2(5)octaves

(I count my indexes from zero so that h0 is the octave.
Sometimes you can work in octave-equivalent coordi-
nates, and then you can ignore octaves and start the
indexes from one instead. If you don’t like this con-
vention, don’t worry too much.) If you prefer cents,

h0 = 1200 log2(2)cents

h1 = 1200 log2(3)cents

h2 = 1200 log2(5)cents

1.3 Regular Temperament Errors

In a regular temperament, each prime interval hi takes
on a tempered value ti and the size of the tempered
interval is

s(x) =
∑

i

xiti (3)
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1 Basic Ideas

The deviation of an interval relative to just intonation
is the difference between the sizes in equations 2 and 3
on the preceding page :

d(x) =
∑

i

(xiti − xihi)

=
∑

i

xi(ti − hi)

=
∑

i

xidi

di = ti − hi (4)

with di as the deviation of the ith prime interval. This
is defined such that the deviation will be positive for
an interval that’s sharp of just intonation. For example,
the prime deviations of 12 note equal temperament of
5-limit just intonation are

d0 = 1200− 1200 log2(2)cents

d1 = 1900− 1200 log2(3)cents

d2 = 2800− 1200 log2(5)cents

The error in an interval is the absolute value of its
deviation from just intonation.

1.4 Prime Weighting

Each interval in a regular temperament has a unique
error associated with it. All intervals can be derived
from the prime intervals. So, a simple way of assess-
ing the error of a temperament is to do some kind of
average of the errors of the prime intervals.

The simplest approach is to treat all prime errors
equally. This gives unreasonable results in practice.
For example, the intervals 2:1 and 7:1 are counted on
an equal footing, so an error of 1 cent in 2:1 is treated
as badly as an error of 1 cent in 7:1. But the error
in 8:1 has to be three times as big as the error in 2:1
for any regular temperament. So 8:1 is allowed to be
three times as out of tune as 7:1 when it’s only a little
bit bigger! To give more flexibility, each prime error is
given a different weighting when calculating the over-
all error for a temperament.

Instead of weighting the primes, you could take all
the intervals you want to use harmonically and calcu-
late the unweighted error for each. This is perfectly
valid, and it’s what most theorists have done in the
past, and will probably continue to do. One advantage
of weighted prime errors is that they can be evaluated
with less calculations. They also allow you to be a lit-
tle bit vague about which intervals you’re interested in.
So today we’ll be talking about weighted prime errors.

The general formula for a weighted prime error is

ei =
∣∣∣∣ tibi − hi

bi

∣∣∣∣ (5)

where ei is the weighted error of the ith prime interval
and bi is positive real number determining the weight
given to that interval. The larger bi is, the less weight
the corresponding interval has. That means it’s more
of a buoyancy factor than a weighting factor.

Equation 5 can be re-written

ei = |wi − vi| (6)

vi =
hi

bi

wi =
ti
bi

with vi as the weighted size of the ith prime interval
in just intonation, and wi is the weighted size of the
ith prime tempered interval, or the ith weighted prime
for short. This is the key equation that all subsequent
error measures will use.

There are some properties that all prime-weighted
error measures of the kind I’ll be looking at share, like
them or not.

1. More complex intervals are given a lower weight.

2. You can’t choose which composites to consider,
and the weighting of composites is implied by the
weighting of primes.

3. The error is symmetrical as to sharp and flat devi-
ations.

In many cases it’s certainly not appropriate to give
complex intervals a higher weight. You may decide
that more complex intervals are harder to hear, and
so must be tuned more precisely to help the ear. But
in that case you must consider a finite set of intervals.
Unbounded prime-limit errors will end up being deter-
mined by the infinite number of infinitely complex –
and therefore completely meaningless – ratios.

The lack of freedom in choosing the weights might
be a problem if you have a precise idea what you want
the weights to look like. I don’t. It’s a difficult question
to answer in the general case so simplicity wins.

The ear doesn’t hear sharp and flat mistunings as
equally bad. But I’m assuming there’s no way to know
if a given prime is more likely to be in the numerator or
denominator of ratios. Perhaps you could assume that
higher primes are more likely to be in the numerator,
and construct an asymmetric prime-based measure ac-
cordingly. That might be valid but I haven’t considered

3



1 Basic Ideas

it. If you prefer sharp mistunings you can also optimize
for symmetry and then stretch the scale a bit.

The buoyancy of a composite interval (being an in-
terval composed of prime intervals) is taken to be the
sum of the buoyancies of all the prime intervals that
make it up. That’s something you have to consider
when choosing the prime intervals. A prime interval
should be considered more consonant than any of the
composite intervals that require it. Usually they will
be the strongest independent partials, relative to the
fundamental, of the timbre you want to base your har-
mony on.

It’s assumed that composite partials will tend to be
weaker than prime intervals above the fundamental.
So, 6:1 must be weaker than either 3:1 or 2:1, 10:1
must be weaker than either 5:1 or 2:1, and so on.
For harmonic timbres in general, this is reasonable
because high harmonics tend to be weaker than low
ones, and the weighting will usually be chosen accord-
ingly. For any specific timbre, the weights will almost
certainly add up wrongly, so prime weighting can only
go so far in supporting specific timbres.

Inharmonic timbres may not have composite partials
at all. In this sense, prime based errors are biased to-
wards harmonic timbres. Ideally, you’d only consider
intervals between prime intervals for timbres where all
the partials are prime intervals. In practice, it doesn’t
matter much, because none of this is based on accu-
rate psychoacoustics anyway. Feeding in the strongest
partials of an inharmonic timbre should give you some
idea of which temperaments will work well.

Following Barlow’s “harmonicity”1, and no doubt
other precedents2, we can measure the weight of a
composite interval by calculating the unweighted error
of the interval and weighting it using the total buoy-
ancy of the prime factors.

e(x) =

∣∣∣∣∣∑
i

xidi

∣∣∣∣∣∑
i

|xi|bi
(8)

1 Harmonicity follows from an “indigestibility” of primes of

bi = 2
(pi − 1)2

pi
(7)

with pi as the ith prime. It can be considered as an example of a
buoyancy factor (Barlow 1987).

2 There are a lot of papers showing equal temperament errors out
there so I don’t plan to survey them all. Darreg & McLaren 1991
use weighting for this purpose. The buoyancy of an interval n:d
is n + d. This doesn’t add up the same way as my prime-based
buoyancy. They average errors over a selection of composite ra-
tios.

1.5 TOP Errors

Today, TOP is an acronym for “Tenney Optimal Prime”3

It corresponds to the special case where the buoyancy
of each prime interval is equal to the size of that inter-
val in just intonation. That is, bi = hi. This is called
Tenney weighting. It means equation 6 on the preced-
ing page becomes

ei = |wi − 1| (9)

Hence the error is simply a function of the weighted
primes.

This treats all numbers on an equal footing, in so far
as an error measure that only considers primes can. If
you use inharmonic timbres, so that prime intervals do
not correspond to prime numbers, this simplification
is less justified. Because harmonic timbres are an ex-
tremely important special case I’ll concentrate on TOP
anyway.

You can see the effect of Tenney weighting by com-
paring Figures 1 and 2 on the next page. Some com-
plex intervals like 9:8 and 8:7 have a large deviation,
but the weighting makes this less important. However,
the high error in 7:1 dominates the weighted errors
when octaves are kept pure.

To get a true TOP error, you have to do some kind
of optimization. That should at least involve optimal
tempering of the octaves. The simplest prime-based er-
rors don’t work properly unless you temper the octaves
because the smallest intervals with any given weight
are likely to be the most musically significant.

For inharmonic timbres, you may sometimes get a
low partial that’s so weak that it isn’t going to be as
important as some larger intervals in the harmony. So,
you have three choices. You can ignore the problem
and note that some low scored temperaments that ap-
proximate this interval might really be better than they
look. You can remove this prime interval from consid-
eration altogether. Or, you can replace it with a larger
interval formed by adding it to the strongest prime in-
terval. Depending on the context, that may be more
trouble than setting a more reasonable weighting in
the first place.

The error in Equation 9 is a dimensionless quantity.
Some people think about Tenney weighting as always
using base two logarithms, even when intervals are
measured in cents. That means the error comes out in
units of cents per octave. Because the dimensionless
error is quite a small number, using cents per octave

3 The term “TOP” was introduced by Erlich 2006 to mean either
“Tenney OPtimal” or “Tempered Octaves Please!” My usage is
consistent with both these expansions, however Paul specifically
uses it to mean what I call the TOP-max error.
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1 Basic Ideas

Figure 1: Unweighted Deviations for 19 Tone Equal Temperament
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Figure 2: Tenney Weighted Deviations for 19 Tone Equal Temperament
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2 Weighted RMS Errors

instead is a good practical idea. All you have to do
is multiply the dimensionless error by 1200. To make
the equations easier, I’ll stick with dimensionless error
today, but multiply it by 1200 to get cents per octave
for the tables.

1.6 Weighted Mappings

I explain mappings for regular temperament classes in
Breed 2006. Here, the mapping is a matrix where each
row corresponds to the mapping for a prime interval.

The mapping can be weighted the same way that
prime intervals can. The formula is

mij =
nij

bi
(10)

where nij is the mapping for the ith prime and jth
generator, mji is the corresponding element of the
weighted mapping, and bi is the buoyancy of the ith
prime interval.

The mapping carries all the information about a
regular temperament class. Similarly, the errors and
complexities I’ll be explaining are functions of the
weighted mapping.

2 Weighted RMS Errors

2.1 RMS Error of a Temperament

The simplest way of calculating the overall error for a
temperament is to take some kind of weighted aver-
age of the prime errors. Because the error is the abso-
lute value of the deviation, a simple average is the root
mean squared (RMS).

Although the RMS error is the easiest to calculate,
that isn’t of any value if it doesn’t have the properties
we’re looking for. So let’s check that it agrees with
what I asked for above.

1. Simple ratios are composed of a small number of
prime factors, so an RMS error of the primes will
also reflect the error of simple intervals.

2. The RMS error of a set of intervals gets smaller as
any interval gets closer to just. An RMS of primes
only approximates this property.

3. The RMS error is larger the higher the mistuning,
so the more out of tune an interval the more it
dominates the average.

4. The RMS will still pay attention to stupidly large
mistunings. Because of this you have to choose a
sensible mapping before calculating the errors.

So the RMS has the properties we want provided it
doesn’t get too large. It may not be a true reflection of
perceived error but we may as well stick with it until
we know what is. The main property of a squared error
is that it’s symmetrical. As prime-weighted errors are
always symmetrical in this way the RMS can’t be that
far from optimal.

It’s easier to show the mean squared error in these
equations. All you have to do is take the square root to
get the RMS. There’s no need to keep showing you all
those square root signs. So, this is the general formula
for the weighted, mean squared error.〈

e2
〉

=
〈
(w − v)2

〉
(11)

Where 〈x〉 is the mean value of xi over all i.
An alternative is to show the weighted, sum-squared

error using matrices.

ETE = (W − V )T (W − V ) (12)

Here E, V , and W are column matrices corresponding
to the things notated with small letters and subscripts
before. That gives the weighted error for a given tem-
perament.

A unification of these two views is to take a weighted
sum-squared error normalized by the sizes of the tar-
gets.

ETE

V TV
=

(W − V )T (W − V )
V TV

(13)

That can be made to look more like Equation 11 by
defining a normalized mean squared function〈

A2
〉

V
=
ATA

V TV
(14)

For Tenney weighting, this is identical to the mean
squared function because all elements of V are 1. The
normalized mean square error is then〈

E2
〉

V
=
〈
(W − V )2

〉
V

(15)

2.2 Optimal Scale Stretching

We can make the calculation more general by allowing
for a uniform scale stretch α.〈

E2
〉

V
=
〈
(αW − V )2

〉
V

(16)

Then optimize α to give the smallest square error.

dE2

dα
=

d(αW − V )T (αW − V )
dα

= 2WT (αW − V ) = 0

αWTW = WTV

α =
WTV

WTW
(17)
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2 Weighted RMS Errors

Figure 3: Tenney Weighted Prime Deviations for 19
Tone Equal Temperament
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Figure 4: Tenney Weighted Prime Deviations for 72
Tone Equal Temperament
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Alternatively,

α =

∑
i

wivi∑
i

w2
i

(18)

Or, for a TOP error (vi = 1 for all i)

α =

∑
i

wi∑
i

w2
i

(19)

Which tells us that the TOP-RMS scale stretch is the
mean weighted error divided by the mean squared
weighted error, whether the weighted error is opti-

mized or not. You can also use means instead of sums.

α =
〈w〉
〈w2〉

(20)

To use this form for other weightings, I’ll define a
normalized mean

〈A〉V =
V TA

V TV
(21)

to give

α =
〈W 〉V
〈W 2〉V

(22)

The second set of bars in Figures 1 and 2 on page 5
show the errors for 19 note equal temperament af-
ter it’s been stretched by this amount. You can see
that it evens out the weighted errors in different inter-
vals. It also makes the worst intervals less bad, so the
weighted error of 7:1 is comparable to other weighted
errors after the stretch.

19-equal is the classic example of an equal tempera-
ment that requires stretched octaves to look at its best.
For exact octaves, the deviations of 3:1, 5:1, and 7:1
are all negative. That means that the errors tend to
cancel out for the intervals between primes. So, if you
look at the weighted errors for pure octaves, the high-
est values tend to be for primes or powers of primes.
Averaging out these values gives an incorrect guess for
the average weighted error of smaller, more complex
intervals. With the TOP-RMS stretch, the weighted
prime errors are more representative of the errors of
intervals in general.

Figure 3 shows the effect of optimal stretching on
the prime errors of 19-equal. Before stretching, the
weighted error of 7 : 1 is much worse than simple in-
tervals as a whole (compare with Figure 2 on page 5.
After stretching, the prime errors are more moderate
and roughly balance each other. The worst prime er-
ror is obviously a lot smaller with stretched octaves.

Figure 4 shows the same thing happening for 72-
equal in the 17-limit. The different bars have the same
meaning as in Figure 3.

Substituting the result of Equation 22 into Equa-
tion 16 on the previous page gives

〈
E2

opt

〉
V

=

〈(
〈W 〉V
〈W 2〉V

W − V
)2
〉

V

(23)

Expanding it all out gives

〈
E2

opt

〉
V

=

(
〈W 〉V
〈W 2〉V

W − V
)T ( 〈W 〉V

〈W 2〉V
W − V

)
V TV

=

(
〈W 〉V
〈W 2〉V

WT − V T
)(

〈W 〉V
〈W 2〉V

W − V
)

V TV

7



2 Weighted RMS Errors

=
〈W 〉2V
〈W 2〉2V

WTW

V TV
−
〈W 〉V
〈W 2〉V

WTV

V TV

−
〈W 〉V
〈W 2〉V

V TW

V TV
+
V TV

V TV

Because V and W are both column vectors, WTV and
V TW are the same, and

〈
E2

opt

〉
V

=
〈W 〉2V
〈W 2〉2V

〈
W 2
〉

V
− 2
〈W 〉V
〈W 2〉V

〈W 〉V + 1

=
〈W 〉2V
〈W 2〉V

− 2
〈W 〉2V
〈W 2〉V

+ 1

= 1−
〈W 〉2V
〈W 2〉V〈

E2
opt

〉
V

=

〈
W 2
〉

V
− 〈W 〉2V

〈W 2〉V
(24)

And, for the TOP-RMS error,√〈
e2opt

〉
=

√
〈w2〉 − 〈w〉2

〈w2〉
(25)

This is the same as the standard deviation of the
weighted primes divided by the RMS of the weighted
primes. √〈

e2opt

〉
=

σw√
〈w2〉

(26)

2.3 Equal Temperaments

You can see some equal temperament examples in Ta-
bles 1 on the following page and 2 on page 10. They
show an example for every number of notes to the oc-
tave from 5 to 31. The mapping I chose is the one that
gives the best TOP-RMS error. A few octave divisions
are missing from Table 1 because their mappings all
have even numbers in them, and so are effectively the
same as an equal temperament with half the number
of notes.

I said before that 19-equal is an example of a tem-
perament that needs an octave stretch to be seen in its
best light. From Table 1, you can see that it has a 5-
limit TOP-RMS error of 1.9 cents per octave, which is
simpler than 22-equal, which comes in at 2.7 cents per
octave. However, the Tenney-weighted RMS for 19-
equal with pure octaves is 3.2 cents per octave whereas
22-equal’s is 2.8 cents per octave. In the same way, 19-
equal has a Tenney-weighted RMS error comparable to
that of 24-equal (4.7 cents per octave against 4.5 for
this particular mapping, remember it’s inconsistent in
the 7-limit) but only if you neglect to optimize the oc-
taves. 19-equal’s TOP-RMS error (2.8) is much smaller
than 24-equal’s (4.5).

There are still a lot of equal temperaments with a
larger TOP-RMS scale stretch than that of 19-equal.
Although 19-equal has all its 7-limit deviations in the
same direction, they’re still relatively small. 6-equal
has much larger weighted errors, and the deviations
are always negative, so it ends up with a scale shrink-
age that’s about 5 times the stretch of 19-equal.

For good temperaments, the 0.3% scale stretch of
19-equal is about as large as it gets. That means
that the optimal scale stretches for good temperaments
aren’t as big as the stretched tunings used on pianos, or
some psychoacoustically reported stretches4. As Fig-
ure 1 on page 5 shows, the smaller intervals (which
are also likely to be the most harmonically important
because they stand out the most) are hardly affected
by the optimal stretch. Perhaps in some cases you can
hear the differences, but you’ll have a hard time find-
ing an instrument that reproduces them correctly. So
19-equal is almost as good as the TOP-RMS value says
it should be, even without the stretching. The stretch
is as much a theoretical device to get the correct error
as an instruction for optimal tuning.

2.4 Higher Rank Temperaments

For the more general case, we need to define a
weighted mapping M and generators G such that
W = MG. Equation 12 on page 6 then becomes

E2 = (MG− V )T (MG− V ) (27)

Optimizing it for a small error gives

dE2

dG
= 2MT (MGopt − V ) = 0

MTMGopt = MTV

Gopt = (MTM)−1MTV (28)

where (MTM)−1 is the inverse of the square array
produced by a matrix multiplication of M with its
transpose.5

There’s also a simplified form of the sum squared
error at the optimal point.

E2
opt = (MGopt − V )T (MGopt − V )

4Terhardt 2000 gives a stretch of 2% over 3 octaves as typical for
a piano. If that were a uniform stretch of the scale (which it
isn’t, but never mind) it would be log(23 × 1.02)/ log(23) =
1.010, so about a 1% stretch the way I measure it. While you
can explain that by the inharmonicity of piano strings, similar
stretches have been observed with truly harmonic timbres. The
optimal shrinkage of the 12 note equally tempered scale by 0.1%
or so certainly can’t explain it.

5 Equation 28 is well known. See, for example, Kolman & Hill
2003, p. 334.
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2 Weighted RMS Errors

Table 1: Tenney-weighted prime errors (cent/oct) for pure octaves, optimal 5-limit errors (cent/oct) and scale
stretches (%) for various equal temperaments

Tenney-weighted prime errors TOP-RMS TOP-Max
Mapping 3:1 5:1 RMS Max STD Stretch Error Stretch Error
5, 8, 12 11.39 40.35 24.20 40.35 16.99 −1.44 16.74 −1.65 19.84
7, 11, 16 −10.25 −18.72 12.32 18.72 7.65 0.81 7.71 0.79 9.43
8, 13, 19 30.31 27.43 23.60 30.31 13.66 −1.59 13.44 −1.25 14.97
9, 14, 21 −22.26 5.89 13.30 22.26 12.13 0.45 12.18 0.69 14.18
10, 16, 23 11.39 −11.33 9.27 11.39 9.27 −0.01 9.27 −0.00 11.36
11, 17, 25 −29.91 −25.43 22.67 29.91 13.17 1.55 13.38 1.26 15.14
12, 19, 28 −1.23 5.89 3.48 5.89 3.11 −0.13 3.11 −0.19 3.56
13, 21, 30 23.03 −7.36 13.96 23.03 12.95 −0.45 12.89 −0.65 15.10
15, 24, 35 11.39 5.89 7.40 11.39 4.65 −0.48 4.63 −0.47 5.67
16, 25, 37 −17.01 −4.87 10.21 17.01 7.15 0.61 7.19 0.71 8.56
17, 27, 40 2.48 16.03 9.36 16.03 7.04 −0.51 7.01 −0.66 7.96
18, 29, 42 19.80 5.89 11.93 19.80 8.30 −0.71 8.24 −0.82 9.82
19, 30, 44 −4.55 −3.17 3.20 4.55 1.91 0.21 1.91 0.19 2.28
20, 32, 47 11.39 14.51 10.65 14.51 6.23 −0.72 6.19 −0.60 7.21
21, 33, 49 −10.25 5.89 6.82 10.25 6.67 0.12 6.68 0.18 8.09
22, 35, 51 4.50 −1.94 2.83 4.50 2.70 −0.07 2.70 −0.11 3.22
23, 36, 53 −14.95 −9.09 10.10 14.95 6.15 0.67 6.19 0.63 7.52
25, 40, 58 11.39 −1.00 6.60 11.39 5.62 −0.29 5.60 −0.43 6.16
26, 41, 60 −6.09 −7.36 5.51 7.36 3.21 0.37 3.22 0.31 3.69
27, 43, 63 5.78 5.89 4.76 5.89 2.75 −0.32 2.74 −0.24 2.94
28, 44, 65 −10.25 −0.26 5.92 10.25 4.77 0.29 4.78 0.43 5.15
29, 46, 67 0.94 −5.99 3.50 5.99 3.07 0.14 3.07 0.21 3.47
31, 49, 72 −3.27 0.34 1.90 3.27 1.63 0.08 1.63 0.12 1.81

= GT
optM

TMGopt − 2V TMGopt + V TV

= V TM(MTM)−1MTMGopt

−2V TMGopt + V TV

= V TMGopt − 2V TMGopt + V TV

E2
opt = V TV − V TMGopt (29)

This happens to be related to the sum deviation, which
is interesting.

The normalized mean squared error follows as

〈
E2

opt

〉
V

=
V TV − V TMGopt

V TV

= 1− V TMGopt

V TV〈
E2

opt

〉
V

= 1− 〈MGopt〉V (30)

Because you subtract two numbers close to 1, for an
accurate temperament the result can be lost by the
floating point precision.

It happens that you can also write the normalized

mean squared error as

〈
E2

opt

〉
V

=

∣∣〈(M − V 〈M〉V )2
〉

V

∣∣
|〈M2〉V |

(31)

Here, the normalized mean and mean squared are de-
fined as in Equation 21 on page 7 and Equation 14 on
page 6. However, because M is not a column vector,
they give vectors as output. |A| is the determinant of
A (Clapham pp. 68–69). This gives identical results to
Equation 30 but the proof is involved, and so in Ap-
pendix B.

The numerator of Equation 31 is a generalization of
the standard deviation. That means you can also write
Equation 31 as

〈
E2

opt

〉
V

=

∣∣∣〈M2
〉

V
− 〈M〉2V

∣∣∣
|〈M2〉V |

(32)

with 〈A〉2V = 〈A〉TV 〈A〉V . You can see that this is simi-
lar to Equation 24 on the preceding page (and identi-
cal for an equal temperament). The proof that Equa-
tions 31 and 32 are equivalent is also in Appendix B.
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2 Weighted RMS Errors

Table 2: Tenney-weighted prime errors (cent/oct) for pure octaves, optimal 7-limit errors (cent/oct) and scale
stretches (%) for various equal temperaments

Tenney-weighted prime errors TOP-RMS TOP-Max
Mapping 3:1 5:1 7:1 RMS Max STD Stretch Error Stretch Error
5, 8, 12, 14 11.39 40.35 −3.14 21.02 40.35 17.16 −1.02 16.98 −1.53 21.41
6, 10, 14, 17 61.86 5.89 11.10 31.56 61.86 24.65 −1.66 24.24 −2.51 30.15
7, 11, 16, 19 −10.25 −18.72 −39.78 22.57 39.78 14.63 1.44 14.84 1.69 20.23
8, 13, 19, 23 30.31 27.43 28.91 25.04 30.31 12.55 −1.78 12.33 −1.25 14.97
9, 14, 21, 25 −22.26 5.89 −12.64 13.14 22.26 10.95 0.60 11.02 0.69 14.18
10, 16, 23, 28 11.39 −11.33 −3.14 8.18 11.39 8.15 0.06 8.15 −0.00 11.36
11, 17, 25, 30 −29.91 −25.43 −34.23 26.04 34.23 13.30 1.89 13.55 1.45 17.36
12, 19, 28, 34 −1.23 5.89 11.10 6.32 11.10 4.94 −0.33 4.92 −0.41 6.14
13, 21, 31, 37 23.03 32.40 16.58 21.54 32.40 11.82 −1.49 11.64 −1.33 15.98
14, 22, 32, 39 −10.25 −18.72 −9.25 11.63 18.72 6.63 0.80 6.68 0.79 9.43
15, 24, 35, 42 11.39 5.89 −3.14 6.60 11.39 5.57 −0.30 5.56 −0.34 7.24
16, 25, 37, 45 −17.01 −4.87 2.20 8.91 17.01 7.43 0.41 7.46 0.62 9.66
17, 27, 40, 48 2.48 16.03 6.91 8.82 16.03 6.11 −0.53 6.08 −0.66 7.96
18, 29, 42, 51 19.80 5.89 11.10 11.73 19.80 7.27 −0.76 7.22 −0.82 9.82
19, 30, 44, 53 −4.55 −3.17 −7.64 4.72 7.64 2.75 0.32 2.76 0.32 3.83
20, 32, 47, 57 11.39 14.51 18.23 12.97 18.23 6.81 −0.91 6.75 −0.75 9.05
21, 33, 49, 59 −10.25 5.89 0.93 5.93 10.25 5.87 0.07 5.87 0.18 8.09
22, 35, 51, 62 4.50 −1.94 4.63 3.37 4.63 2.85 −0.15 2.85 −0.11 3.28
23, 36, 53, 64 −14.95 −9.09 −10.58 10.22 14.95 5.44 0.72 5.48 0.63 7.52
24, 38, 56, 67 −1.23 5.89 −6.71 4.51 6.71 4.48 0.04 4.48 0.03 6.30
25, 40, 58, 70 11.39 −1.00 −3.14 5.93 11.39 5.64 −0.15 5.63 −0.34 7.24
26, 41, 60, 73 −6.09 −7.36 0.14 4.77 7.36 3.43 0.28 3.44 0.30 3.76
27, 43, 63, 76 5.78 5.89 3.19 4.42 5.89 2.40 −0.31 2.39 −0.24 2.94
28, 44, 65, 78 −10.25 −0.26 −9.25 6.90 10.25 4.82 0.41 4.84 0.43 5.15
29, 46, 67, 81 0.94 −5.99 −6.09 4.30 6.09 3.27 0.23 3.28 0.22 3.52
30, 48, 70, 85 11.39 5.89 11.10 8.48 11.39 4.64 −0.59 4.62 −0.47 5.67
31, 49, 72, 87 −3.27 0.34 −0.39 1.65 3.27 1.43 0.07 1.43 0.12 1.81

2.5 Rank 2 Temperaments

For a rank 2 temperament, the weighted mapping has
two columns, M0 and M1, which correspond to either
the weighted mappings of two equal temperaments or
the weighted period and generator mappings. Either
way they’ll have corresponding generators g0 and g1.
Equation 27 on page 8 becomes

E2 = (M0g0 +M1g1 − V )T (M0g0 +M1g1 − V ) (33)

The optimal generators follow from Equation 28 on
page 8

(
g0
g1

)
opt

=
[(

MT
0

MT
1

)(
M0 M1

)]−1(
MT

0

MT
1

)
V

=
(
MT

0 M0 M
T
0 M1

MT
1 M0 M

T
1 M1

)−1(
MT

0 V

MT
1 V

)
V

=

(
MT

1 M1 −MT
0 M1

−MT
1 M0 MT

0 M0

)(
MT

0 V

MT
1 V

)
MT

0 M0MT
1 M1 −

(
MT

0 M1

)2
g0 =

MT
1 M1M

T
0 V −MT

0 M1M
T
1 V

MT
0 M0MT

1 M1 −
(
MT

0 M1

)2 (34)

g1 =
MT

0 M0M
T
1 V −MT

0 M1M
T
0 V

MT
0 M0MT

1 M1 −
(
MT

0 M1

)2 (35)

For Tenney weighting, they simplify to

g0opt =
〈M0〉

〈
M2

1

〉
− 〈M1〉 〈M0M1〉

〈M2
0 〉 〈M2

1 〉 − 〈M0M1〉2
(36)

g1opt =
〈M1〉

〈
M2

0

〉
− 〈M0〉 〈M0M1〉

〈M2
0 〉 〈M2

1 〉 − 〈M0M1〉2
(37)

From Equation 32 on the previous page and the ob-
servation that the denominator works out as the de-
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3 Worst Weighted Error

nominators of Equations 36 and 37 (which follows
from Cramer’s rule (Clapham p. 58)) the TOP-RMS er-
ror is 〈

e2opt

〉
=

σ2
M0
σ2

M1
− σ2

M0M1

〈M2
0 〉 〈M2

1 〉 − 〈M0M1〉2
(38)

where σ2
X is the variance of X (Weisstein 2006) and

σXY is the covariance of X and Y (Weisstein 2006a)

σ2
X =

〈
X2
〉
− 〈X〉2 (39)

σXY = 〈XY 〉 − 〈X〉 〈Y 〉 (40)

2.6 Rank 2 Example

Let’s calculate the TOP-RMS tuning and error for 7-
limit meantone as an example. The mapping is∣∣∣∣ 〈 1 2 4 7 |

〈 0 −1 −4 −10 |

〉
(41)

This is in the standard form where the first entry is the
period mapping (the mapping by the generator that
equally divides the octave) and the second entry is
the generator mapping (the mapping by the genera-
tor that’s independent of the octave). In this case, the
period is the octave, and so the top line tells you how
many octaves contribute to each prime interval. The
generator here is a perfect fourth, so the bottom line
tells you where each prime interval comes on the spiral
of fourths.

Table 3 on the following page shows the process of
calculating the means used in Equations 36 and 37 on
the previous page. M0 and M1 are calculated by di-
viding entries of the mapping by the buoyancy (logs to
base two, so octaves). The other columns are calcu-
lated from M0 and M1. If you have the time, I expect
you can check the whole table with a pocket calculator.

To get the optimal tempered octave, work through
Equation 36 on the preceding page.

g0opt =
1.620× 4.014−−1.479×−3.161

2.944× 4.014− (−3.161)2

=
1.8276
1.8253

= 1.0013± 0.0005 oct

1.0013× 1200 = 1201.6± 0.6 cent

The correct value (which is in Table 7 on page 27 if
you want to check) is 1201.2 cents. So this result is
good enough to within the rounding error – and you
can check it with a pocket calculator!

Next, get the optimal generator from Equation 37
on the preceding page and noticing that the denomi-
nator’s the same as Equation 36 on the previous page

g1opt =
−1.479× 2.944− 1.62×−3.161

1.8253

=
0.7666
1.8253

= 0.41999± 0.00005 oct

0.41999× 1200 = 503.99± 0.06 cent

This matches the correct value of 504.03 cents to 4
figure accuracy.

To get the TOP-RMS error, plug these generators into
Equation 33 on the preceding page. Four figures in
should give nearly four decimal places of octaves out.〈

e2
〉

=
1
4

[(1× 1.0013 + 0− 1)2

+(1.262× 1.0013

−0.631× 0.41999− 1)2

+(1.723× 1.0013

−1.723× 0.41999− 1)2

+(2.493× 1.0013

−3.562× 0.41999− 1)2]

=

0.00132 + (−0.00014)2

+0.001602 + 0.000242

4

=
0.000004327

4
= 0.000001082√

〈e2〉 =
√

0.000001082 = 0.00104 oct

0.00104 ∗ 1200 = 1.25 cent/oct

The correct value, from Table 7, is 1.382. So figures
accurate to about a cent give a result accurate to about
a cent per octave.

3 Worst Weighted Error

The simplest way to think about the error of a set of
intervals is to take the worst case as representative of
the whole set. How does this fit with the criteria I
gave?

1. In an important special case, we’ll see that the
worst weighted error for a prime is also the worst
weighted error for any interval. So the prime in-
tervals are not an arbitrary choice – we can derive
a property of all simple intervals from them.

2. If you only look at the worst error, that tells you
nothing about the other ones.

3. If you assume that mistuning gets worse the larger
it gets, only looking at the most mistuned interval
gives you an idea of how the mistuning of a chord
will sound.
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3 Worst Weighted Error

Table 3: Intermediate Calculations for TOP-RMS Meantone. Buoyancy in octaves.
Prime Mapping Buoyancy M0 M1 M2

0 M2
1 M0M1

2:1 1 0 1.000 1.000 0.000 1.000 0.000 0.000
3:1 2 −1 1.585 1.262 −0.631 1.592 0.398 −0.796
5:1 4 −4 2.322 1.723 −1.723 2.968 2.968 −2.968
7:1 7 −10 2.807 2.493 −3.562 6.217 12.688 −8.882

Sums: 6.478 −5.916 11.777 16.054 −12.646
Means: 1.620 −1.479 2.944 4.014 −3.161

4. The worst error might be stupidly large, but at
least you know you have a stupidly large error and
so anything else calculated from all the primes is
irrelevant.

The worst error is useful for telling you if any errors
fall into your “moderate” or “large” categories. You
may want to use the worst error as a barrier to ensure
you only look at acceptable temperaments, and then
use another average to compare those temperaments
with each other. Unweighted errors of a deliberately
chosen, finite set of intervals may tell you more about
which category the errors fall in.

The worst error, from Equation 6 on page 3 becomes

max(e) = max(|w − v|) (42)

You can also write it as

max(e) = max[max(w − v),−min(w − v)] (43)

because the maximum weighted error always has to be
either the largest weighted deviation, or the negative
deviation with the largest magnitude.

For Tenney weighting, each vi is 1. In that case

max(e) = max[max(w − 1),−min(w − 1)]

= max
[

max(w) − 1,
−min(w) + 1

]
= max

[
max(w) − 1,

1 − min(w)

]
(44)

Now, try stretching the tempered scale by a uniform
amount α. The relative sizes of the weighted primes
aren’t affected by the scale stretch. So max(αw) =
αmax(w) and min(αw) = αmin(w). The worst error
is now

max(e) = max
[

max(αw) − 1,
1 − min(αw)

]
= max

[
αmax(w) − 1,

1 − αmin(w)

]
(45)

This means the worst error only depends on the
same two primes whatever the scale stretch. We need
to find a value for α that balances the errors in each.
The smaller α gets, the smaller αmax(w)− 1 gets, and
the larger 1 − αmin(w) gets. The larger α gets, the
larger αmax(w)−1 gets, and the smaller 1−αmin(w)
gets. So as long as αmax(w) − 1 is the maximum er-
ror, we make α smaller, and as long as 1 − αmin(w)
is the maximum error, we make α larger. The smallest
max-error (the minimax error) will occur when

αmax(w)− 1 = 1− αmin(w)

α[max(w) + min(w)] = 1 + 1

α =
2

max(w) + min(w)
(46)

This tells you the scale stretch for the TOP-max tuning.
The TOP-max stretch isn’t much different to the TOP-

RMS stretch. The difference between stretching and
not stretching is more important than the differences
between different stretches.

If you substitute Equation 46 into the first part of
Equation 45, you get6

max(eopt) =
2

max(w) + min(w)
max(w)− 1

=
2 max(w)

max(w) + min(w)

−max(w) + min(w)
max(w) + min(w)

max(eopt) =
max(w)−min(w)
max(w) + min(w)

(47)

3.1 Higher Rank Temperaments

Unfortunately, I don’t have a formula for finding the
TOP-max error for an arbitrary regular temperament.

6Equations 46 and 47 were originally given by Erlich 2004.
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4 Octave Independence

For the practical calculation I use a linear program-
ming library. It’s much slower than the least-squares
optimization library that does the RMS calculation.
There is a simple method for tempering out a single
comma, but the general case is difficult because it isn’t
continuously differentiable. Anyway, if you’re temper-
ing out a ratio n:d, the TOP-max error is given by Erlich
2006

max(e) =
log
(

n
d

)
log(nd)

(48)

which is the same as the Tenney-weighted error of n:d
by Equation 8 on page 4.

One interesting property of the TOP-max error is
that it’s also the highest weighted error for any interval
within the prime limit, although you only need to con-
sider the primes to calculate it Erlich 2006. Provided
you think Tenney-weighted error is a good measure
of mistuning, the worst such error tells you the worst
mistuning of any interval in the prime limit.

As the TOP-RMS error is more efficient to calculate
for many important cases, it’s useful to know that it’s
guaranteed to be no larger than the TOP-max error.
If you’re searching through a large number of regu-
lar temperaments to find those with a TOP-max error
smaller than a given value, you can first calculate the
TOP-RMS error and if it’s already to large you can save
the trouble of calculating the TOP-max error.

4 Octave Independence

Equation 25 on page 8 and Equation 47 on the pre-
ceding page both give a TOP error that’s independent
of the scale stretch. You can verify this by replacing
w with αw and noticing that it doesn’t alter the re-
sult. That means it’s possible to calculate the TOP er-
ror without optimizing the octaves! So, TOP errors are
a simple yet correct measure even when the octaves
are pure.

For higher rank temperaments, you need to find the
optimal generators, and then unstretch the scale so
that octaves are pure. Where the period is g0 octaves,
and there are M00 periods to an octave, the size of the
octave is M00g0. For the optimal unstretched rank 2
TOP-RMS, you divide Equation 37 on page 10 by the
size of an octave given by Equation 36 on page 10 to
get

gopt =
1

M00

〈M1〉
〈
M2

0

〉
− 〈M0〉 〈M0M1〉

〈M0〉 〈M2
1 〉 − 〈M1〉 〈M0M1〉

(49)

4.1 Approximations

Equation 25 on page 8 and Equation 47 on the pre-
ceding page are of the same form: a kind of deviation
divided by a kind of average. For the TOP-max error,
the denominator is proportional to the optimal scale
stretch (see Equation 46 on the previous page). Be-
cause the scale stretch is usually small, the denomina-
tors don’t affect the result much.

Note that the optimally stretched prime errors (the
middle bars of Figures 3 and 4 on page 7) are almost
identical to the unstretched errors measured relative
to the average error, rather than the optimal tuning
for each interval (the right hand bars). This shows you
that the deviations don’t change much with the stretch:
only the absolute values.

A 1% scale stretch will only alter the TOP error by
about 1%, and this means octaves will be sharp or flat
by 12 cents when you optimize the stretch. That’s
no problem given that 12 cents is quite a hefty scale
stretch and a 1% error is negligible given that we aren’t
measuring anything real here. The denominator for
the TOP-RMS case is the RMS of the weighted primes
for the unstretched scale. Tables 1 on page 9 and 2 on
page 10 show that the RMS Tenney-weighted error for
an unstretched temperament is also within 12 cents
for a good temperament. I don’t think an ordering of
tables by either TOP error would be affected by only
taking the deviation parts. That gives us:√〈

e2opt

〉
'

√
〈w2〉 − 〈w〉2 (50)

max(e) ' max(w)−min(w)
2

(51)

They can also be written in terms of weighted devi-
ations, Ei where Ei = wi−1. Hopefully you’ll see it as
obvious that Equation 51 is the same as

max(e) ' max(E)−min(E)
2

(52)

For Equation 50 either try substituting in wi = Ei+1 or
consult a statistics text such as Wetherill 1972 (p. 29)
to get √〈

e2opt

〉
'
√
〈E2〉 − 〈E〉2 (53)

Equation 50 is given in the “STD” columns of Ta-
bles 1 on page 9 and 2 on page 10. You can see that,
as expected, it doesn’t differ from the TOP-RMS error
by very much. The smaller the errors get, the closer the
STD approximation is, so that in some cases they’re the
same to three figure accuracy.

One thing to note about these approximations is that
they don’t only work with unoptimized octaves, they
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4 Octave Independence

depend upon the octaves not being optimized! Both de-
viations of errors will get smaller the more you shrink
the scale, so that if you shrink everything to a unison
the total errors become zero. So remember not to try
optimizing them for scale stretch, or you’ll get infini-
ties coming out.

Equation 51 on the preceding page gives the true
TOP-max error if you apply the TOP scale stretch.
That’s because the denominator tells you how much to
stretch the scale to reach the optimum. When you’re
already at the optimum point, no additional stretch is
required.

Equation 50 on the previous page is nice for a rank 2
temperament, because it means the sum squared error
is a quadratic function of the generator. You can ei-
ther think of the period as being fixed or the whole
thing defined in projective space and the generator
representing the ratio of the stretched generator to the
stretched octave. The weighted primes are then writ-
ten as

wi =
Mi0

M00
+Mi1g (54)

with M00 as the number of periods to an octave and g
as the generator (previously written as g1). Substitut-
ing this into Equation 50 on the preceding page gives

e2 =

〈(
M0

M00
+M1g

)2
〉
−
〈
M0

M00
+M1g

〉2

= g2
(〈
M2

1

〉
− 〈M1〉2

)
+

2g
M00

(〈M0M1〉 − 〈M0〉 〈M1〉)

+

〈
M2

0

〉
− 〈M0〉2

M2
00

= σ2
M1
g2 +

2σM0M1

M00
g +

σ2
M0

M2
00

e2 = σ2
M1

(g − gopt)2 + e2opt (55)

This is a standard quadratic equation in g. You can
work out the value of gopt that gives the right coeffi-
cient on g in the expanded equation.

gopt =
1

M00

〈M0〉〈M1〉 − 〈M0M1〉
〈M2

1 〉 − 〈M1〉2

gopt = − σM0M1

M00σ2
M1

(56)

The variance and covariance are as in Equations 39
and 40 on page 11 7.

7If you want formulas like this to work with general weights, you
can replace means with normalized means as in Equations 14 on

Substituting this optimal generator into Equation 55
gives

e2opt =
σ2

M0

M2
00

− g2
optσ

2
M1

e2opt =
σ2

M0
σ2

M1
− σ2

M0M1

M2
00 σ

2
M1

(59)

Equation 51 on the previous page is also nice to work
with, because it makes the error a piecewise linear
function of the generator size, which I hope has a sin-
gle well-defined minimum. I know an algorithm for
finding the minimum of such a function. What you do
is choose two values that you expect to lie either side
of the minimum. Then, you find the point where their
two gradients meet. You then replace one of the points
with this new one, such that the minimum must lie be-
tween them. Before long, you’ll hit the exact minimum
point. It would be nice if that is also a stretch of the
TOP-max tuning, but I can’t prove it.

You can even make a case for Equations 50 and 51
on the preceding page being the natural TOP-like er-
rors for untempered octaves without taking them as
approximations of error measures that do temper the
octaves. They fix the main problem with calculating
an average of the prime errors without optimizing the
octaves: that large intervals have the same weight as
small intervals of a given complexity, but small inter-
vals are more likely to be harmonically obtrusive.

One way to shift the bias towards small intervals is
to consider the intervals between the prime intervals,
instead of the prime intervals themselves. That’s what
Equation 51 on the previous page does. It averages the
lowest and highest weighted deviations in the prime
intervals to give the highest weighted error in an inter-
val between prime intervals. But that’s only one more
approximation on top of all the other approximations
we’re dealing with here.

Even though octaves are kept pure, remember to
consider them when calculating the means. If you use
vectors that don’t include the octave component then
you’ll have to add the octave terms manually. If oc-
taves are pure, they’ll always have zero error, and so
the octave component of w is 1. The octave compo-
nent of M0 tells you how many periods there are to an

page 6 and 21 on page 7 to get a weighted variance of

σ2
X →

〈
X2
〉

V
− 〈X〉2V (57)

The weighted covariance would need another special-case sym-
bol, so lets write it in matrix form:

σXY →
XTY

V TV
−
V TXY TV

V TV V TV
(58)
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4 Octave Independence

octave. The octave component of M1 is always zero.
All this assuming weights and intervals are in terms of
octaves, which is assumed for a lot of these equations.

4.2 Paired Equal Temperaments

Sometimes it’s useful to know the optimal error for a
regular temperament class given two equal tempera-
ments that arise as special-case tunings. The optimal
standard deviation of the weighted primes, as in Equa-
tion 50 on page 13, as a function of the errors E1 and
E2 of the defining equal temperaments, is

e2opt =
σ2

E0
σ2

E1
− σ2

E0E1

σ2
E0−E1

(60)

This is good because the errors tend to be small, and
a calculation that only involves differences between
small numbers doesn’t suffer as much from rounding
error as one that involves small differences between
larger numbers. Showing it is a bit difficult so I left it
to Appendix C.

It’s nice that the denominator becomes zero if you
feed the same ET in twice, because the resulting tem-
perament would make no sense.

4.3 Kees Weighting

The Kees metric is a more systematic way of dealing
with octave-equivalent errors 8. This is like a Tenney
metric, but with two differences:

• Factors of 2 are ignored.

• For an interval n:d, the overall complexity is the
highest complexity of n and d rather than their
sum.

Following these rules, we can define the weighted
error for an interval x in a similar form to Equation 8
on page 4

e(x) =

∣∣∣∣∣∑
i

xidi

∣∣∣∣∣
max

[∑
i

max(xibi, 0),
∑

i

max(−xibi, 0)

]
(61)

Either you only consider odd primes (i > 0) or set the
buoyancy of octaves to zero (b0 = 0). The deviation
of octaves will always be zero (d0 = 0) because the
Kees metric is only valid for tunings with pure octaves.

8From a proposal of Kees van Prooijen. See Smith 2006a, although
it’s really about something else.

Intervals that only consist of octaves will give a zero-
division error. Don’t worry too much because unisons
do the same thing with a Tenney metric. In practice
they should have zero weighted error.

The logic behind the Kees metric is that we want
the harmonic distance of an interval to be the same if
we make it larger by any number of octaves. Because
small intervals tend to be the most harmonically ob-
trusive, we score each interval according to its smallest
possible manifestation. That means taking the smaller
odd part of the ratio, and adding factors of two to it
until it gets to be the same size as the other part. For
example, the smaller odd part of 9:4 is 9. So we beef
up the 4 to be about the same size, to make it 8. That
gives us 9:8, so 9:4 is weighted as if it were 9:8. The
Tenney harmonic distance would then be the log of
9×8.

For the Kees metric, we cheat and add a fractional
number of octaves so that the numerator and denom-
inator are of equal length. That means instead of 9:4
turning into 9:8, it becomes 9:9. The Tenney harmonic
distance would be the logarithm of 9×9, or twice the
logarithm of 9. The Kees harmonic distance is half of
the Tenney harmonic distance of this theoretical, in-
finitely small interval.

With Tenney weighted errors, we know that the
worst weighted error of the prime intervals is the same
as the worst weighted error in any interval in the prime
limit. With Kees weighted errors, this is no longer the
case. For example, you probably know that in 12 note
equal temperament the minor third has a greater devi-
ation from just intonation than either the major third
or perfect fifth. With Kees weighting, perfect fifths
and major thirds have the same weight as 3:1 and
5:4 respectively, and therefore the same weighted er-
rors. However a minor third, interpreted as 6:5 has a
Kees buoyancy of the logarithm of 5, and so the same
weighting as a major third. Because fifths are very well
tuned, their weighted error is small. So the minor third
has a higher weighted error than either the major third
or perfect fifth.

It happens that the worst Kees error for a regular
temperament is double the complexity in Equation 52
on page 13. So, the worst Kees error for a regular
temperament is the same as the approximate TOP-max
error with pure octaves, normalized so that Kees and
Tenney errors are comparable. Proving this is fairly
difficult so I moved it to Appendix D.
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5 Complexity and Badness

5.1 Criteria for a Complexity Measure

What is the complexity of a temperament class? Sim-
ply put, it’s the number of notes you need. But that de-
pends on what you want to do. Some desirable prop-
erties of complexity are:

1. The more complex simple intervals become, the
more complex the temperament.

2. All tunings of the same temperament class should
have the same complexity.

3. All mapping matrices for the same temperament
class should have the same complexity.

4. It should generalize to any regular temperament
class.

Any temperament class will have some intervals that
are a small number of generators. That’s no use if
they’re not intervals you’re likely to want to use. For a
simple temperament class, then, simple ratios from JI
should map to intervals with a small number of gener-
ators. The problem then becomes how to count gener-
ators, and how to balance different intervals.

A given temperament class should have the same
complexity regardless of how it’s tuned. Different tun-
ings will be written down the same way and map
to keyboards the same way. Sometimes complexity
counts the number of notes to an octave. That ap-
pears to break this rule, but you can always call an oc-
tave the interval 2:1 maps to rather than always being
1200 cents (except for the cases where 2:1 is outside
the temperament, which is where the definitions get
tricky). As all temperaments in a class share the same
mapping, it’s natural that the complexity should be a
function of that mapping.

There are always different ways of writing the map-
ping for a temperament. The complexity shouldn’t de-
pend on the representation. So all choices of generator
for the same temperament class should have the same
complexity.

Measuring the complexity is easy for equal temper-
aments. All you do is count the number of notes to
the octave. For rank 2 temperaments you count the
number of octave-equivalent generators in some way.
It gets harder when you consider higher rank temper-
aments. Although special-case measures have their
uses, we really want something that works for any rank
and any number of primes.

5.2 Max Weighted Complexity

The complexity of an interval tells you how many notes
you need in your scale to get that interval to be in-
cluded. Take a scale made up as a chain of genera-
tors. The same note is repeated in each octave. If the
complexity of an interval is larger than the number of
notes in the scale, then the interval isn’t in the scale.
Otherwise, the number of intervals of that kind you
get in the scale is the difference between the number
of notes in the scale and the complexity of the interval.

The tuning of an interval, x, in a rank 2 tempera-
ment with pure octaves is given by

t(x) =
m0 · x
m00

+m1 · xg (62)

where m00 is the number of periods to an octave, m0 is
the unweighted period mapping, m1 is the unweighted
generator mapping, m0 ·x is the dot product of m0 and
x taken as vectors, and g is the size of the generator.
The complexity of x is

k(x) = m00|m1 · x| (63)

When we use odd limits, the complexity of a rank 2
temperament as a whole is the highest complexity of
all the intervals in the relevant odd limit. For prime
limits, we have to define a weighted complexity. With
post-weighting, that’s

k(x) = m00

∣∣∣∣∣∑
i

mi1xi

∣∣∣∣∣∑
i

bi|xi|
(64)

The trouble with this equation is that adding an oc-
tave to an interval reduces its complexity. Really, the
complexity should be octave-equivalent. For octave-
equivalent weighting that’s like Tenney weighting, we
can use the Kees metric. For an interval between
primes i and j, the Kees-weighted complexity is

kij = m00
|mi1 −mj1|
max(bi, bj)

(65)

which can’t be higher than

kij = M00[|Mi1|+ |Mj1|] (66)

where M1 is the weighted generator mapping and M00

is still the number of periods to an octave. Either
Mi1 or Mj1 is underweighted, because the unweighted
mappings should have both been divided by the higher
buoyancy of the two. Because it was divided by too
small a buoyancy, it’s a bit bigger than it should be.
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5 Complexity and Badness

But that makes the sum too large, so the real complex-
ity can’t be larger.

The complexity of the temperament can be set as the
highest Kees complexity of an interval between prime
intervals9.

k(M) = M00[max(M1)−min(M1)] (67)

Because the first element of the generator mapping
(M01) is always zero, no prime intervals or intervals
between prime intervals can have a weighted complex-
ity larger than this.

This complexity formula is only valid for rank 2 tem-
peraments because it involves the mapping of a single
period-equivalent generator.

5.3 STD Weighted Complexity

There’s also a complexity which derives from the stan-
dard deviation (Weisstein 2006) of the weighted map-
ping, and so is related to the TOP-RMS error.

k(M) = M00

√
〈M2

1 〉 − 〈M1〉2 (68)

Or, using σx for the standard deviation of x,

k(M) = M00σM1 (69)

Alternatively, following Equation 60 on page 15

k(M) = σM0−M1 (70)

I can’t make an obvious case for why a standard
deviation should work as complexity. However, think
about the complexity of an interval as being the num-
ber of generators that make it up. This tells you how
fast the tuning of that interval changes as the tuning
of the generator changes. The complexity of the tem-
perament as a whole in a given odd-limit is the highest
value of the complexity for all intervals within that odd
limit. If you plot a function of odd limit error against
the generator tuning, the complexity is the highest ab-
solute value of the gradient of this function, multiplied
by the number of periods to the octave so that you get
a fair comparison between temperaments. The stan-
dard deviation does the same thing for the TOP error.

To show this, take Equation 55 on page 14 which
shows an approximation to the TOP mean squared er-
ror as a simple quadratic equation, and use it to find
the gradient of the RMS error.〈

e2
〉

= σ2
M1

(g − gopt)2 +
〈
e2opt

〉
9Gene says this is the formula for max Kees complexity as well, but

if he gave a proof I didn’t understand it.

d
〈
e2
〉

dg
= 2gσ2

M1
+ const

d
〈
e2
〉 1

2

dg
=

1
2
〈
e2
〉− 1

2
d
〈
e2
〉

dg

d
√
〈e2〉

dg
=

gσ2
M1

+ const√
g2σ2

M1
+O(g)

lim
g→∞

d
√
〈e2〉

dg
= σM1 (71)

Equation 55 on page 14 shows the TOP mean
squared error as a quadratic function of the gener-
ator g. The quadratic curve has a minimum point,
which is the optimum tuning. So, the maximum gradi-
ent comes when the generator approaches infinity. As
Equation 71 shows, this is what we need for the gradi-
ent times the number of periods per octave to be what
we want for Equation 69 to be a weighted complexity
measure.

Note that for the weighted complexity of Equa-
tion 69 to be comparable to the other form, you should
take half the size of Equation 67 to give

k(M) = M00
max(M1)−min(M1)

2
(72)

Like the max weighted complexity, STD complexity
is only valid for rank 2 temperaments.

5.4 Badness

When I search through huge lists of temperaments to
find interesting ones, I score them by something called
badness. That’s chosen so that it increases as a temper-
ament gets more complex or further from just intona-
tion.10 Badness is some function of error and complex-
ity and, although error×complexity weights the error
a bit low, it will work.11

For an equal temperament, the octave-equivalent
RMS error is the standard deviation of the weighted
errors, or σE . To get an error×complexity badness,
multiply by the number of notes to the octave to get
M0σE or σM .

From the error in Equation 59 on page 14 and the
complexity in Equation 69, you can derive a rank 2

10 Gene defines “badness” as “a function of complexity and error
of the temperament, which increases if you increase either com-
plexity or error.” (Smith 2004)

11 Gene prefers logflat badness, defined as

ek
d

d−r (73)

where e is error, k is complexity, d is the number of prime inter-
vals, and r is the rank of the temperament. (ibid)
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5 Complexity and Badness

badness of

B2(M0,M1) = σ2
M0
σ2

M1
− σ2

M0M1
(74)

that’s simpler to calculate than the error. This is a use-
ful pragmatic choice, and works if M0 and M1 repre-
sent either a pair of equal temperaments or the gener-
ator and period mappings.

5.5 Scalar Complexity

If you compare Equation 74 with Equation 38 on
page 11, you can see that the top term of the error
is a badness squared, which means that the bottom
must be a complexity squared. That gives us a new
complexity formula.

k(M) =
√
〈M2

0 〉〈M2
1 〉 − 〈M0M1〉2 (75)

This can be generalized to any rank:

k(M) =
√
|〈M2〉V | (76)

where |A| is the determinant of A. It’s always very
close to the STD complexity for the same reason that
the TOP-RMS error is always very close to its STD ap-
proximation. I call it scalar complexity for reasons that
needn’t concern us now. Note that it’s equal to the de-
nominator of Equations 31 and 32 on page 9:

For equal temperaments it gives the intuitively cor-
rect result that the complexity is approximately the
number of notes to the octave. So it’s measuring the
complexity of intervals in some sensible way. It also
fulfills the other criteria I stated for a complexity mea-
sure. It only depends on the mapping, and doesn’t
treat octaves as a special case in any way, so it’s inde-
pendent of the tuning. It works for any rank.

To prove that all mappings of a temperament class
give the same scalar complexity, note that a mapping
M ′ of the same temperament class as M can always
be written as M ′ = MA where A is a matrix with
|A| = ±1. Then,

k2(M ′) =
∣∣〈M ′2〉

V

∣∣
=
∣∣∣∣M ′TM ′V TV

∣∣∣∣
=
∣∣∣∣ (MA)TMA

V TV

∣∣∣∣
=
∣∣∣∣ATMTMA

V TV

∣∣∣∣
From standard properties of determinants12, it follows

12 That |AB| = |A| |B| (Clapham 1996, p. 69), and
∣∣AT
∣∣ = |A|,

which follows from being able to swap rows and columns with-
out affecting the determinant (ibid).

that

k2(M ′) =
∣∣AT

∣∣ ∣∣∣∣MTM

V TV

∣∣∣∣ |A|
= (±1)2

∣∣∣∣MTM

V TV

∣∣∣∣
=
∣∣〈M2

〉
V

∣∣
Another way of defining scalar complexity for Ten-

ney weighting is with a matrix of averages

Kij = 〈MiMj〉 (77)

Then, simply
k(K) =

√
|K| (78)

5.6 Scalar Badness

If you use TOP-RMS error and scalar complexity (or
optimal STD error and STD complexity), the simple
badness comes out as the numerators of Equations 31
on page 9 and 32 on page 9. That is,

B2(M) =
∣∣〈(M − V 〈M〉V )2

〉
V

∣∣ (79)

or
B2(M) =

∣∣∣〈M2
〉

V
− 〈M〉2V

∣∣∣ (80)

This is a simple way of measuring badness, but it
tends to favor complex but very accurate tempera-
ments. One way of shifting the focus towards simpler
temperaments is to add a parameter ε so that

B2(M, ε) =
∣∣〈(M − (1− ε)V 〈M〉V )2

〉
V

∣∣ (81)

where 0 ≤ ε ≤ 1. When ε is 0, this is identical to Equa-
tion 79. When ε is 1, it’s identical to scalar complex-
ity as in Equation 76. For values of ε close to but not
equal to 0, this seems to be a sensible badness measure
that favors temperament classes of a certain size. The
larger ε, the simpler the favored temperaments.

This badness can also be written as.

B2(M, ε) =
∣∣∣〈M2

〉
V
− (1− ε2) 〈M〉2V

∣∣∣ (82)

It’s quite complicated to prove so I moved that to Ap-
pendix E.

The matrix in the determinant of either formulation
is such that the ith row and jth column depends only
on the ith and jth columns of M .

B2(M, ε) =
∣∣∣〈M2

〉
V
− (1− ε2) 〈M〉2V

∣∣∣
=
∣∣∣∣MTM

V TV
− (1− ε2)

MTV V TM

V TV V TV

∣∣∣∣
=
∣∣∣∣MT

[
I

V TV
− (1− ε2)

V V T

(V TV )2

]
M

∣∣∣∣
=
∣∣MTA(V, ε)M

∣∣ (83)
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where

A(V, ε) =
I

V TV
− (1− ε2)

V V T

(V TV )2
(84)

This means

[MTA(V, ε)M ]ij = MT
j A(V, ε)Mi (85)

Naturally, the same principle works for scalar complex-
ity, where ε = 1.

For Tenney weighting, the scalar badness (ε = 0) of
a rank 2 temperament is the covariance (Equation 40
on page 11) of the weighted mappings Mi and Mj .(〈

M2
〉

V
− 〈M〉2V

)
ij

= 〈MiMj〉 − 〈Mi〉 〈Mj〉

= σMiMj
(86)

(87)

That means the general form of the scalar badness for
Tenney weighting and ε = 0 is the determinant of the
covariance matrix (Weisstein 2007).

5.7 Units

Because Tenney weighting leaves so many quantities
dimensionless, it’s not clear what units complexity is
measured in. For now, I’ve given up on deciding what
they are and put “Tenney Weighted” in the tables.

The best way to find the natural units for complexity
is using scalar complexity (Equation 76 on the previ-
ous page). For Tenney weighting, this is the square
root of a determinant of squares of weighted map-
pings. The squaring and square rooting cancel out,
so the units depend on the number of multiplications
you do in finding the determinant. That’s the rank of
the matrix, which is the same as the rank of the tem-
perament class. The complexity is therefore in units of
weighted mappings to the power of the rank.

The unweighted generator mapping is simply a list
of integers. So the weighted mapping has units of
generators per octave. The complexity is therefore
genroct−r for a rank r temperament.

If the equivalence interval isn’t an octave, you can ei-
ther state the complexity in terms of that equivalence
interval, or scale it to be in terms of 2:1 octaves.13

Which you do partly depends on how seriously you
take the equivalence interval. If you really think that
the 3:1 equivalence of the Bohlen-Pierce scale takes
the place of the octave, then the number of notes to
a 3:1 in a given scale is comparable to the number of
13This appears to break the rule that complexity shouldn’t depend

on the tuning. You can get round that by fixing it to the size of
the equivalence interval in just intonation.

notes to a 2:1 in a conventional scale. However, if you
expect your tunes and orchestration to cover a given
acoustic range, you want to know how many notes
you’re likely to need to cover that range. In that case,
the complexity over a standard interval such as the oc-
tave is more appropriate.

Note that you can re-write Equation 70 on page 17
to get complexity in the form

k = M00M01σE0−E1 (88)

So, the complexity is the product of the numbers of
steps to the octave for each equal temperament and
something with dimensions of error. Well, what hap-
pens if we replace that error with the optimal error
for the temperament? It leaves two mystery numbers
that look like the numbers of steps to octaves for equal
temperaments. You can rearrange it to get the value
for the geometric mean of the mystery numbers.

m =

√
k

eopt
(89)

So we have a number that depends on the complexity
and error of the temperament, and looks like the num-
ber of steps to an equal temperament. What does it
mean?

It looks like an alternative complexity measure.
For example, this value for optimal 7-limit meantone
(12&19) is 34.3. For 7-limit magic (19&22), it’s 44.9.
For 7-limit miracle (31&41), it’s 75.5. For 11-limit mir-
acle, it’s 83.1. For 13-limit mystery (29&58), it’s 106.4.
In each case, the number’s a bit bigger than the num-
ber of notes to an equal temperament that gets the
tuning almost right (31 for meantone, 41 for magic,
72 for miracle, and 87 for mystery). Perhaps it’s telling
us that if you’re using that many notes you may as well
use the equal temperament instead.

Of course, it’s a peculiar complexity because it de-
pends on the tuning. But it means you can find out
how many notes it’s worth looking at for whatever tun-
ing you prefer. Think of it as natural size rather than
complexity. It means that the schismatic nanotemper-
ament (53&118) becomes bigger in the 7-limit (365.0)
than the 5-limit (194.2).

6 Exterior Algebra Applications

6.1 Background

Gene Ward Smith has identified exterior or Grassman
algebra as relevant to regular temperaments (Smith
2006). I’ll give a brief introduction here, but it likely
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won’t make sense if you start with no knowledge. For
more details, see Browne 2001. It isn’t complete but
it covers the basics. Alternatively, you can skip this
section if you find it too difficult.

Exterior algebra involves two operations: an exte-
rior or wedge product and a complement.14

The wedge product of two simple elements is always
antisymmetric (Brown 2001, Introduction p. 5):

x ∧ y = −y ∧ x (90)

and it follows that the wedge product of an element
with itself is zero.

x ∧ x = 0 (91)

The elements here could be (weighted) linear map-
pings, intervals in vector form, or the results of wedge
products. Geometrically speaking, the wedge product
of two vectors is zero if the vectors are parallel, and so
the wedge product is the parallel part of the product
of vectors.15

Each regular temperament class can be uniquely
represented by the wedge product of its mappings.16

All important properties of the temperament class can
be derived from this wedge product. A certain vector-
ization of this wedge product is called the “wedgie” by
Gene (Monzo et. al. 2006).

Here, we’ll use a weighted wedge product. For equal
temperaments, it’s simply the weighted mapping. For
rank 2 temperaments, it’s the product of the equal
mappings making up the weighted mapping matrix
(these could be the weighted mappings by period and
generator, or the weighted mappings or two equal tem-
peraments.)

T = M0 ∧M1 (92)

The weighted wedge product for a rank 2 tempera-
ment is (Miller 2006)

Tij = Mi0Mj1 −Mi1Mj0 (93)

It follows that Tij = −Tji and Tii = 0 for all i and j.
So, only elements of Tij with 0 < i < j are indepen-
dent and included in the wedgie.

For a rank r temperament the wedge product is:

T = M0 ∧M1 ∧ . . . ∧Mr−1 (94)

I don’t know of a simple formula for the elements of
this.

The complement of x is written as x̄. Taking the
complement of the complement gets you back where
14Gene prefers to think of dual spaces rather than a complement

operation.
15For more on this, search for “geometric algebra”.
16For suitable definitions of “temperament class”.

you started, although the sign may change (Browne
2001, TheComplement p. 16).

¯̄x = ±x (95)

The absolute values of the elements of the result of the
complement are unchanged. However, the way they’re
labeled does change. Each element of the wedge prod-
uct for a rank r temperament is labeled by r integers.
The complement is labeled by n− r integers, where n
is the number of prime intervals.

6.2 Wedgie Complexity

A wedgie complexity measure is some function of the
weighted wedgie. As the wedgie encodes the impor-
tant properties of the temperament class, it’s natural
to think that the size of the wedgie will tell us the com-
plexity. Assuming a Euclidian metric17, the measure of
the wedgie is the inner product of T with itself (Brown
2001, TheInteriorProduct p. 19).

|T | =
√
T 	 T (96)

Where the complement of the inner product can be
defined as (Browne, Introduction p. 20)

¯x	 y = x ∧ ȳ (97)

Strictly speaking, this may not be the true inner prod-
uct (you may have to take the absolute value for ex-
ample) but it’s close enough to be getting on with.

So, we can define the complexity of the tempera-
ment class as the measure of the weighted wedgie.

The measure has a geometric interpretation. For
a vector, it’s the length. For the wedge product of
two vectors, it corresponds to an area. And for three
vectors, it corresponds to a volume. (Browne 2001,
TheInteriorProduct pp. 22-23)

Ben-Israel 1992 associates a volume with a matrix.
It can be calculated by exterior algebra (pp. 4-6) or
as a determinant (pp. 6-9).18 The upshot is that the
measure of the weighted wedgie is proportional to the
scalar complexity I defined before (Equation 76 on
page 18). That explains the name “scalar complex-
ity” as the interior product is also known as the “scalar
product”. The exact formula for Tenney weighting is

k(T ) =
|T |√
nr

(98)

17Browne 2001 uses arbitrary metrics. You could say that the
weighting determines the metric for calculating the complexity
of an unweighted wedgie. I prefer to think of the weighted
wedgie as the thing itself, and use a Euclidian metric.

18 The formula for the volume of a matrix as a determinant is also
stated (more clearly) in Wang et. al. 2004, p. 104.
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where n is the number of prime intervals and r is the
rank of the temperament.

There are other ways of determining the size of
the wedgie. The simplest is to take the largest abso-
lute value. (That is, make each element positive and
take the highest.) This is analogous to the “Range”
complexity for rank 2 temperaments. I show it un-
der “Max-Abs” in Tables 6 on page 26, 9 on page 29,
and 12 on page 32.

Erlich 2006 uses the sum of the absolute elements
of the weighted wedgie:

k(M) =
∑

i

∑
j,j>i

|Mi0Mj1 −Mi1Mj0| (99)

This is in Tables 6, 9, and 12 under “Erlich”.
A special case is when a temperament is defined by a

single unison vector. Examples are 3-limit equal tem-
peraments and 5-limit rank 2 temperaments. Then,
the result of equation 99 is proportional to the Tenney
Harmonic Distance of the unison vector. That’s the rea-
son for summing the absolute values rather than the
squares, or taking the largest absolute value.

Scalar complexity implies that the metric is Euclid-
ian, whereas the complexity of musical intervals natu-
rally follows a city-block metric (Tenney 1984, p. 24).
Unfortunately, I don’t know how to calculate areas and
volumes on such a metric. It’d be nice to think that
summing absolute values of the wedgie does it but I
don’t know of any mathematical arguments for why
that should work. When you calculate the measure,
different elements are treated differently — with dif-
ferent signs and a different number of times — but
this all gets ignored when you make all the distinct
elements positive and add them up. Still, it gives a
general idea of the complexity.

An alternative is equation 99 divided by the number
of prime intervals.

kM =

∑
i

∑
j,j>i

|Mi0Mj1 −Mj1Mi0|∑
i

vi

(100)

This is the same as the mean absolute value for an
equal temperament. Normalizing this way gives a
complexity that’s around the same size as you get by
other methods, whereas the sum of the absolute values
is a lot bigger. Now I’ve worked out scalar complexity
I’m not so happy with this normalized mean absolute
value wedgie complexity anymore, but for the sake of
completeness it’s in Tables 6, 9, and 12 under “Norm-
MAV”.

6.3 Duality

A regular temperament class can be defined as a set of
equal temperament mappings. It can also be defined as
a set of vanishing intervals, called “unison vectors”.19

The wedge product of the set of unison vectors is the
complement of the wedge product of the set of equal
mappings (Smith 2006). Hence, anything you can cal-
culate from one you can also calculate from the other.

Unison vectors are weighted differently to map-
pings. You multiply each prime by its buoyancy, hence
buoyancies become weights. If the unison vector is q,
the weighted unison vector, Q, is something like

Qi = qibi (101)

Let TQ be the wedge product of the weighted unison
vectors. Then, a scalar complexity for Tenney weight-
ing is similar to

k(TQ) =
|TQ|√
nr
∏

i bi
(102)

The same principle of duality means we can also
write a scalar complexity in terms ofQ by analogy with
Equation 76 on page 18.

k(Q) =

√
|〈Q2〉V |∏

i bi
(103)

6.4 Wedgie Error

As the wedgie tells us everything about the tempera-
ment class, it’d be nice to be able to calculate the opti-
mal error directly from the wedgie. Unfortunately that
isn’t as easy to do as for the complexity.

As scalar complexity can be calculated from the
wedgie, calculating the TOP-RMS error amounts to
finding the scalar badness (with ε = 0). You can use a
wedge product to calculate Equation 79 on page 18.
However, the vectors you take the wedge product
of are the columns of M − V 〈M〉V , not the usual
weighted wedgie.

Finding the dual of scalar badness is also difficult.
From Equation 48 on page 13 we know that the Ten-
ney weighted badness of a temperament with a single
unison vector can be written

B
(n
d

)
= log

(n
d

)
(104)

19 Erlich 2006 discusses unison vectors but calls them “vanishing
intervals”. Gene calls them “commas”. The term “unison vector”
comes from Fokker 1969. He applied the concept (under the
name “vecteur d’homophonie”) to equal temperaments in Fokker
1947. An earlier reference to similar ideas is Tanaka 1890. I
don’t think he gave them a name, but my German isn’t that hot.
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That is, the unweighted size of the interval. This works
because the denominator of Equation 48 is a kind of
complexity. Using a unison vector instead of a ratio,

B(Q) =
∑

i

Qi (105)

As TOP-RMS involves ranges rather than sums, a
good guess for the scalar badness is

B(Q) =
〈Q〉∏

i bi
(106)

implying a TOP-RMS error of√〈
e2opt

〉
=
〈Q〉√
〈Q2〉

(107)

Well, the good news is that this does seem to work.
At least, I checked it for the temperament classes in
Table 4 on page 24 with Tenney weighting. The prob-
lem comes when you generalize it for multiple unison
vectors (and arbitrary weights):

B(Q) =

√∣∣∣〈Q〉2V ∣∣∣∏
i bi

(108)

This expands as

B(Q) =

√∣∣∣QT V V T Q
V T V V T V

∣∣∣∏
i bi

(109)

The trouble is, QTV is a column vector. So the de-
terminant is of the general form

∣∣XXT
∣∣ where X is a

column vector. And, because there’s only one vector
involved, this is zero whenever there’s more than one
unison vector!

To summarize, I don’t have a general formula for op-
timal error or badness as a function of unison vectors.

7 Conclusion

Functions of the weighted primes are simple ways to
assess the error or complexity of a regular tempera-
ment. A good, simple to calculate error is the RMS,
provided you optimize the scale stretch. This leads
to a standard linear least squares problem. The re-
sult is the TOP-RMS error for a temperament class, as
in Equation 31 on page 9 (for numerical stability) or
Equation 32 on page 9 (for simplicity). These equa-
tions generalize to other weighting schemes.

For an equal temperament, Equation 32 simplifies
to Equation 25 on page 8. For a rank 2 temperament

class, use Equation 38 on page 11. You can also gen-
eralize these to other weighting schemes if needs be.

The best weighted complexity formula is scalar com-
plexity, as in Equation 76 on page 18. It can be gener-
alized to different ranks, different weighting schemes,
or different equivalence intervals. The scalar complex-
ity of an equal temperament class is roughly the num-
ber of notes to an octave.

For octave-equivalent rank 2 temperament classes,
you may find it simpler to work with the standard
deviation (STD) equivalents of error and complexity.
STD error is given in Equation 59 on page 14 (map-
ping by period and generator) and Equation 60 on
page 15 (paired equal temperament mappings). STD
complexity is given in Equations 69 on page 17 and 70
on page 17.

If you don’t optimize the scale stretch, STD error
gives better results than RMS error because it focuses
on smaller intervals. However, STD error is clearly
wrong for silly tunings, like where all intervals are very
small. STD and RMS are both wrong therefore. The
“one true error” may be a combination of the two but
to decide this we need more empirical evidence.

The parameterized version of scalar badness given
by either Equation 81 on page 18 or Equation 82 on
page 18 lets you choose the best temperament classes
with a certain trade-off between error and complex-
ity. It only requires one free parameter. Unfortunately
there’s no rule to tell you how to choose this parameter
for a given desired error or complexity.
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A Examples

Tables 4 and 7 show some TOP errors and complexities
for the 5- and 7-limit temperaments in Tables 1 and 2
of Erlich 2006. I haven’t included the TOP-max pe-
riod and generator because they tend to look like the
TOP-RMS period and generator and you don’t learn
anything from the comparison.

So that you know what the temperaments are, I
show some equal temperaments that they work with.
The full mappings are listed separately. Sometimes,
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Table 4: Figures for some 5-limit rank 2 temperaments
Scalar TOP-RMS

ETs Name Complexity Error Period Generator
(cent/oct) (cent) (cent)

5, 8 Father 0.443 13.194 1181.303 448.909
5, 9 Bug 0.602 11.574 1200.000 260.388

7, 10, 11, 17’ Dicot 0.521 7.095 1206.410 350.456
7, 12, 19, 31 Meantone 0.711 1.582 1201.397 504.348

12, 15, 27, 39 Augmented 0.894 2.400 399.018 93.133
7, 9, 16, 23 Mavila 0.795 6.065 1208.380 523.827

7, 15, 22, 29 Porcupine 0.960 2.678 1199.562 163.891
5, 10, 15, 20 Blackwood 1.020 4.626 238.862 80.025
8, 12, 16, 20 Dimipent 1.054 3.104 299.654 99.392

12, 22, 34, 46 Srutal 1.224 0.835 599.412 104.795
19, 22, 41, 60 Magic 1.395 1.110 1201.248 380.454
11, 12, 23, 35 Ripple 1.560 2.819 1200.283 100.862
19, 34, 53, 87 Hanson 1.550 0.274 1200.166 317.050
10, 19, 29, 48 Negripent 1.581 1.690 1202.347 126.001
7, 34, 41, 75 Tetracot 1.607 0.900 1199.561 176.095
5, 22, 27, 49 Superpyth 1.701 2.112 1197.663 488.968

12, 41, 53, 65 Helmholtz 1.791 0.057 1200.075 498.295
19, 46, 65, 84 Sensipent 1.967 0.356 1199.943 443.037
12, 49, 61, 73 Passion 2.023 1.567 1197.814 98.490
31, 34, 65, 99 Wuerschmidt 2.285 0.262 1199.694 387.701
12, 60, 72, 84 Compton 2.435 0.504 100.051 15.125
7, 46, 53, 99 Amity 2.292 0.140 1199.914 339.494

22, 31, 53, 84 Orson 2.444 0.215 1200.290 271.693
34, 50, 84, 118 Vishnu 3.708 0.047 599.977 71.140
31, 56, 87, 118 Luna 4.678 0.015 1199.980 193.198

the mapping is not the best one for that number of
notes to the octave. When that’s the case (according to
TOP-RMS) I add an apostrophe after the octave size.
This helps you to know which mapping is intended.
I’ve listed the mappings of all the rank 2 temperaments
in bra/ket form outside the tables.

In addition there are tables showing different kinds
of complexities and errors. These include unweighted
odd-limit figures for the sake of the comparison, al-
though I don’t talk about odd-limits. There are no fig-
ures for the 9-limit.

The list of 11-limit temperaments temperaments
comes from Miller 2008. The names weren’t argued
over for as long as those in Erlich 2006, and even some
of those are reported to have changed.

The 5-limit equal temperaments involved
are: 〈5, 8, 12|, 〈7, 11, 16|, 〈8, 13, 19|, 〈9, 14, 21|,
〈10, 16, 23|, 〈11, 17, 25|, 〈12, 19, 28|, 〈15, 24, 35|,
〈16, 25, 37|, 〈17′, 27, 39|, 〈19, 30, 44|, 〈20, 32, 47|,
〈22, 35, 51|, 〈23, 36, 53|, 〈27, 43, 63|, 〈29, 46, 67|,

〈31, 49, 72|, 〈34, 54, 79|, 〈35, 55, 81|, 〈39, 62, 91|,
〈41, 65, 95|, 〈46, 73, 107|, 〈48, 76, 111|, 〈49, 78, 114|,
〈50, 79, 116|, 〈53, 84, 123|, 〈56, 89, 130|, 〈60, 95, 139|,
〈61, 97, 142|, 〈65, 103, 151|, 〈72, 114, 167|, 〈73, 116, 170|,
〈75, 119, 174|, 〈84, 133, 195|, 〈87, 138, 202|,
〈99, 157, 230|, 〈118, 187, 274|.

The 5-limit mappings are:

father |〈1, 2, 2| , 〈0,−1, 1|〉
bug |〈1, 2, 3| , 〈0,−2,−3|〉

dicot |〈1, 1, 2| , 〈0, 2, 1|〉
meantone |〈1, 2, 4| , 〈0,−1,−4|〉

augmented |〈3, 5, 7| , 〈0,−1, 0|〉
mavila |〈1, 2, 1| , 〈0,−1, 3|〉

porcupine |〈1, 2, 3| , 〈0,−3,−5|〉
blackwood |〈5, 8, 12| , 〈0, 0,−1|〉

dimipent |〈4, 6, 9| , 〈0, 1, 1|〉
srutal |〈2, 3, 5| , 〈0, 1,−2|〉
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Table 5: Errors for some 5-limit rank 2 temperaments
Tenney Weighted Odd-Limit

Name TOP-RMS TOP-Max STD Minimax RMS
(cent/oct) (cent/oct) (cent/oct) (cent) (cent)

Father 13.194 14.131 13.402 55.866 45.614
Bug 11.574 14.177 11.572 44.413 35.609
Dicot 7.095 7.659 7.057 35.336 28.852
Meantone 1.582 1.707 1.580 5.377 4.218
Augmented 2.400 2.941 2.406 13.686 9.678
Mavila 6.065 6.552 6.023 23.045 18.078
Porcupine 2.678 3.094 2.679 9.833 7.976
Blackwood 4.626 5.667 4.648 18.045 12.760
Dimipent 3.104 3.360 3.107 15.641 11.060
Srutal 0.835 0.890 0.836 3.259 2.613
Magic 1.110 1.281 1.109 5.923 4.569
Ripple 2.819 3.325 2.818 10.509 8.492
Hanson 0.274 0.294 0.273 1.351 1.030
Negripent 1.690 1.824 1.687 7.303 5.943
Tetracot 0.900 0.970 0.900 3.073 2.504
Superpyth 2.112 2.404 2.116 7.635 5.687
Helmholtz 0.057 0.072 0.057 0.217 0.162
Sensipent 0.356 0.414 0.356 1.489 1.157
Passion 1.567 1.686 1.569 6.735 5.488
Wuerschmidt 0.262 0.310 0.262 1.431 1.072
Compton 0.504 0.617 0.504 1.955 1.382
Amity 0.140 0.152 0.140 0.473 0.383
Orson 0.215 0.240 0.215 1.006 0.800
Vishnu 0.047 0.052 0.047 0.238 0.194
Luna 0.015 0.019 0.015 0.081 0.061

magic |〈1, 0, 2| , 〈0, 5, 1|〉
ripple |〈1, 2, 3| , 〈0,−5,−8|〉

hanson |〈1, 0, 1| , 〈0, 6, 5|〉
negripent |〈1, 2, 2| , 〈0,−4, 3|〉

tetracot |〈1, 1, 1| , 〈0, 4, 9|〉
superpyth |〈1, 2, 6| , 〈0,−1,−9|〉
helmholtz |〈1, 2,−1| , 〈0,−1, 8|〉
sensipent |〈1,−1,−1| , 〈0, 7, 9|〉

passion |〈1, 2, 2| , 〈0,−5, 4|〉
wuerschmidt |〈1,−1, 2| , 〈0, 8, 1|〉

compton |〈12, 19, 28| , 〈0, 0,−1|〉
amity |〈1, 3, 6| , 〈0,−5,−13|〉
orson |〈1, 0, 3| , 〈0, 7,−3|〉

vishnu |〈2, 4, 5| , 〈0,−7,−3|〉
luna |〈1, 4, 2| , 〈0,−15, 2|〉

The 7-limit equal temperaments involved are:
〈5, 8, 12, 14|, 〈7′, 11, 16, 20|, 〈8, 13, 19, 23|, 〈9, 14, 21, 25|,
〈10, 16, 23, 28|, 〈12, 19, 28, 34|, 〈14, 22, 32, 39|,
〈15, 24, 35, 42|, 〈15′, 24, 35, 43|, 〈16, 25, 37, 45|,
〈17, 27, 40, 48|, 〈18, 29, 42, 51|, 〈19, 30, 44, 53|,
〈20, 32, 47, 57|, 〈21, 33, 49, 59|, 〈22, 35, 51, 62|,
〈23, 36, 53, 64|, 〈24, 38, 56, 67|, 〈25, 40, 58, 70|,
〈26, 41, 60, 73|, 〈27, 43, 63, 76|, 〈29, 46, 67, 81|,
〈31, 49, 72, 87|, 〈34′, 54, 79, 95|, 〈34, 54, 79, 96|,
〈36, 57, 84, 101|, 〈36′, 57, 83, 101|, 〈37, 59, 86, 104|,
〈38′, 60, 88, 107|, 〈39, 62, 91, 110|, 〈41, 65, 95, 115|,
〈45, 71, 104, 126|, 〈46, 73, 107, 129|, 〈48, 76, 111, 135|,
〈48′, 76, 112, 135|, 〈49, 78, 114, 138|, 〈50, 79, 116, 140|,
〈53, 84, 123, 149|, 〈55, 87, 128, 154|, 〈58, 92, 135, 163|,
〈60, 95, 139, 168|, 〈65, 103, 151, 182|, 〈72, 114, 167, 202|,
〈84, 133, 195, 236|, 〈89, 141, 207, 250|.

The 7-limit mappings are:

blacksmith |〈5, 8, 12, 14| , 〈0, 0,−1, 0|〉
dimisept |〈4, 6, 9, 11| , 〈0, 1, 1, 1|〉
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Table 6: Complexities for some 5-limit rank 2 temperaments
Tenney Weighted TW-Wedgie Odd-

Name Scalar ½-Range STD Range Norm-MAV Max-Abs Erlich Limit
Father 0.443 1.062 0.436 2.123 0.716 1.087 2.149 2
Bug 0.602 1.292 0.602 2.584 0.851 1.292 2.554 3
Dicot 0.521 1.262 0.524 2.524 0.836 1.262 2.508 2
Meantone 0.711 1.723 0.712 3.445 1.147 1.723 3.441 4
Augmented 0.894 1.893 0.892 3.786 1.265 1.902 3.795 3
Mavila 0.795 1.923 0.800 3.846 1.275 1.902 3.825 4
Porcupine 0.960 2.153 0.960 4.307 1.439 2.153 4.318 5
Blackwood 1.020 2.153 1.015 4.307 1.442 2.174 4.327 5
Dimipent 1.054 2.524 1.053 5.047 1.687 2.524 5.062 4
Srutal 1.224 2.985 1.223 5.969 1.991 2.989 5.974 6
Magic 1.395 3.155 1.397 6.309 2.101 3.155 6.303 5
Ripple 1.560 3.445 1.560 6.891 2.291 3.445 6.872 8
Hanson 1.550 3.786 1.550 7.571 2.523 3.786 7.569 6
Negripent 1.581 3.816 1.585 7.631 2.540 3.804 7.620 7
Tetracot 1.607 3.876 1.606 7.752 2.586 3.876 7.758 9
Superpyth 1.701 3.876 1.698 7.752 2.589 3.876 7.768 9
Helmholtz 1.791 4.076 1.792 8.153 2.717 4.076 8.152 9
Sensipent 1.967 4.417 1.967 8.833 2.945 4.417 8.836 9
Passion 2.023 4.877 2.020 9.755 3.256 4.891 9.768 9
Wuerschmidt 2.285 5.047 2.285 10.095 3.366 5.047 10.097 8
Compton 2.435 5.168 2.436 10.336 3.444 5.168 10.331 12
Amity 2.292 5.599 2.292 11.198 3.733 5.599 11.199 13
Orson 2.444 5.709 2.444 11.417 3.805 5.706 11.415 10
Vishnu 3.708 8.833 3.708 17.666 5.889 8.833 17.667 14
Luna 4.678 10.325 4.678 20.651 6.884 10.326 20.651 17

dominant |〈1, 2, 4, 2| , 〈0,−1,−4, 2|〉
august |〈3, 5, 7, 9| , 〈0,−1, 0,−2|〉
pajara |〈2, 3, 5, 6| , 〈0, 1,−2,−2|〉

semaphore |〈1, 2, 4, 3| , 〈0,−2,−8,−1|〉
meantone |〈1, 2, 4, 7| , 〈0,−1,−4,−10|〉

injera |〈2, 3, 4, 5| , 〈0, 1, 4, 4|〉
negrisept |〈1, 2, 2, 3| , 〈0,−4, 3,−2|〉

augene |〈3, 5, 7, 8| , 〈0,−1, 0, 2|〉
keemun |〈1, 0, 1, 2| , 〈0, 6, 5, 3|〉

catler |〈12, 19, 28, 34| , 〈0, 0, 0,−1|〉
hedgehog |〈2, 4, 6, 7| , 〈0,−3,−5,−5|〉

superpyth |〈1, 2, 6, 2| , 〈0,−1,−9, 2|〉
sensisept |〈1,−1,−1,−2| , 〈0, 7, 9, 13|〉

lemba |〈2, 2, 5, 6| , 〈0, 3,−1,−1|〉
porcupine |〈1, 2, 3, 2| , 〈0,−3,−5, 6|〉

flattone |〈1, 2, 4,−1| , 〈0,−1,−4, 9|〉
magic |〈1, 0, 2,−1| , 〈0, 5, 1, 12|〉

doublewide |〈2, 1, 3, 4| , 〈0, 4, 3, 3|〉
nautilus |〈1, 2, 3, 3| , 〈0,−6,−10,−3|〉
beatles |〈1, 1, 5, 4| , 〈0, 2,−9,−4|〉

liese |〈1, 3, 8, 8| , 〈0,−3,−12,−11|〉
cynder |〈1, 1, 0, 3| , 〈0, 3, 12,−1|〉
orwell |〈1, 0, 3, 1| , 〈0, 7,−3, 8|〉

garibaldi |〈1, 2,−1,−3| , 〈0,−1, 8, 14|〉
myna |〈1,−1, 0, 1| , 〈0, 10, 9, 7|〉

miracle |〈1, 1, 3, 3| , 〈0, 6,−7,−2|〉
ennealimmal |〈9, 15, 22, 26| , 〈0,−2,−3,−2|〉

The 11-limit equal temperaments involved are:
〈5, 8, 12, 14, 17|, 〈7′, 11, 16, 20, 24|, 〈8, 13, 19, 23, 28|,
〈9, 14, 21, 25, 31|, 〈10, 16, 23, 28, 35|, 〈10′, 16, 23, 28, 34|,
〈12, 19, 28, 34, 42|, 〈12′, 19, 28, 34, 41|,
〈14, 22, 32, 39, 48|, 〈15, 24, 35, 42, 52|,
〈16, 25, 37, 45, 55|, 〈17, 27, 40, 48, 59|,
〈19, 30, 44, 53, 66|, 〈19′, 30, 44, 53, 65|,

26



A Examples

Table 7: Figures for some 7-limit rank 2 temperaments
Scalar TOP-RMS

ETs Name Complexity Error Period Generator
(cent/oct) (cent) (cent)

5, 10, 15, 25 Blacksmith 0.935 5.393 239.445 87.031
8, 12, 16, 20 Dimisept 0.915 4.918 299.055 99.210
5, 7’, 12, 17 Dominant 0.898 4.715 1195.412 496.521
9, 12, 15’, 21 August 1.013 4.733 399.128 103.763
10, 12, 22, 34 Pajara 1.196 2.572 598.859 106.844
5, 14, 19, 24 Semaphore 1.336 2.755 1203.853 253.446

12, 19, 31, 50 Meantone 1.350 1.382 1201.242 504.026
12, 14, 26, 38’ Injera 1.350 3.138 600.683 94.483
9, 10, 19, 29 Negrisept 1.374 2.575 1203.503 125.975

12, 15, 27, 39 Augene 1.431 2.228 398.752 90.460
15, 19, 23, 34’ Keemun 1.396 2.583 1202.646 317.170
12, 24, 36, 48’ Catler 1.853 2.690 99.870 26.755
8, 14, 22, 36’ Hedgehog 1.705 2.780 599.619 164.248
5, 22, 27, 49 Superpyth 1.760 1.917 1197.067 488.512

19, 27, 46, 65 Sensisept 1.886 1.323 1199.714 443.277
10, 16, 26, 36’ Lemba 1.890 3.200 601.479 232.661
7’, 15, 22, 37 Porcupine 1.726 2.531 1197.839 162.587
7’, 19, 26, 45 Flattone 1.829 2.117 1203.646 507.759
19, 22, 41, 60 Magic 1.799 1.074 1201.082 380.695
18, 22, 26, 48 Doublewide 1.793 2.483 600.047 325.744

14, 15, 29 Nautilus 1.802 3.248 1202.199 82.657
10, 17, 27, 37 Beatles 1.914 2.301 1196.642 354.908
17, 19, 36, 55 Liese 1.967 2.219 1201.571 568.338
5, 26, 31, 36 Cynder 2.188 1.425 1200.937 232.375

22, 31, 53, 84 Orwell 2.257 0.748 1200.021 271.513
12, 29, 41, 53 Garibaldi 2.341 0.726 1200.125 497.967
27, 31, 58, 89 Myna 2.285 0.952 1199.344 309.976
10, 31, 41, 72 Miracle 2.444 0.515 1200.822 116.755

27, 45, 72 Ennealimmal 4.724 0.030 133.336 49.021

〈22, 35, 51, 62, 76|, 〈24, 38, 56, 67, 83|,
〈26, 41, 60, 73, 90|, 〈27, 43, 63, 76, 94|,
〈29, 46, 67, 81, 100|, 〈29′, 46, 68, 82, 101|,
〈31, 49, 72, 87, 107|, 〈33, 52, 76, 92, 114|,
〈34′, 54, 79, 95, 117|, 〈34, 54, 79, 96, 118|,
〈36′, 57, 83, 101, 124|, 〈37, 59, 86, 104, 128|,
〈39′, 62, 91, 110, 136|, 〈41, 65, 95, 115, 142|,
〈43, 68, 100, 121, 149|, 〈45, 71, 104, 126, 155|,
〈46, 73, 107, 129, 159|, 〈49, 78, 114, 138, 170|,
〈50, 79, 116, 140, 173|, 〈53, 84, 123, 149, 183|,
〈53′, 84, 123, 149, 184|, 〈55, 87, 128, 154, 190|,
〈56, 89, 130, 157, 194|, 〈57, 90, 132, 160, 197|,
〈58, 92, 135, 163, 201|, 〈60, 95, 139, 168, 207|,
〈63, 100, 146, 177, 218|, 〈65′, 103, 151, 182, 224|,
〈68, 108, 158, 191, 235|.

The 11-limit mappings are:

dominant |〈1, 2, 4, 2, 1| , 〈0,−1,−4, 2, 6|〉
injera |〈2, 3, 4, 5, 6| , 〈0, 1, 4, 4, 6|〉

augene |〈3, 5, 7, 8, 10| , 〈0,−1, 0, 2, 2|〉
hedgehog |〈2, 4, 6, 7, 8| , 〈0,−3,−5,−5,−4|〉

keemun |〈1, 0, 1, 2, 0| , 〈0, 6, 5, 3, 13|〉
porcupine |〈1, 2, 3, 2, 4| , 〈0,−3,−5, 6,−4|〉

pajara |〈2, 3, 5, 6, 8| , 〈0, 1,−2,−2,−6|〉
meantone |〈1, 2, 4, 7, 11| , 〈0,−1,−4,−10,−18|〉

orwell |〈1, 0, 3, 1, 3| , 〈0, 7,−3, 8, 2|〉
squares |〈1, 3, 8, 6, 7| , 〈0,−4,−16,−9,−10|〉

valentine |〈1, 1, 2, 3, 3| , 〈0, 9, 5,−3, 7|〉
semififth |〈1, 1, 0, 6, 2| , 〈0, 2, 8,−11, 5|〉
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B TOP-RMS Error Proofs

Table 8: Errors for some 7-limit rank 2 temperaments
Tenney Weighted Odd-Limit

Name TOP-RMS TOP-Max STD Minimax RMS
(cent/oct) (cent/oct) (cent/oct) (cent) (cent)

Blacksmith 5.393 7.242 5.405 26.871 15.815
Dimisept 4.918 5.873 4.934 33.129 19.137
Dominant 4.715 4.771 4.733 25.345 20.163
August 4.733 5.871 4.743 24.385 16.599
Pajara 2.572 3.108 2.577 17.488 10.903
Semaphore 2.755 3.676 2.746 20.537 12.690
Meantone 1.382 1.707 1.380 5.377 3.665
Injera 3.138 3.583 3.134 17.488 11.219
Negrisept 2.575 3.193 2.568 17.848 12.189
Augene 2.228 2.941 2.235 13.686 8.101
Keemun 2.583 3.192 2.577 17.848 12.274
Catler 2.690 3.557 2.694 15.641 9.841
Hedgehog 2.780 3.108 2.782 17.488 10.602
Superpyth 1.917 2.404 1.921 9.813 6.410
Sensisept 1.323 1.612 1.324 7.489 5.053
Lemba 3.200 3.741 3.192 17.488 11.798
Porcupine 2.531 3.094 2.536 9.833 6.809
Flattone 2.117 2.542 2.111 11.702 7.652
Magic 1.074 1.281 1.073 5.923 4.139
Doublewide 2.483 3.270 2.483 17.488 10.132
Nautilus 3.248 3.486 3.242 17.848 12.629
Beatles 2.301 2.898 2.307 9.980 6.245
Liese 2.219 2.634 2.216 14.705 9.054
Cynder 1.425 1.704 1.424 5.377 3.579
Orwell 0.748 0.947 0.748 4.267 2.589
Garibaldi 0.726 0.915 0.726 4.236 2.859
Myna 0.952 1.172 0.952 5.446 3.320
Miracle 0.515 0.636 0.515 2.428 1.637
Ennealimmal 0.030 0.042 0.030 0.204 0.130

magic |〈1, 0, 2,−1, 6| , 〈0, 5, 1, 12,−8|〉
meanpop |〈1, 2, 4, 7,−2| , 〈0,−1,−4,−10, 13|〉

schismatic |〈1, 2,−1,−3,−4| , 〈0,−1, 8, 14, 18|〉
cynder/mothra |〈1, 1, 0, 3, 5| , 〈0, 3, 12,−1,−8|〉

superkleismic |〈1, 4, 5, 2, 4| , 〈0,−9,−10, 3,−2|〉
myna |〈1,−1, 0, 1,−3| , 〈0, 10, 9, 7, 25|〉
sensi |〈1,−1,−1,−2,−8| , 〈0, 7, 9, 13, 31|〉

miracle |〈1, 1, 3, 3, 2| , 〈0, 6,−7,−2, 15|〉
shrutar |〈2, 3, 5, 5, 7| , 〈0, 2,−4, 7,−1|〉
tritonic |〈1, 4,−3,−3, 2| , 〈0,−5, 11, 12, 3|〉
bohpier |〈1, 0, 0, 0, 2| , 〈0, 13, 19, 23, 12|〉

diaschismic |〈2, 3, 5, 7, 9| , 〈0, 1,−2,−8,−12|〉
rodan |〈1, 1,−1, 3, 6| , 〈0, 3, 17,−1,−13|〉

wizard |〈2, 1, 5, 2, 8| , 〈0, 6,−1, 10,−3|〉

B TOP-RMS Error Proofs

I’ve given three different formulas for TOP-RMS error:
Equations 30, 31, and 32 on page 9.

Proving Equations 31 and 32 are equivalent is rela-
tively easy as only the numerators differ, and are both
determinants, so we only need to look at the bit inside
the determinant. Start with that of Equation 31.〈

(M − V 〈M〉V )2
〉

V

=
(M − V 〈M〉V )T (M − V 〈M〉V )

V TV

=
MTM

V TV
−
MTV 〈M〉V

V TV
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B TOP-RMS Error Proofs

Table 9: Complexities for some 7-limit rank 2 temperaments
Tenney Weighted TW-Wedgie Odd-

Name Scalar ½-Range STD Range Norm-MAV Max-Abs Erlich Limit
Blacksmith 0.935 2.153 0.932 4.307 1.619 2.174 6.475 5
Dimisept 0.915 2.524 0.912 5.047 1.979 2.524 7.917 4
Dominant 0.898 2.435 0.894 4.870 1.989 2.455 7.956 6
August 1.013 2.137 1.011 4.274 2.076 2.148 8.305 6
Pajara 1.196 2.985 1.194 5.969 2.601 2.989 10.402 6
Semaphore 1.336 3.445 1.340 6.891 2.801 3.445 11.204 8
Meantone 1.350 3.562 1.351 7.124 2.941 3.562 11.765 10
Injera 1.350 3.445 1.352 6.891 2.979 3.445 11.918 8
Negrisept 1.374 3.816 1.379 7.631 3.031 3.804 12.125 7
Augene 1.431 4.030 1.426 8.060 3.031 4.045 12.125 9
Keemun 1.396 3.786 1.399 7.571 3.102 3.786 12.409 6
Catler 1.853 4.274 1.851 8.549 3.210 4.295 12.840 12
Hedgehog 1.705 4.307 1.704 8.614 3.297 4.307 13.190 10
Superpyth 1.760 4.589 1.756 9.177 3.608 4.602 14.431 11
Sensisept 1.886 4.631 1.885 9.261 3.615 4.631 14.459 13
Lemba 1.890 4.647 1.895 9.294 3.657 4.619 14.627 8
Porcupine 1.726 4.291 1.723 8.581 3.699 4.295 14.796 11
Flattone 1.829 4.929 1.835 9.857 3.844 4.909 15.376 13
Magic 1.799 4.274 1.800 8.549 3.884 4.274 15.536 12
Doublewide 1.793 5.047 1.793 10.095 3.899 5.047 15.596 8
Nautilus 1.802 4.307 1.806 8.614 3.906 4.307 15.623 10
Beatles 1.914 5.138 1.908 10.276 4.219 5.163 16.877 11
Liese 1.967 5.168 1.969 10.336 4.372 5.168 17.490 12
Cynder 2.188 5.524 2.190 11.049 4.612 5.523 18.448 13
Orwell 2.257 5.709 2.257 11.417 4.995 5.706 19.980 11
Garibaldi 2.341 5.618 2.341 11.236 5.073 5.619 20.292 15
Myna 2.285 6.309 2.284 12.619 5.081 6.309 20.326 10
Miracle 2.444 6.800 2.446 13.601 5.275 6.793 21.102 13
Ennealimmal 4.724 11.628 4.724 23.257 9.957 11.628 39.829 27

−
〈M〉TV V TM

V TV
+
〈M〉TV V TV 〈M〉V

V TV

=
〈
M2
〉

V
− 〈M〉2V − 〈M〉

2
V + 〈M〉2V

=
〈
M2
〉

V
− 〈M〉2V

That’s what’s in the determinant of the numerator of
Equation 32, so the equivalence is proved.

Proving that these formulas are equivalent to Equa-
tion 30 is more difficult. Let’s start by substituting
Equation 28 on page 8 into Equation 30.〈

E2
opt

〉
V

= 1−
〈
M(MTM)−1MTV

〉
V

= 1−
[
M(MTM)−1MTV

]T
V

V TV

= 1− V TM(MTM)−1MTV

V TV
(110)

(As MTM is symmetric, (MTM)T = MTM and

[(MTM)−1]T = (MTM)−1.)
Now, take Equation 32 and put it into matrix form.

〈
E2

opt

〉
V

=

∣∣∣MT M
V T V

− (V T M)T V T M
V T V V T V

∣∣∣∣∣∣MT M
V T V

∣∣∣
=

∣∣∣MT M
V T V

− MT V V T M
V T V V T V

∣∣∣∣∣∣MT M
V T V

∣∣∣
Recalling that |AB| = |A||B|,

〈
E2

opt

〉
V

=

∣∣∣MT M
V T V

∣∣∣ ∣∣∣I − (MTM)−1V TV MT V V T M
V T V V T V

∣∣∣∣∣∣MT M
V T V

∣∣∣
=
∣∣∣∣I − (MTM)−1MTV V TM

V TV

∣∣∣∣ (111)
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C STD Error Derivation

Table 10: Figures for some 11-limit rank 2 temperaments
Scalar TOP-RMS

ETs Name Complexity Error Period Generator
(cent/oct) (cent) (cent)

5, 12, 17, 29’ Dominant 1.179 4.597 1194.105 494.306
12, 14, 26 Injera 1.362 3.456 600.960 92.989

12, 15, 27, 39’ Augene 1.446 2.653 398.506 88.492
8, 14, 22, 36’ Hedgehog 1.542 2.805 600.130 164.650
15, 19’, 34’ Keemun 1.485 3.579 1201.710 318.108

7’, 15, 22, 37 Porcupine 1.567 2.550 1198.352 162.524
10’, 12, 22, 34 Pajara 1.609 2.304 598.860 106.682
12, 19’, 31, 43 Meantone 1.917 1.439 1200.772 503.355
9, 22, 31, 53 Orwell 2.050 1.151 1200.604 271.563
14, 17, 31, 45 Squares 2.205 1.449 1201.674 426.552
15, 16, 31, 46 Valentine 2.309 1.034 1200.393 77.907
7’, 24, 31, 55 Semififth 2.443 1.471 1201.165 348.815
19, 22, 41, 63 Magic 2.349 1.226 1200.143 380.742
12’, 19, 31, 50 Meanpop 2.416 1.239 1201.353 504.133
12, 29, 41, 53’ Schismatic 2.465 1.310 1200.199 497.711
5, 26, 31, 57 Cynder/mothra 2.523 1.371 1201.406 232.303
15, 26, 41, 56 Superkleismic 2.616 1.292 1200.176 321.894

27, 31, 58 Myna 2.610 0.851 1199.347 309.976
19’, 27, 46, 65’ Sensi 2.848 1.289 1199.078 443.286

10, 31, 41 Miracle 2.786 0.484 1200.764 116.707
22, 24, 46, 68 Shrutar 2.865 1.146 599.775 52.660

29, 31, 60 Tritonic 2.907 0.999 1201.716 581.097
8, 33, 41, 49 Bohpier 3.351 1.132 1199.236 146.451

12, 34’, 46, 58 Diaschismic 3.192 0.905 599.449 103.619
5, 41, 46 Rodan 3.639 0.671 1200.057 234.470

22, 50 Wizard 4.061 0.448 600.306 216.878

To show the similarity between Equations 110 and
111 I’ll define two column vectors.

X = (MTM)−1MTV (112)

Y =
MTV

V TV
(113)

With these, Equation 111 becomes〈
E2

opt

〉
V

=
∣∣I −XY T

∣∣ (114)

and Equation 110 becomes〈
E2

opt

〉
V

= 1−XTY (115)

They’re equivalent if the following algebraic relation
holds for general column vectors X and Y :∣∣I −XY T

∣∣ = 1−XTY (116)

Felippa 2008 gives the following formula (converted
to my symbols) on p. 13:∣∣A+ βXY T

∣∣ = |A|+ βY T ÃX (117)

where β is a scalar and Ã is the adjoint of A. In this
case, it doesn’t matter what an adjoint is, only that the
identity matrix is its own adjoint. Obviously, β = 1. So
that becomes ∣∣I +XY T

∣∣ = 1 + Y TX (118)

That’s identical to Equation 116 because XTY and
Y TX are both ways of writing the dot product of X
and Y as vectors.

C STD Error Derivation

In Section 4.2, I considered the case of a rank 2 tem-
perament class produced by two equal temperaments.
Those equal temperament have weighted primes W0

and W1 (shown in capitals to make it clear that they’re
both vectors). The weighted primes for a temperament
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C STD Error Derivation

Table 11: Errors for some 11-limit rank 2 temperaments
Tenney Weighted Odd-Limit

Name TOP-RMS TOP-Max STD Minimax RMS
(cent/oct) (cent/oct) (cent/oct) (cent) (cent)

Dominant 4.597 4.964 4.620 27.685 18.933
Injera 3.456 4.056 3.451 20.137 13.345
Augene 2.653 3.367 2.663 22.386 12.773
Hedgehog 2.805 3.233 2.805 17.488 11.893
Keemun 3.579 4.414 3.574 29.159 17.216
Porcupine 2.550 3.183 2.554 19.922 11.794
Pajara 2.304 3.108 2.308 17.488 9.553
Meantone 1.439 1.746 1.438 11.022 6.584
Orwell 1.151 1.365 1.150 9.317 5.549
Squares 1.449 1.716 1.447 10.753 6.966
Valentine 1.034 1.541 1.034 8.506 4.419
Semififth 1.471 1.707 1.469 10.753 6.681
Magic 1.226 1.681 1.226 8.700 4.730
Meanpop 1.239 1.707 1.237 10.753 5.644
Schismatic 1.310 1.792 1.310 8.700 5.290
Cynder/mothra 1.371 1.704 1.370 10.753 6.457
Superkleismic 1.292 1.555 1.291 8.849 5.303
Myna 0.851 1.172 0.852 5.446 3.317
Sensi 1.289 1.612 1.290 8.435 4.976
Miracle 0.484 0.636 0.484 3.323 1.901
Shrutar 1.146 1.426 1.147 8.406 5.274
Tritonic 0.999 1.421 0.998 9.608 5.154
Bohpier 1.132 1.411 1.132 8.700 5.036
Diaschismic 0.905 1.268 0.905 5.893 3.182
Rodan 0.671 0.899 0.671 5.345 3.005
Wizard 0.448 0.641 0.448 3.052 1.585

belonging to the class are

w = γW0 + (1− γ)W1 (119)

where γ is a parameter specifying the tuning. When
γ = 1 the tuning is the same as the first equal tem-
perament. When γ = 0 the tuning is the same as the
second equal temperament.

The weighted primes relate to the weighted map-
pings of equal temperaments as

Wij = Mij/M0j (120)

As the generator mapping always has zero steps to the
octave, it would give an infinity if used in this context.
That should please people who think that the genera-
tor mapping isn’t an equal temperament mapping. But
note, this only means that it isn’t an octave equivalent
equal temperament mapping. You can still call it an
octave specific equal temperament where all octaves
happen to approximate to no steps.

The square of the STD error for an octave-equivalent
temperament is

e2 = 〈[γW0 + (1− γ)W1]2〉
−〈γW0 + (1− γ)W1〉2

= γ2〈W 2
0 〉+ (1− γ)2〈W 2

1 〉
+2γ(1− γ)〈W0W1〉
−γ2〈W0〉2 − (1− γ)2〈W1〉2

−2γ(1− γ)〈W0〉〈W1〉
= γ2(〈W 2

0 〉 − 〈W0〉2)

+(1− γ)2(〈W 2
1 〉 − 〈W1〉2)

+2γ(1− γ)(〈W0W1〉 − 〈W0〉〈W1〉

e2 = γ2σ2
W0

+ (1− γ)2σ2
W1

+ 2γ(1− γ)σW0W1 (121)

That’s a quadratic function of γ so it makes sense to
write it as such

e2(γ) = (σ2
W0

+ σ2
W1
− 2σW0W1)γ2
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C STD Error Derivation

Table 12: Complexities for some 11-limit rank 2 temperaments
Tenney Weighted TW-Wedgie Odd-

Name Scalar ½-Range STD Range Norm-MAV Max-Abs Erlich Limit
Dominant 1.179 3.457 1.173 6.914 3.315 3.486 16.577 10
Injera 1.362 3.469 1.364 6.938 3.639 3.469 18.193 12
Augene 1.446 4.030 1.441 8.060 3.932 4.045 19.662 12
Hedgehog 1.542 4.307 1.543 8.614 4.038 4.307 20.189 12
Keemun 1.485 3.786 1.487 7.571 4.092 3.786 20.462 13
Porcupine 1.567 4.291 1.565 8.581 4.195 4.295 20.973 12
Pajara 1.609 4.731 1.606 9.461 4.483 4.742 22.415 16
Meantone 1.917 5.203 1.918 10.406 5.332 5.203 26.661 18
Orwell 2.050 5.709 2.051 11.417 5.704 5.706 28.520 17
Squares 2.205 6.891 2.208 13.782 5.774 6.891 28.872 16
Valentine 2.309 6.747 2.310 13.494 6.256 6.742 31.281 21
Semififth 2.443 7.364 2.446 14.727 6.461 7.364 32.306 19
Magic 2.349 6.587 2.350 13.174 6.530 6.590 32.649 20
Meanpop 2.416 7.320 2.418 14.640 6.538 7.311 32.688 23
Schismatic 2.465 5.834 2.465 11.668 6.656 5.836 33.280 20
Cynder/mothra 2.523 7.481 2.526 14.961 6.876 7.470 34.381 20
Superkleismic 2.616 6.747 2.617 13.494 7.118 6.742 35.591 21
Myna 2.610 7.227 2.609 14.453 7.312 7.227 36.562 25
Sensi 2.848 8.961 2.846 17.922 7.482 8.961 37.408 31
Miracle 2.786 7.351 2.788 14.701 7.675 7.345 38.375 22
Shrutar 2.865 8.432 2.864 16.865 7.989 8.438 39.946 22
Tritonic 2.907 7.892 2.911 15.784 8.012 7.880 40.060 22
Bohpier 3.351 8.202 3.349 16.404 8.451 8.202 42.256 26
Diaschismic 3.192 8.199 3.189 16.399 8.847 8.207 44.237 28
Rodan 3.639 11.079 3.640 22.159 9.762 11.080 48.812 30
Wizard 4.061 9.306 4.063 18.611 10.634 9.301 53.169 30

−2(σ2
W1
− σW0W1)γ + σ2

W1

and simplify it to

e2(γ) = σ2
W0−W1

γ2 − 2(σ2
W1
− σW0W1)γ + σ2

W1
(122)

using the standard relationship

σ2
X−Y = 〈(X − Y )2〉 − 〈X − Y 〉2

= 〈X2〉+ 〈Y 2〉 − 2〈XY 〉
−〈X〉2 − 〈Y 〉2 + 2〈X〉〈Y 〉

= σ2
X + σ2

Y − 2σXY (123)

To optimize, set the derivative with respect to γ to
zero

de2

dγ
= 2σ2

W0−W1
γ

−2(σ2
W1
− σW0W1) = 0

γ =
σ2

W1
− σW0W1

σ2
W0−W1

(124)

Now,20 substitute into Equation 122 to get

e2opt =
σ2

W0−W1
(σ2

W1
− σW0W1)2

σ4
W0−W1

−2
(σ2

W1
− σW0W1)(σ2

W1
− σW0W1)

σ2
W0−W1

+ σ2
W1

= σ2
W1

σ2
W0−W1

σ2
W0−W1

−
(σ2

W1
− σW0W1)2

σ2
W0−W1

=
σ2

W1
σ2

W0
+ σ4

W1
− 2σ2

W1
σW0W1

σ2
W0−W1

−
σ4

W1
+ σ2

W0W1
− 2σ2

W1
σW0W1

σ2
W0−W1

e2opt =
σ2

W0
σ2

W1
− σ2

W0W1

σ2
W0−W1

(126)

20 The 1 − γ in Equation 121 on the preceding page follows from
symmetry.

1− γ =
σ2

W0
− σW0W1

σ2
W0−W1

(125)
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D Worst Kees Error Proof

This is better written with weighted errors rather
than weighted primes. Because the standard deviation
of weighted errors is the same as the standard devi-
ation of weighted primes, that’s as easy as changing
every W to an E. Hence Equation 60 on page 15.

D Worst Kees Error Proof

The Kees metric as considered in Section 4.3 is iden-
tical to the Tenney metric for odd harmonics. That is,
if you add odd prime intervals the Kees weight of the
results is the same as the Tenney weight. That means
we can count on the worst weighted prime error being
the worst weighted error for all harmonics, or octave
equivalents. What we need, then, is a way of determin-
ing the worst weighted error for an interval between
odd harmonics that don’t share a factor.

The weighted error of the interval between mutually
prime harmonics x and y is

e(x− y) =
|dx − dy|
bx + by

(127)

where dx is the unweighted deviation of interval x and
bx is its buoyancy.

The absolute difference between the deviations must
be the same as the difference between the highest and
lowest deviations. So that gives

e(x− y) =
max(dx, dy)−min(dx, dy)

bx + by
(128)

When dx and dy are either both positive or both neg-
ative, then the absolute deviation of x − y must be
smaller than the largest absolute deviation of dx and
dy. That means

e(x− y) <
max(|dx|, |dy|)

max(bx, by)
(129)

which can be re-written

e(x− y) < max(|E′x|, |E′y|) (130)

E′x =
dx

max(bx, by)

E′y =
dy

max(bx, by)

with E′x as a stand-in for Ex, the weighted deviation
of x.

Because E′x has the same deviation as Ex but at least
as much buoyancy, we can say

|E′x| ≤ |Ex|
|E′y| ≤ |Ey| (131)

It follows that

max(|E′x|, |E′y|) ≤ max(|Ex|, |Ey|)
e(x− y) < max(|Ex|, |Ey|) (132)

So, when the signs of the deviations are the same,
the weighted errors obey the same inequality as they
do for Tenney weighting. The remaining case is of an
interval between harmonics where the signs of the de-
viations are different. Then, the deviations combine
to make the overall deviation larger than either of the
originals. Using E′x and E′y as above, the weighted
error is

e(x− y) = |E′x|+ |E′y| (133)

Using Equation 131 we know that the right hand side
can’t get larger. Knowing that, and that the weighted
errors aren’t the same, we can say

|E′x|+ |E′y| < |Ex|+ |Ey| (134)

e(x− y) < |Ex|+ |Ey| (135)

Because that only arose from a special case of the
difference between errors, and we know Ex and Ey

have different signs, it can be written as

e(x− y) < max(Ex, Ey)−min(Ex, Ey) (136)

Recalling the previous results that either adding or
subtracting x and y can’t increase the maximum error
in any other case, we can say that

e(x± y) ≤ max

 max(Ex, Ey)−min(Ex, Ey),
max(Ex, Ey, 0),
−min(Ex, Ey, 0)


(137)

which can be simplified to

e(x± y) ≤ max(Ex, Ey, 0)−min(Ex, Ey, 0) (138)

Now, we know that each of the harmonics was built
up from prime intervals and that adding harmonics
can’t increase the weighted error. We also know that
one of the prime errors must be zero, because we’re
keeping the octaves pure. That means we can place a
limit on the worst Kees-weighted error for any temper-
ament.

max(e) = max(E)−min(E) (139)

That’s the same as Equation 52 on page 13 but with-
out the factor of two, which is what I set out to prove.
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F Symbols and Notation

E Parameterized Scalar Badness Proof

I defined a parameterized scalar badness in Equa-
tion 81 on page 18. Multiplying it out gives

B2(M, ε) =
∣∣〈(M − (1− ε)V 〈M〉V )2

〉
V

∣∣
=

∣∣∣∣∣
〈[

M − (1− ε)V V
TM

V TV

]2〉
V

∣∣∣∣∣
=

∣∣∣∣∣
〈[

M − (1− ε)V V
T

V TV
M

]2〉
V

∣∣∣∣∣
=
∣∣∣〈[M − (1− ε)AM ]2

〉
V

∣∣∣
where

A =
V V T

V TV
(140)

B2(M, ε) =

∣∣∣∣∣ [M − (1− ε)AM ]T [M − (1− ε)AM ]
V TV

∣∣∣∣∣
=

∣∣∣∣∣
[
MT − (1− ε)MTAT

]
[M − (1− ε)AM ]

V TV

∣∣∣∣∣
=
∣∣∣∣MT [I − (1− ε)A] [I − (1− ε)A]M

V TV

∣∣∣∣
as I = IT and A = AT

B2(M, ε) =

∣∣∣∣∣MT
[
II − 2(1− ε)A+ (1− ε)2AA

]
M

V TV

∣∣∣∣∣
=

∣∣∣∣∣MT
[
I − 2(1− ε)A+ (1− ε)2A

]
M

V TV

∣∣∣∣∣
as II = I and

XX =
V V T

V TV

V V T

V TV
=
V V TV V T

V TV V TV
= A

because V TV is a scalar and cancels.

B2(M, ε) =

∣∣∣∣∣MT
[
I − (2− 2ε)A+ (1− 2ε+ ε2)A

]
M

V TV

∣∣∣∣∣
=

∣∣∣∣∣MT
[
I − (2− 2ε− 1 + 2ε− ε2)A

]
M

V TV

∣∣∣∣∣
=

∣∣∣∣∣MT
[
I − (1− ε2)A

]
M

V TV

∣∣∣∣∣
=
∣∣∣∣MTM − (1− ε2)MTAM

V TV

∣∣∣∣
=

∣∣∣∣∣MTM − (1− ε2)MT V V T M
V T V

V TV

∣∣∣∣∣

from equation 140

=
∣∣∣∣MTM

V TV
− (1− ε2)

MTV V TM

V TV V TV

∣∣∣∣
=
∣∣∣〈M2

〉
V
− (1− ε2) 〈M〉2V

∣∣∣ (141)

This is the formula given in Equation 82 on page 18.
As ε is squared in this equation, it turns out that it

can be set negative. The result from either equation
only depends on the magnitude of ε.

Like with scalar complexity, it’s easy to show that
this gives the same result for any mapping of the same
temperament by setting M ′ = MA where |A| = ±1.

B2(M ′, ε) =
∣∣∣∣M ′TM ′V TV

− (1− ε2)
M ′TV V TM ′

V TV V TV

∣∣∣∣
=
∣∣∣∣ (MA)TMA

V TV
− (1− ε2)

(MA)TV V TMA

V TV V TV

∣∣∣∣
=
∣∣∣∣ATMTMA

V TV
− (1− ε2)

ATMTV V TMA

V TV V TV

∣∣∣∣
=
∣∣∣∣AT

[
MTM

V TV
− (1− ε2)

MTV V TM

V TV V TV

]
A

∣∣∣∣
=
∣∣AT

∣∣ ∣∣∣∣MTM

V TV
− (1− ε2)

MTV V TM

V TV V TV

∣∣∣∣ |A|
= (±1)2

∣∣∣∣MTM

V TV
− (1− ε2)

MTV V TM

V TV V TV

∣∣∣∣
=
∣∣∣∣MTM

V TV
− (1− ε2)

MTV V TM

V TV V TV

∣∣∣∣

F Symbols and Notation

& An m&n temperament is a member of the tempera-
ment class that includes the obvious mappings of
the equal temperaments (in the given prime limit)
with m and n notes to the octave. Sometimes the
& operator can be used with the full mappings, to
remove ambiguity.

A An arbitrary matrix.

|A| The determinant of A (see also |x|).

AT The transpose of A.

〈A〉V The generalized mean of a matrix A normalized
by the vector V . (See Equation 21 on page 7.)〈

A2
〉

V
The generalized mean squared of a matrix A

normalized by the vector V . (See Equation 14 on
page 6.)

〈A〉2V 〈A〉
T
V 〈A〉V .
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F Symbols and Notation

α The amount of scale stretch (1 for pure octaves).

bi The buoyancy of the ith prime interval.

B(M) The badness of a regular temperament class
with mapping (or mappings) M .

d The denominator of a frequency ratio.

d(x) The deviation of the interval x from just intona-
tion.

di The deviation of the ith prime interval from just
intonation.

e(x) The weighted deviation of the interval x from just
intonation.

ei The weighted deviation or error of the ith prime
interval.

E The weighted errors or deviations as a column vec-
tor.

γ The tuning parameter for a rank 2 temperament.

G The generators of a regular temperament.

gi The ith generator of a regular temperament.

hi The size of the ith prime interval (the logarithm of
the prime number, where relevant).

kij The complexity of the interval between the ith and
jth primes.

K(M) The complexity of a temperament class with
weighted mapping M .

log(x) The logarithm (generally to base 2) of x.

n The numerator of a frequency ratio or the number
of prime intervals being counted.

nij An element of the unweighted mapping for a tem-
perament class.

mij An element of the weighted mapping for a tem-
perament class.

M The weighted mapping as a matrix. Each row cor-
responds to a prime interval and each column to
a generator.

M
′

The weighted mapping adjusted to have a gener-
alized mean of zero.

M00 or m00 The number of periods to the octave.

max(x) The largest element of x.

Mg The weighted, octave equivalent generator map-
ping of a regular temperament.

Mi The weighted mapping of the ith generator.

min(x) The smallest element of x.

pi The ith prime number.∏
i xi The product of all elements xi.

Q A weighted unison vector.

s(x) The size of the interval x.

σx The standard deviation of x or X (See Equation 39
on page 11).

σXY The covariance of X and Y (See Equation 40 on
page 11).∑

i xi The sum of all elements ai.

ti The tempered size of the ith prime interval.

t(x) The tempered size of the interval x.

T The wedgie of a temperament class.

vi The weighted size of the ith prime interval in just
intonation.

V A column vector whose elements are vi.

w The weighted size of an arbitrary prime interval.

wi The weighted size of the ith prime interval in a
temperament.

W A column vector whose elements are wi.

x An arbitrary number, an arbitrary interval, or some-
thing else arbitrary.

|x| The absolute value of x (see also |A|).

√
x The square root of x.

xi The ith element of an arbitrary vector.

X An arbitrary vector.

〈x〉 The mean of a vector X or x. Where x is an ex-
pression, it works element by element.

Xopt The optimal value of X.

Y An arbitrary vector.
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H Change Log

G Glossary

Equal mapping The mapping for an equal temper-
ament. Mappings for higher rank temperaments
can be thought of as consisting of equal mappings.

Equivalence interval An interval given a special
status, usually the octave.

Generator The generators of a regular temperament
or temperament class are like the prime intervals
for an ideal tuning system. “The generator” for a
rank 2 temperament is the one that isn’t a period,
but goes with the period.

Period A generator for a regular temperament or
temperament class that is either equal to the
equivalence interval or equally divides the equiv-
alence interval.

Prime interval All intervals of an ideal tuning sys-
tem are generated by adding and subtracting the
prime intervals (in pitch space; multiplying and
dividing in frequency space).

Prime limit A set of prime intervals corresponding to
prime numbers running sequentially from two to
a given number.

Rank The number of generators for a regular temper-
ament or temperament class.

Regular temperament A temperament with each
interval from just intonation always approximated
the same way.

RMS Root mean squared.

STD Standard deviation: the RMS relative to the
mean.

Temperament A tuning system that pretends to be
something else.

Temperament class Temperaments that share the
same mapping from intervals in the ideal tuning.

Tenney weighting A way of weighting prime inter-
vals according to there sizes.

TOP Tenney optimal prime: a temperament opti-
mized according to its Tenney-weighted prime er-
ror, and that error.

Weighted mapping The mapping from primes to
generators where each entry is multiplied by a
weighting factor. It’s represented as a matrix
where each column corresponds to an equal map-
ping.

Weighted primes The sizes of the prime intervals
multiplied by weighting factors.

H Change Log

Removed duplicated words in the conclusion. (2008-
02-07)

Rephrased ambiguous usage of "mapping" in Section
5.1. (2008-03-14)

Made Section 6.3 more vague because it’s wrong.
Sorry about this. I’ll try and correct and expand on it
in a future article. (2008-03-14)
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