12-Edo + Za
17-Edo + Ya
A-Team
Abigail
Absurdity
Accord
Acrokleismic
Acyuta
Aerodactyl
Aerodino
Agni
Agora
Akea
Albus
Alicorn
Alphaquarter
Amavil
Amicable
Amigo
Amity
Ammonite
Ampersand
Ananta
Andromeda
Anguirus
Antikythera
Aphrodite
Aplonis
Apollo
Arch
Archagall
Archy
Arcturus
Ares
Armodue
Arnold
Artemis
Astro
Astrology
Athene
Atomic
Aufo
Augene
Augment
Augmented
August
Augustus
Avalokita
Avila
Baba
Baffin
Baldur
Baldy
Bamity
Baragon
Beatles
Beep
Belauensis
Belobog
Benediction
Beyla
Bidia
Big Brother
Bikleismic
Bimeantone
Bipelog
Birds
Birugugu
Biruyo
Biruyo Nowa
Bischismic
Bisector
Bisemidim
Bisesqui
Bison
Bisupermajor
Blackbirds
Blacksmith
Blacksmith-Farrier
Blackwood
Blair
Bleu
Bluebird
Bluebirds
Bohpier
Borneo
Borwell
Bosonic
Bossier
Brahmagupta
Breed
Bridgetown
Bug
Bunya
Buzzard
Calliope
Canopus
Canou
Cantrip
Casablanca
Cassandra
Cata
Cataclysmic
Catafourth
Cataharry
Catakleismic
Catalan
Cataleptic
Catalytic
Catbird
Catcall
Catler
Cavalier
Ceratitid
Cerberus
Chagall
Charisma
Chartreuse
Chromat
Clio
Clyde
Coblack
Coditone
Coendou
Coleto
Comic
Commatic
Compton
Comptone
Cotritone
Countdown
Counteracro
Countercata
Counterhanson
Countermeantone
Counterschismic
Crepuscular
Cuboctahedra
Cynder
Cypress
Dakota
Darjeeling
Deca
Decal
Decibel
Decimal
Decimated
Decoid
Deecee
Deflated
Degrees
Delorean
Demeter
Demolished
Deutone
Diana
Diaschismic
Dichosis
Dichotic
Dicot
Diesic
Diminished
Ditonic
Divination
Dodifo
Domain
Dominant
Dominatrix
Domineering
Dominion
Donar
Doublethink
Doublewide
Draco
Duodecim
Dwynwen
Echidna
Echidnic
Edson
Egads
Ekadash
Emka
Emkay
Enipucrop
Enjera
Enlil
Enneadecal
Ennealim
Ennealiminal
Ennealimmal
Ennealimmic
Ennealimnic
Enneaportent
Erato
Eris
Eros
Escapade
Escaped
Essence
Etypyth
Etypythia
Eugene
Euterpe
Fantastic
Fasum
Father
Fermionic
Ferrier
Fervor
Festival
Fibo
Fifive
Fifives
Fifthplus
Flat
Flattone
Fleetwood
Fluorine
Foreboding
Fortune
Freivald
Freya
Frigg
Galaxy
Gallium
Gamel
Gamelan
Gamera
Gammic
Ganesha
Garibaldi
Gariberttet
Gentsemicanou
Gentsemiparakleismic
Gidorah
Gizzard
Glacial
Glamour
Godzilla
Gorgik
Gorgo
Gracecordial
Grackle
Gravid
Gravity
Greeley
Greenland
Greenwood
Grendel
Gross
Grosstone
Guanyin
Guanyintet
Guiron
Gwazy
Hades
Hagrid
Hamity
Hanson
Hanuman
Harry
Haumea
Hecate
Hedgehog
Heimdall
Heinz
Helenus
Helmholtz
Hemiamity
Hemiaug
Hemidim
Hemienneadecal
Hemiennealimmal
Hemif
Hemifamity
Hemififths
Hemigamera
Hemigari
Hemikleismic
Hemimaquila
Hemimeantone
Hemimiracle
Hemimist
Hemipaj
Hemischis
Hemisecordite
Hemisensi
Hemiseven
Hemiskidoo
Hemitert
Hemithir
Hemithirds
Hemiwar
Hemiwur
Hemiwürschmidt
Hendec
Hendecatonic
Hestia
Hewuermity
Hexe
History
Hitchcock
Hocus
Homalic
Horcrux
Hornbostel
Horoscope
Hours
Huntington
Hystrix
Icosidillic
Ilo
Immunity
Impunity
Inanna
Indium
Indra
Inflated
Infraorwell
Injera
Injerous
Ino
Interpental
Intuition
Ishtar
Isis
Jamesbond
Jerome
Joan
Jofur
Jove
Jovial
Jovis
Jubilee
Jupiter
Kangaroo
Karadeniz
Kastro
Keemun
Keen
Kema
Ketchup
Kiribati
Kleiboh
Kleischismic
Krypton
Kryptonite
Kumbaya
Kumhar
Kumonga
Kwai
Kwazy
Labizoyo
Laconic
Lafa
Lafayette
Lagaca
Lagu
Lagugubi
Lahoh
Laka
Lala-Gugu
Lala-Quadbizo
Lala-Quadyo
Lala-Quadzo
Lala-Quintho
Lala-Quinyo
Lala-Tribilo
Lala-Trigu
Lala-Triyo
Lala-Trizo
Lala-Yoyo
Lala-Yoyo & Zozo
Lala-Zozo
Lalagu
Lalayo
Lalolo
Lalotriyo
Lalu
Lambda
Landscape
Lano
Lanu
Lanunu
Laquadgu
Laquadlo
Laquadthu
Laquadzo-Atrigu
Laquinbitho
Laquinzo
Laru
Laru + Ya
Larubi
Laruru
Laruyo
Lasepru
Lasepyobi
Laso
Lasu
Latho
Lathuthu
Latribilo
Latribiru
Latribitho
Latribiyo
Latrilu
Latriru + Ya
Latriso
Latrisu
Latritho
Latriyo
Lawa + Za
Layo & Biruyo
Layo & Zozo
Layo + Za
Layoyobi
Laz
Lazo
Lazoyoyo
Lazozo
Leantone
Leapday
Leapfrog
Leapweek
Lemba
Leonhard
Lezo
Liese
Liesel
Lisa
Lizard
Loki
Lologu
Loruru
Lovecraft
Loyo
Lozogugu Noca
Lu
Lulu + Ya
Luna
Lupercalia
Luquadzo
Luyo
Luyoyo
Mabila
Machine
Madagascar
Magic
Magicaltet
Magician
Magus
Maja
Majvam
Malcolm
Mandos
Maneh
Manna
Manwe
Maqamic
Maquila
Marrakesh
Marvel
Marvelcat
Marvell
Marveltri
Marveltwintri
Marvo
Marvolo
Mavila
Maviloid
Meanenneadecal
Meanertone
Meanplop
Meanpop
Meantone
Meantone & Lozogugu
Meantone + La
Meantone + Tha
Meantone + Za
Mercury
Meridetone
Merman
Metakleismic
Migration
Minerva
Minortone
Minos
Mintone
Miracle
Miraculous
Mirage
Mirkat
Mirkwai
Mirwomo
Misneb
Misty
Mite
Mitonic
Mockingbird
Modus
Mohaha
Mohajira
Mohamaq
Mohoho
Momentous
Monkey
Monocerus
Monzismic
Morfil
Mosura
Mother
Mothra
Mothwelltri
Mowgli
Muggles
Murakuc
Mutt
Myna
Myno
Mystery
Na"Naa'
Namaka
Namo
Nautilus
Necromancy
Negra
Negri
Negric
Negril
Negroni
Neominor
Neptune
Nessafof
Nestoria
Neusec
Neutral
Newspeak
Newt
Nickel
Nightingale
Niner
Novemkleismic
Nusecond
Nuso
Nusu
Octacot
Octagari
Octant
Octarod
Octoid
Octokaidecal
Octopod
Octopus
Octowerck
Odin
Ogene
Omicronbeta
Ominous
Oodako
Oolong
Opossum
Oquatonic
Oracle
Oregon
Orga
Orgone
Orson
Orwell
Orwellian
Osiris
Oxpecker
Oxygen
Pajara
Pajaric
Pajaro
Pajarous
Paradigmic
Parahemfi
Parahemif
Parahemwuer
Parakleismic
Parapyth
Parizekmic
Parkleismic
Passion
Pater
Pele
Pelogic
Penta
Pental
Pentoid
Pepperoni
Peregrine
Petredecu
Petrtri
Phicordial
Photia
Picasso
Pirate
Plutino
Pluto
Pnict
Pocus
Pogo
Polypyth
Ponens
Pontiac
Porcupine
Porcupinefish
Porkpie
Porky
Porkypine
Portending
Portent
Portentous
Potassium
Prajapati
Prodigal
Prodigious
Prodigy
Progress
Progression
Protannic
Ptolemy
Pycnic
Qak
Qeema
Qilin
Qintosec
Quadbilu
Quadbiru
Quadbizo
Quadla-Quadzo
Quadlo
Quadluyo
Quadraennealimmal
Quadritikleismic
Quadru
Quadru + Ya
Quadru-Asepyo
Quadru-Ayo
Quadtho
Quanharuk
Quanic
Quartemka
Quarto
Quartonic
Quartz
Quasiorwell
Quasisuper
Quasisupra
Quasitemp
Quasithird
Quato
Quatracot
Quinbigu
Quinbiru
Quincy
Quindecic
Quinlu
Quinmite
Quinru
Quint
Quintannic
Quinthu
Quinzogu
Radon
Ragismic
Raider
Restles
Revelation
Rhinoceros
Ringo
Ripple
Rodan
Roman
Roulette
Ru + Ya
Rugu
Ruru
Rurugu
Rurugu Nowa
Ruyo
Ruyoyobi
Rym
Sagugu & Bizozogu
Sagugu & Latrizo
Sagugu & Lulu
Sagugu & Rugu
Sagugu & Rurugu
Sagugu & Zozo
Salo
Salo & Thulo
Salolo
Saloyoyo
Salsa
Salu
Salulugu
Salururu
Saluzo
Sanjaab
Saquadbizo
Saquadnu
Saquadyobi
Saquadzo
Saquadzogu
Saquinlo
Saquinru
Saquinzo
Saruruyo
Sasa-Gugu
Sasa-Quadgubi
Sasa-Quinbiru
Sasa-Sepru
Sasa-Trilo & Thulo
Sasa-Trizo
Sasagu
Sasaru
Sasazo
Saseplo
Sasepzo
Satho
Sathu
Satin
Satribigubi
Satribizo
Satrigu
Satrilu
Satritho
Satriyo
Sawa + La
Sawa + Za
Sazoyo
Schism
Score
Secant
Secund
Secundly
Selenium
Semafour
Semaja
Semaphore
Semiaug
Semicanou
Semicanousmic
Semidim
Semidimfourth
Semidimi
Semiennealimmal
Semigamera
Semihemi
Semihemififths
Semihemisecordite
Semihemiwürschmidt
Semiluna
Semimiracle
Semiparakleismic
Semisept
Semiseptiquarter
Semishly
Semisupermajor
Semivalentine
Sengagen
Senior
Seniority
Sensa
Sensamagic
Sensawer
Sensei
Sensi
Sensis
Sensor
Sensus
Sentinel
Sentry
Sepgubi
Sephiroth
Sepru
Sepruyo
Septhu
Septidiasemi
Septimal
Septimin
Septiquarter
Septisuperfourth
Septisuperquad
Sesesix
Sesquart
Sesquiquartififths
Sevond
Sextile
Sextilififths
Sfourth
Sharp
Sharptone
Shibboleth
Shibi
Shoe
Shrusus
Shrutar
Sidi
Siegfried
Silver
Sirius
Sixix
Skadi
Skateboard
Skidoo
Skwairs
Skwares
Slender
Slendi
Slendric
Slithy
Slurpee
Smate
Snape
Sodium
Sogu
Sonic
Soothsaying
Sorcery
Soso
Spartan
Spectacle
Spell
Sqrtphi
Squares
Squarschmidt
Srutal
Srutar
Sruti
Stacks
Starling
Starlingtet
Stearnscape
Stones
Stützel
Su
Subfourth
Submajor
Subneutral
Subpental
Subsemifourth
Sugu
Suhajira
Sulis
Superkleismic
Supermagic
Supermajor
Supernatural
Superpelog
Superpyth
Supers
Supersharp
Supra
Supraphon
Suprapyth
Swetneus
Sycamore
Symbolic
Tannic
Taylor
Telepathy
Term
Ternary
Terrain
Terrapyth
Tertia
Tertiaseptal
Tertiosec
Tetracot
Tho
Thogugu
Thogugu Nowa
Thomas
Thor
Thotho
Thothoru
Thoyo
Thoyoyo
Thrasher
Thrush
Thu
Thuja
Thulo
Thulu
Thulugu Noca
Thunor
Thuyo
Tinia
Tobago
Tokko
Tolerant
Toliman
Tremka
Tribilo
Tribiru
Tribithu
Tricot
Tridec
Triforce
Triglav
Trigu & Latrizo
Trigu + La
Trigu + Tha
Trigu + Za
Trigu Nowa + Za
Trila-Quadtriru
Trila-Quadzo
Trila-Tribizo
Trilagu
Trilo
Trilu-Ayoyo
Trilu-Azo
Triluzo
Triluzo Nowa
Trimot
Trimyna
Trinealimmal
Trinu
Tripod
Triru
Triru-Agugu
Triru-Agugubi
Triru-Aquinyo
Trisa-Tritrilu
Trisayo
Trisedodge
Trismegistus
Trithu
Tritikleismic
Triton
Tritoni
Tritonic
Tritriple
Tritrizo
Triwell
Triyo & Latrizo
Triyo & Rurugu
Trizo
Trizogu
Tsaharuk
Tutone
Twentcufo
Twothirdtonic
Tyr
Ulmo
Uncle
Undecental
Undevigintone
Undim
Unicorn
Unidec
Unthirds
Untriton
Urchin
Valentine
Valentino
Van Gogh
Varan
Varda
Varuna
Vavoom
Veery
Vega
Vibhu
Vicentino
Vigin
Vigintiduo
Vili
Vines
Vish
Vishnean
Vishnu
Voltage
Vulcan
Vulture
Waage
Walid
Whirrschmidt
Whitewood
Whoops
Whoosh
Widefourth
Wilsec
Winston
Witchcraft
Wizard
Wizz
Wollemia
Worschmidt
Worseschmidt
Würschmidt
Yajna
Yarman
Yo
Yoyo & Latrizo
Zarvo
Zeus
Zisa
Zo
Zo + Ya
Zozo & Lulu
Zozo + Ya
Zozoquingu Nowa
Zozotrigu
12-Edo + Za (36 & 12)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 36 | 57 | 101 | ] |
⟨ | 12 | 19 | 34 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨100.0514, 32.9215]
TE Step Tunings (cents)
⟨32.92151, 1.28688]
TE Tuning Map (cents)
⟨1200.617, 1900.976, 3368.826]
TE Mistunings (cents)
⟨0.617, -0.979, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.013977 |
Adjusted Error |
1.414402 cents |
TE Error |
0.503820 cents/octave |
17-Edo + Ya (34 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 34 | 54 | 79 | ] |
⟨ | 17 | 27 | 40 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨70.5154, 36.2148]
TE Step Tunings (cents)
⟨34.30055, 1.91426]
TE Tuning Map (cents)
⟨1198.761, 1903.915, 2786.314]
TE Mistunings (cents)
⟨-1.239, 1.960, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.454954 |
Adjusted Error |
2.346419 cents |
TE Error |
1.010548 cents/octave |
A-Team (13 & 18)
Equal Temperament Mappings
| 2 | 5 | 9 | |
[ ⟨ | 13 | 30 | 41 | ] |
⟨ | 18 | 42 | 57 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.3969, 464.6994]
TE Step Tunings (cents)
⟨45.18863, 34.10804]
TE Tuning Map (cents)
⟨1201.397, 2788.196, 3796.892]
TE Mistunings (cents)
⟨1.397, 1.883, -7.018]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.066203 |
Adjusted Error |
5.015523 cents |
TE Error |
1.582221 cents/octave |
A-Team (13 & 18)
Equal Temperament Mappings
| 2 | 5 | 9 | 13 | |
[ ⟨ | 13 | 30 | 41 | 48 | ] |
⟨ | 18 | 42 | 57 | 67 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.1721, 464.0907]
TE Step Tunings (cents)
⟨54.57147, 27.31906]
TE Tuning Map (cents)
⟨1201.172, 2784.544, 3794.616, 4449.807]
TE Mistunings (cents)
⟨1.172, -1.769, -9.294, 9.280]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.973927 |
Adjusted Error |
7.592324 cents |
TE Error |
2.051736 cents/octave |
A-Team (13 & 18)
Equal Temperament Mappings
| 2 | 5 | 9 | 13 | 21 | |
[ ⟨ | 13 | 30 | 41 | 48 | 57 | ] |
⟨ | 18 | 42 | 57 | 67 | 79 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 9 | 13 | 21 | |
[ ⟨ | 1 | 0 | 2 | 1 | 4 | ] |
⟨ | 0 | 6 | 3 | 7 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3598, 464.0779]
TE Step Tunings (cents)
⟨56.11570, 26.21421]
TE Tuning Map (cents)
⟨1201.360, 2784.468, 3794.953, 4449.905, 5269.517]
TE Mistunings (cents)
⟨1.360, -1.846, -8.957, 9.378, -1.264]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
0.980643 |
Adjusted Error |
8.091787 cents |
TE Error |
1.842259 cents/octave |
Abigail (270 & 494)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 494 | 783 | 1147 | 1387 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 7 | 13 | -1 | ] |
⟨ | 0 | -11 | -24 | 19 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9699, 208.8882]
TE Step Tunings (cents)
⟨2.03678, 1.31581]
TE Tuning Map (cents)
⟨1199.940, 1902.020, 2786.293, 3368.905]
TE Mistunings (cents)
⟨-0.060, 0.065, -0.021, 0.079]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.161291 |
Adjusted Error |
0.110163 cents |
TE Error |
0.039241 cents/octave |
Abigail (270 & 494)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 494 | 783 | 1147 | 1387 | 1709 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 7 | 13 | -1 | 1 | ] |
⟨ | 0 | -11 | -24 | 19 | 17 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9782, 208.8930]
TE Step Tunings (cents)
⟨1.54595, 1.58411]
TE Tuning Map (cents)
⟨1199.956, 1902.024, 2786.284, 3368.990, 4151.160]
TE Mistunings (cents)
⟨-0.044, 0.069, -0.030, 0.164, -0.158]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.227676 |
Adjusted Error |
0.150376 cents |
TE Error |
0.043468 cents/octave |
Abigail (270 & 494)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 494 | 783 | 1147 | 1387 | 1709 | 1828 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 7 | 13 | -1 | 1 | -2 | ] |
⟨ | 0 | -11 | -24 | 19 | 17 | 27 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9863, 208.8984]
TE Step Tunings (cents)
⟨0.91917, 1.92672]
TE Tuning Map (cents)
⟨1199.973, 1902.022, 2786.260, 3369.083, 4151.259, 4440.284]
TE Mistunings (cents)
⟨-0.027, 0.067, -0.053, 0.257, -0.059, -0.244]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.607001 |
Adjusted Error |
0.191537 cents |
TE Error |
0.051761 cents/octave |
Absurdity (7 & 84)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 7 | 11 | 16 | ] |
⟨ | 84 | 133 | 195 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨171.4825, 14.4773]
TE Step Tunings (cents)
⟨-2.24461, 14.47726]
TE Tuning Map (cents)
⟨1200.377, 1900.784, 2787.151]
TE Mistunings (cents)
⟨0.377, -1.171, 0.837]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.691457 |
Adjusted Error |
1.212398 cents |
TE Error |
0.522151 cents/octave |
Accord (46 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 6 | 11 | 6 | ] |
⟨ | 0 | -5 | -13 | -29 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3649, 338.8677]
TE Step Tunings (cents)
⟨26.65568, -3.82803]
TE Tuning Map (cents)
⟨1199.365, 1903.756, 2790.909, 3365.850, 4146.380]
TE Mistunings (cents)
⟨-0.635, 1.801, 4.595, -2.976, -4.938]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.486879 |
Adjusted Error |
4.582325 cents |
TE Error |
1.324589 cents/octave |
Acrokleismic (270 & 289)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 289 | 458 | 671 | 811 | 1000 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 10 | 11 | 27 | -16 | ] |
⟨ | 0 | -32 | -33 | -92 | 74 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9699, 315.5505]
TE Step Tunings (cents)
⟨3.60775, 0.78158]
TE Tuning Map (cents)
⟨1199.970, 1902.082, 2786.501, 3368.538, 4151.221]
TE Mistunings (cents)
⟨-0.030, 0.127, 0.187, -0.288, -0.097]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
18.558054 |
Adjusted Error |
0.245259 cents |
TE Error |
0.070896 cents/octave |
Acrokleismic (270 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 10 | 11 | 27 | -16 | 25 | ] |
⟨ | 0 | -32 | -33 | -92 | 74 | -81 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9940, 315.5555]
TE Step Tunings (cents)
⟨4.41506, 0.41729]
TE Tuning Map (cents)
⟨1199.994, 1902.163, 2786.602, 3368.730, 4151.205, 4439.853]
TE Mistunings (cents)
⟨-0.006, 0.208, 0.288, -0.096, -0.113, -0.675]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
17.592816 |
Adjusted Error |
0.394541 cents |
TE Error |
0.106620 cents/octave |
Acyuta (270 & 152f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | 563 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 5 | 10 | 10 | 17 | ] |
⟨ | 0 | -7 | -3 | -37 | -26 | -81 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9475, 71.0947]
TE Step Tunings (cents)
⟨3.67337, 1.36897]
TE Tuning Map (cents)
⟨1199.895, 1902.127, 2786.453, 3368.969, 4151.011, 4440.433]
TE Mistunings (cents)
⟨-0.105, 0.172, 0.139, 0.143, -0.307, -0.095]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
15.096571 |
Adjusted Error |
0.292508 cents |
TE Error |
0.079047 cents/octave |
Aerodactyl (46 & 5p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | -1 | 3 | 6 | -1 | ] |
⟨ | 0 | 3 | 17 | -1 | -13 | 24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3081, 234.6989]
TE Step Tunings (cents)
⟨26.81387, -6.62598]
TE Tuning Map (cents)
⟨1200.308, 1904.405, 2789.572, 3366.226, 4150.764, 4432.464]
TE Mistunings (cents)
⟨0.308, 2.450, 3.259, -2.600, -0.554, -8.063]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.896163 |
Adjusted Error |
4.797539 cents |
TE Error |
1.296478 cents/octave |
Aerodino (46 & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | -1 | 3 | -3 | ] |
⟨ | 0 | 3 | 17 | -1 | 33 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9254, 234.7137]
TE Step Tunings (cents)
⟨26.35672, -2.49677]
TE Tuning Map (cents)
⟨1199.925, 1904.067, 2790.208, 3365.062, 4145.777]
TE Mistunings (cents)
⟨-0.075, 2.112, 3.894, -3.764, -5.541]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.015654 |
Adjusted Error |
4.629971 cents |
TE Error |
1.338362 cents/octave |
Aerodino (46 & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | -1 | 3 | -3 | -1 | ] |
⟨ | 0 | 3 | 17 | -1 | 33 | 24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0341, 234.7882]
TE Step Tunings (cents)
⟨26.09305, -0.04922]
TE Tuning Map (cents)
⟨1200.034, 1904.399, 2791.366, 3365.314, 4147.909, 4434.883]
TE Mistunings (cents)
⟨0.034, 2.444, 5.052, -3.512, -3.409, -5.645]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.811713 |
Adjusted Error |
5.227737 cents |
TE Error |
1.412734 cents/octave |
Agni (31 & 41 & 68p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 68 | 108 | 158 | 191 | 235 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | 2 | 5 | ] |
⟨ | 0 | 2 | 1 | 1 | 0 | ] |
⟨ | 0 | 0 | 2 | 1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4171, 350.8364, 617.2189]
TE Step Tunings (cents)
⟨13.02055, 11.82537, 4.58735]
TE Tuning Map (cents)
⟨1200.417, 1902.090, 2785.691, 3368.889, 4150.429]
TE Mistunings (cents)
⟨0.417, 0.135, -0.623, 0.064, -0.889]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.250897 |
Adjusted Error |
0.874688 cents |
TE Error |
0.252842 cents/octave |
Agni (72 & 31 & 68p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 68 | 108 | 158 | 191 | 235 | 252 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 2 | 5 | -1 | ] |
⟨ | 0 | 2 | 1 | 1 | 0 | 2 | ] |
⟨ | 0 | 0 | 2 | 1 | -3 | 8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4416, 350.8093, 617.3719]
TE Step Tunings (cents)
⟨10.80453, 3.01811, 4.83756]
TE Tuning Map (cents)
⟨1200.442, 1902.060, 2785.995, 3369.064, 4150.092, 4440.152]
TE Mistunings (cents)
⟨0.442, 0.105, -0.319, 0.238, -1.226, -0.375]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.384286 |
Adjusted Error |
0.908087 cents |
TE Error |
0.245400 cents/octave |
Agora (31 & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 8 | 6 | 7 | 14 | ] |
⟨ | 0 | -4 | -16 | -9 | -10 | -29 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.3364, 427.1063]
TE Step Tunings (cents)
⟨32.19396, 14.59456]
TE Tuning Map (cents)
⟨1202.336, 1898.584, 2784.991, 3370.062, 4145.292, 4446.627]
TE Mistunings (cents)
⟨2.336, -3.371, -1.323, 1.236, -6.026, 6.100]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.673362 |
Adjusted Error |
6.090193 cents |
TE Error |
1.645803 cents/octave |
Akea (87 & 41 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 10 | -3 | 2 | ] |
⟨ | 0 | 1 | 0 | -6 | 7 | 4 | ] |
⟨ | 0 | 0 | 1 | 1 | -2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0950, 1903.0331, 2785.6180]
TE Step Tunings (cents)
⟨8.45814, 2.02730, 7.19090]
TE Tuning Map (cents)
⟨1200.095, 1903.033, 2785.618, 3368.369, 4149.711, 4441.086]
TE Mistunings (cents)
⟨0.095, 1.078, -0.696, -0.457, -1.607, 0.559]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.294942 |
Adjusted Error |
1.373466 cents |
TE Error |
0.371163 cents/octave |
Albus (72 & 58 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -2 | 6 | ] |
⟨ | 0 | 2 | 0 | 9 | -12 | ] |
⟨ | 0 | 0 | 1 | -1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0429, 950.6654, 2786.4294]
TE Step Tunings (cents)
⟨9.39934, 5.83220, 3.49099]
TE Tuning Map (cents)
⟨1200.043, 1901.331, 2786.429, 3369.474, 4151.560]
TE Mistunings (cents)
⟨0.043, -0.624, 0.116, 0.648, 0.242]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.297006 |
Adjusted Error |
0.721598 cents |
TE Error |
0.208589 cents/octave |
Alicorn (58 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 4 | 3 | ] |
⟨ | 0 | -8 | -13 | -23 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.6550, 62.0318]
TE Step Tunings (cents)
⟨20.05043, 1.88052]
TE Tuning Map (cents)
⟨1198.655, 1901.056, 2789.551, 3367.888, 4154.251]
TE Mistunings (cents)
⟨-1.345, -0.899, 3.238, -0.938, 2.934]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.953658 |
Adjusted Error |
3.426767 cents |
TE Error |
0.990558 cents/octave |
Alicorn (58 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 4 | 3 | 5 | ] |
⟨ | 0 | -8 | -13 | -23 | 9 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.6341, 62.0482]
TE Step Tunings (cents)
⟨19.71814, 2.89377]
TE Tuning Map (cents)
⟨1198.634, 1900.882, 2789.276, 3367.428, 4154.336, 4441.965]
TE Mistunings (cents)
⟨-1.366, -1.073, 2.962, -1.398, 3.018, 1.438]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.839292 |
Adjusted Error |
3.415294 cents |
TE Error |
0.922943 cents/octave |
Alphaquarter (152 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 0 | 3 | ] |
⟨ | 0 | -9 | 7 | 61 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7230, 55.2303]
TE Step Tunings (cents)
⟨6.14075, 3.06125]
TE Tuning Map (cents)
⟨1199.723, 1902.374, 2786.058, 3369.046, 4151.472]
TE Mistunings (cents)
⟨-0.277, 0.419, -0.256, 0.220, 0.154]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.226141 |
Adjusted Error |
0.631777 cents |
TE Error |
0.182624 cents/octave |
Amavil (9 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 9 | 14 | 21 | 25 | ] |
⟨ | 34 | 54 | 79 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 6 | 1 | 9 | ] |
⟨ | 0 | -10 | 3 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8625, 529.4769]
TE Step Tunings (cents)
⟨19.27713, 30.15789]
TE Tuning Map (cents)
⟨1198.862, 1898.406, 2787.293, 3377.086]
TE Mistunings (cents)
⟨-1.138, -3.549, 0.979, 8.260]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.217266 |
Adjusted Error |
5.462215 cents |
TE Error |
1.945680 cents/octave |
Amavil (9 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 6 | 1 | 9 | 7 | ] |
⟨ | 0 | -10 | 3 | -14 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5661, 529.3408]
TE Step Tunings (cents)
⟨19.09390, 30.19768]
TE Tuning Map (cents)
⟨1198.566, 1897.989, 2786.588, 3376.324, 4155.237]
TE Mistunings (cents)
⟨-1.434, -3.966, 0.275, 7.499, 3.919]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.879312 |
Adjusted Error |
6.331535 cents |
TE Error |
1.830224 cents/octave |
Amavil (9 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 6 | 1 | 9 | 7 | 9 | ] |
⟨ | 0 | -10 | 3 | -14 | -8 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.7541, 529.4005]
TE Step Tunings (cents)
⟨18.30624, 30.41170]
TE Tuning Map (cents)
⟨1198.754, 1898.519, 2786.956, 3377.179, 4156.074, 4435.980]
TE Mistunings (cents)
⟨-1.246, -3.436, 0.642, 8.354, 4.756, -4.547]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.644069 |
Adjusted Error |
6.512181 cents |
TE Error |
1.759840 cents/octave |
Amicable (99 & 212)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 212 | 336 | 492 | 595 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 6 | 5 | ] |
⟨ | 0 | -20 | -52 | -31 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9463, 84.8761]
TE Step Tunings (cents)
⟨5.45505, 3.11272]
TE Tuning Map (cents)
⟨1199.946, 1902.316, 2786.119, 3368.572]
TE Mistunings (cents)
⟨-0.054, 0.361, -0.195, -0.254]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.944139 |
Adjusted Error |
0.371618 cents |
TE Error |
0.132373 cents/octave |
Amigo (46 & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 43 | 68 | 100 | 121 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -2 | 2 | 9 | 9 | ] |
⟨ | 0 | 11 | 1 | -19 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5293, 390.9220]
TE Step Tunings (cents)
⟨16.23330, 10.53018]
TE Tuning Map (cents)
⟨1199.529, 1901.083, 2789.981, 3368.247, 4150.091]
TE Mistunings (cents)
⟨-0.471, -0.872, 3.667, -0.579, -1.227]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.789119 |
Adjusted Error |
2.761806 cents |
TE Error |
0.798341 cents/octave |
Amigo (46 & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 43 | 68 | 100 | 121 | 149 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -2 | 2 | 9 | 9 | 5 | ] |
⟨ | 0 | 11 | 1 | -19 | -17 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8222, 391.0146]
TE Step Tunings (cents)
⟨16.11512, 10.66341]
TE Tuning Map (cents)
⟨1199.822, 1901.516, 2790.659, 3369.123, 4151.152, 4435.053]
TE Mistunings (cents)
⟨-0.178, -0.439, 4.345, 0.297, -0.165, -5.475]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.371540 |
Adjusted Error |
3.642331 cents |
TE Error |
0.984297 cents/octave |
Amity (53 & 99)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 99 | 157 | 230 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9135, 339.4943]
TE Step Tunings (cents)
⟨12.36123, 5.50271]
TE Tuning Map (cents)
⟨1199.914, 1902.269, 2786.055]
TE Mistunings (cents)
⟨-0.086, 0.314, -0.259]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.291990 |
Adjusted Error |
0.325996 cents |
TE Error |
0.140399 cents/octave |
Amity (99 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 53 | 84 | 123 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 6 | -2 | ] |
⟨ | 0 | -5 | -13 | 17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6102, 339.3219]
TE Step Tunings (cents)
⟨10.09007, 3.78666]
TE Tuning Map (cents)
⟨1199.610, 1902.221, 2786.476, 3369.253]
TE Mistunings (cents)
⟨-0.390, 0.266, 0.162, 0.427]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.364558 |
Adjusted Error |
0.640286 cents |
TE Error |
0.228074 cents/octave |
Amity (152 & 99e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 6 | -2 | 21 | ] |
⟨ | 0 | -5 | -13 | 17 | -62 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5964, 339.3502]
TE Step Tunings (cents)
⟨6.97405, 1.40950]
TE Tuning Map (cents)
⟨1199.596, 1902.038, 2786.025, 3369.761, 4151.810]
TE Mistunings (cents)
⟨-0.404, 0.083, -0.288, 0.935, 0.492]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.928953 |
Adjusted Error |
0.864542 cents |
TE Error |
0.249909 cents/octave |
Amity (53 & 152f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | 563 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 6 | -2 | 21 | 17 | ] |
⟨ | 0 | -5 | -13 | 17 | -62 | -47 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5444, 339.3517]
TE Step Tunings (cents)
⟨1.05284, 7.52463]
TE Tuning Map (cents)
⟨1199.544, 1901.875, 2785.694, 3369.891, 4150.626, 4442.724]
TE Mistunings (cents)
⟨-0.456, -0.080, -0.620, 1.065, -0.692, 2.196]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.913304 |
Adjusted Error |
1.365877 cents |
TE Error |
0.369112 cents/octave |
Ammonite (8d & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 8 | 13 | 19 | 23 | ] |
⟨ | 29 | 46 | 67 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 5 | 8 | 10 | ] |
⟨ | 0 | -9 | -15 | -19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3567, 454.2048]
TE Step Tunings (cents)
⟨20.98414, 35.56840]
TE Tuning Map (cents)
⟨1199.357, 1908.940, 2781.782, 3363.676]
TE Mistunings (cents)
⟨-0.643, 6.985, -4.532, -5.150]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.759118 |
Adjusted Error |
7.295446 cents |
TE Error |
2.598690 cents/octave |
Ammonite (8d & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 8 | 10 | 8 | ] |
⟨ | 0 | -9 | -15 | -19 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0392, 454.5265]
TE Step Tunings (cents)
⟨19.16265, 36.09441]
TE Tuning Map (cents)
⟨1200.039, 1909.457, 2782.416, 3364.388, 4145.996]
TE Mistunings (cents)
⟨0.039, 7.502, -3.898, -4.437, -5.322]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.517219 |
Adjusted Error |
8.486708 cents |
TE Error |
2.453209 cents/octave |
Ammonite (8d & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 8 | 10 | 8 | 9 | ] |
⟨ | 0 | -9 | -15 | -19 | -12 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2735, 454.6324]
TE Step Tunings (cents)
⟨18.66949, 36.23854]
TE Tuning Map (cents)
⟨1200.274, 1909.676, 2782.702, 3364.720, 4146.600, 4437.608]
TE Mistunings (cents)
⟨0.274, 7.721, -3.611, -4.106, -4.718, -2.919]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.311859 |
Adjusted Error |
8.390448 cents |
TE Error |
2.267419 cents/octave |
Ampersand (31 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 31 | 49 | 72 | ] |
⟨ | 41 | 65 | 95 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8376, 116.7547]
TE Step Tunings (cents)
⟨16.40759, 16.88298]
TE Tuning Map (cents)
⟨1200.838, 1901.366, 2785.230]
TE Mistunings (cents)
⟨0.838, -0.589, -1.084]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.780215 |
Adjusted Error |
1.378663 cents |
TE Error |
0.593758 cents/octave |
Ananta (270 & 118p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | 437 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 5 | 10 | 10 | 1 | ] |
⟨ | 0 | -7 | -3 | -37 | -26 | 54 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9941, 71.1163]
TE Step Tunings (cents)
⟨4.09778, 0.79311]
TE Tuning Map (cents)
⟨1199.988, 1902.162, 2786.621, 3368.638, 4150.917, 4440.273]
TE Mistunings (cents)
⟨-0.012, 0.207, 0.308, -0.188, -0.401, -0.254]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
17.147872 |
Adjusted Error |
0.362000 cents |
TE Error |
0.097826 cents/octave |
Andromeda (12 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -1 | -3 | -4 | ] |
⟨ | 0 | -1 | 8 | 14 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1989, 497.7111]
TE Step Tunings (cents)
⟨2.77352, 28.46138]
TE Tuning Map (cents)
⟨1200.199, 1902.687, 2781.490, 3367.358, 4158.004]
TE Mistunings (cents)
⟨0.199, 0.732, -4.824, -1.467, 6.686]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.464843 |
Adjusted Error |
4.531040 cents |
TE Error |
1.309764 cents/octave |
Andromeda (12f & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -1 | -3 | -4 | -5 | ] |
⟨ | 0 | -1 | 8 | 14 | 18 | 21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3146, 497.5710]
TE Step Tunings (cents)
⟨-4.93511, 30.72039]
TE Tuning Map (cents)
⟨1200.315, 1903.058, 2780.254, 3365.051, 4155.020, 4447.419]
TE Mistunings (cents)
⟨0.315, 1.103, -6.060, -3.775, 3.702, 6.891]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.524619 |
Adjusted Error |
5.615386 cents |
TE Error |
1.517491 cents/octave |
Anguirus (10p & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 3 | 6 | 9 | ] |
⟨ | 0 | -2 | 4 | -1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9457, 247.7940]
TE Step Tunings (cents)
⟨26.20058, 39.07857]
TE Tuning Map (cents)
⟨1199.891, 1904.195, 2791.013, 3351.880, 4160.541]
TE Mistunings (cents)
⟨-0.109, 2.240, 4.699, -16.946, 9.224]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.265829 |
Adjusted Error |
10.901204 cents |
TE Error |
3.151155 cents/octave |
Anguirus (10p & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 3 | 6 | 9 | 7 | ] |
⟨ | 0 | -2 | 4 | -1 | -5 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.7793, 247.5998]
TE Step Tunings (cents)
⟨27.69846, 38.44059]
TE Tuning Map (cents)
⟨1199.559, 1903.918, 2789.737, 3351.076, 4160.015, 4446.055]
TE Mistunings (cents)
⟨-0.441, 1.963, 3.424, -17.750, 8.697, 5.527]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.107568 |
Adjusted Error |
10.938604 cents |
TE Error |
2.956028 cents/octave |
Antikythera (6 & 10)
Equal Temperament Mappings
| 2 | 9 | 5 | 7 | |
[ ⟨ | 6 | 19 | 14 | 17 | ] |
⟨ | 10 | 32 | 23 | 28 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨598.8593, 213.6884]
TE Step Tunings (cents)
⟨129.27686, 42.20575]
TE Tuning Map (cents)
⟨1197.719, 3806.844, 2780.608, 3379.468]
TE Mistunings (cents)
⟨-2.281, 2.934, -5.705, 10.642]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.598065 |
Adjusted Error |
8.154205 cents |
TE Error |
2.572365 cents/octave |
Aphrodite (31 & 15 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 3 | 2 | ] |
⟨ | 0 | 1 | 1 | 0 | 1 | ] |
⟨ | 0 | 0 | 4 | 3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0724, 1902.0183, -78.7124]
TE Step Tunings (cents)
⟨27.85201, 15.54239, 7.46601]
TE Tuning Map (cents)
⟨1201.072, 1902.018, 2788.241, 3367.080, 4146.738]
TE Mistunings (cents)
⟨1.072, 0.063, 1.927, -1.746, -4.580]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.161950 |
Adjusted Error |
3.086432 cents |
TE Error |
0.892179 cents/octave |
Aphrodite (31 & 46 & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 3 | 2 | 6 | ] |
⟨ | 0 | 1 | 1 | 0 | 1 | -1 | ] |
⟨ | 0 | 0 | 4 | 3 | 2 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0689, 1901.8083, -78.5911]
TE Step Tunings (cents)
⟨14.33855, 14.44460, 6.58015]
TE Tuning Map (cents)
⟨1201.069, 1901.808, 2788.513, 3367.434, 4146.764, 4440.104]
TE Mistunings (cents)
⟨1.069, -0.147, 2.199, -1.392, -4.554, -0.424]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.264037 |
Adjusted Error |
3.036561 cents |
TE Error |
0.820595 cents/octave |
Aplonis (31 & 27e & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -1 | 4 | ] |
⟨ | 0 | 1 | 0 | -2 | 7 | ] |
⟨ | 0 | 0 | 1 | 3 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6034, 1900.1796, 2789.4634]
TE Step Tunings (cents)
⟨25.42091, 12.84147, 3.41240]
TE Tuning Map (cents)
⟨1199.603, 1900.180, 2789.463, 3368.428, 4152.353]
TE Mistunings (cents)
⟨-0.397, -1.775, 3.150, -0.398, 1.036]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.174660 |
Adjusted Error |
2.836694 cents |
TE Error |
0.819988 cents/octave |
Aplonis (31 & 19p & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | 4 | 0 | ] |
⟨ | 0 | 1 | 0 | -2 | 7 | -5 | ] |
⟨ | 0 | 0 | 1 | 3 | -5 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0647, 1900.3002, 2788.9690]
TE Step Tunings (cents)
⟨21.95183, 20.56695, 15.97324]
TE Tuning Map (cents)
⟨1199.065, 1900.300, 2788.969, 3367.242, 4153.515, 4443.344]
TE Mistunings (cents)
⟨-0.935, -1.655, 2.655, -1.584, 2.197, 2.816]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.192172 |
Adjusted Error |
3.230785 cents |
TE Error |
0.873081 cents/octave |
Apollo (22 & 41 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -5 | 2 | ] |
⟨ | 0 | 1 | 0 | 2 | -2 | ] |
⟨ | 0 | 0 | 1 | 2 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8310, 1903.2165, 2781.2115]
TE Step Tunings (cents)
⟨9.47898, 22.85170, 4.53113]
TE Tuning Map (cents)
⟨1199.831, 1903.217, 2781.211, 3369.701, 4155.652]
TE Mistunings (cents)
⟨-0.169, 1.262, -5.102, 0.875, 4.334]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.138578 |
Adjusted Error |
4.139008 cents |
TE Error |
1.196442 cents/octave |
Apollo (12f & 22p & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 2 | 7 | ] |
⟨ | 0 | 1 | 0 | 2 | -2 | -5 | ] |
⟨ | 0 | 0 | 1 | 2 | 2 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6983, 1903.5196, 2780.8358]
TE Step Tunings (cents)
⟨24.60744, 34.44970, 20.93079]
TE Tuning Map (cents)
⟨1199.698, 1903.520, 2780.836, 3370.220, 4154.029, 4441.961]
TE Mistunings (cents)
⟨-0.302, 1.565, -5.478, 1.394, 2.711, 1.434]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.189446 |
Adjusted Error |
4.176208 cents |
TE Error |
1.128571 cents/octave |
Arch (130 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 2 | 3 | ] |
⟨ | 0 | -18 | 14 | 35 | 20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8351, 27.6590]
TE Step Tunings (cents)
⟨6.66152, 3.83721]
TE Tuning Map (cents)
⟨1199.835, 1901.808, 2786.896, 3367.735, 4152.685]
TE Mistunings (cents)
⟨-0.165, -0.147, 0.582, -1.091, 1.367]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.011017 |
Adjusted Error |
0.985635 cents |
TE Error |
0.284912 cents/octave |
Arch (130 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 2 | 3 | 4 | ] |
⟨ | 0 | -18 | 14 | 35 | 20 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8736, 27.6569]
TE Step Tunings (cents)
⟨6.40560, 4.22006]
TE Tuning Map (cents)
⟨1199.874, 1901.923, 2786.944, 3367.740, 4152.759, 4439.954]
TE Mistunings (cents)
⟨-0.126, -0.032, 0.631, -1.086, 1.442, -0.573]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.657777 |
Adjusted Error |
0.999174 cents |
TE Error |
0.270015 cents/octave |
Archagall (83 & 22)
Equal Temperament Mappings
| 2 | 75 | 85 | |
[ ⟨ | 83 | 517 | 532 | ] |
⟨ | 22 | 137 | 141 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9826, 491.5392]
TE Step Tunings (cents)
⟨14.01936, 1.65342]
TE Tuning Map (cents)
⟨1199.983, 7474.530, 7691.435]
TE Mistunings (cents)
⟨-0.017, -0.052, 0.165]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
0.200650 |
Adjusted Error |
0.119346 cents |
TE Error |
0.018620 cents/octave |
Archagall (83 & 61)
Equal Temperament Mappings
| 2 | 17/15 | 75/64 | |
[ ⟨ | 83 | 15 | 19 | ] |
⟨ | 61 | 11 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 17/15 | 75/64 | |
[ ⟨ | 1 | 1 | -1 | ] |
⟨ | 0 | -2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4843, 491.3736]
TE Step Tunings (cents)
⟨13.31923, 1.54080]
TE Tuning Map (cents)
⟨1199.484, 216.737, 274.636]
TE Mistunings (cents)
⟨-0.516, 0.050, 0.054]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
9.890078 |
Adjusted Error |
0.365015 cents |
TE Error |
0.365015 cents/octave |
Archy (5 & 17)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.9667, 489.4384]
TE Step Tunings (cents)
⟨58.31372, 53.25871]
TE Tuning Map (cents)
⟨1196.967, 1904.495, 3372.810]
TE Mistunings (cents)
⟨-3.033, 2.540, 3.984]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.550144 |
Adjusted Error |
6.017469 cents |
TE Error |
2.143466 cents/octave |
Arcturus (b13 & b2)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1903.8685, 878.9253]
TE Step Tunings (cents)
⟨146.01781, 2.81846]
TE Tuning Map (cents)
⟨1903.868, 2782.794, 3369.683]
TE Mistunings (cents)
⟨1.913, -3.520, 0.858]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.581698 |
Adjusted Error |
3.179836 cents |
TE Error |
1.132681 cents/octave |
Ares (22 & 12 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 6 | 2 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | ] |
⟨ | 0 | 0 | 1 | 0 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.0402, 1904.9765, 2784.5655]
TE Step Tunings (cents)
⟨25.58454, 25.85402, 21.59547]
TE Tuning Map (cents)
⟨1197.040, 1904.977, 2784.566, 3372.288, 4153.258]
TE Mistunings (cents)
⟨-2.960, 3.022, -1.748, 3.462, 1.940]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.114130 |
Adjusted Error |
5.951253 cents |
TE Error |
1.720298 cents/octave |
Armodue (7p & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 20 | ] |
⟨ | 9 | 14 | 21 | 25 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1205.1780, 528.2729]
TE Step Tunings (cents)
⟨66.25553, 82.37659]
TE Tuning Map (cents)
⟨1205.178, 1882.083, 2789.997, 3384.525]
TE Mistunings (cents)
⟨5.178, -19.872, 3.683, 15.699]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.104933 |
Adjusted Error |
20.715412 cents |
TE Error |
7.378979 cents/octave |
Armodue (9 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 1 | 5 | 3 | ] |
⟨ | 0 | -1 | 3 | -5 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1205.6455, 528.6685]
TE Step Tunings (cents)
⟨83.74282, 64.56573]
TE Tuning Map (cents)
⟨1205.645, 1882.622, 2791.651, 3384.885, 4145.605]
TE Mistunings (cents)
⟨5.645, -19.333, 5.337, 16.059, -5.713]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.013547 |
Adjusted Error |
23.019285 cents |
TE Error |
6.654066 cents/octave |
Armodue (9 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 1 | 5 | 3 | 5 | ] |
⟨ | 0 | -1 | 3 | -5 | 1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1205.5810, 528.6846]
TE Step Tunings (cents)
⟨84.04951, 64.16221]
TE Tuning Map (cents)
⟨1205.581, 1882.477, 2791.635, 3384.482, 4145.428, 4441.851]
TE Mistunings (cents)
⟨5.581, -19.478, 5.321, 15.656, -5.890, 1.323]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.955680 |
Adjusted Error |
22.485904 cents |
TE Error |
6.076549 cents/octave |
Arnold (5p & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 2 | 3 | ] |
⟨ | 0 | -1 | -4 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1599, 501.5754]
TE Step Tunings (cents)
⟨89.45178, 107.55729]
TE Tuning Map (cents)
⟨1200.160, 1898.744, 2794.338, 3403.471, 4102.055]
TE Mistunings (cents)
⟨0.160, -3.211, 8.024, 34.645, -49.263]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.847355 |
Adjusted Error |
29.805229 cents |
TE Error |
8.615643 cents/octave |
Arnold (7p & 5p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 2 | 3 | 5 | ] |
⟨ | 0 | -1 | -4 | 2 | 1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.2668, 502.5302]
TE Step Tunings (cents)
⟨116.11738, 77.08903]
TE Tuning Map (cents)
⟨1198.267, 1894.003, 2782.946, 3401.594, 4097.331, 4483.743]
TE Mistunings (cents)
⟨-1.733, -7.952, -3.367, 32.768, -53.987, 43.216]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.800550 |
Adjusted Error |
35.314425 cents |
TE Error |
9.543305 cents/octave |
Artemis (31 & 22 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | -3 | 2 | ] |
⟨ | 0 | 1 | 1 | 4 | 1 | ] |
⟨ | 0 | 0 | 2 | 4 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2818, 1901.9013, -158.4923]
TE Step Tunings (cents)
⟨25.18531, 16.27947, 8.91268]
TE Tuning Map (cents)
⟨1201.282, 1901.901, 2786.198, 3369.790, 4145.973]
TE Mistunings (cents)
⟨1.282, -0.054, -0.115, 0.964, -5.345]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.161735 |
Adjusted Error |
3.152525 cents |
TE Error |
0.911284 cents/octave |
Artemis (31 & 9 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | -3 | 2 | -5 | ] |
⟨ | 0 | 1 | 1 | 4 | 1 | 6 | ] |
⟨ | 0 | 0 | 2 | 4 | 1 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.7981, 1901.5540, -158.9495]
TE Step Tunings (cents)
⟨21.30103, 3.89263, 17.46319]
TE Tuning Map (cents)
⟨1201.798, 1901.554, 2785.453, 3365.024, 4146.201, 4446.636]
TE Mistunings (cents)
⟨1.798, -0.401, -0.861, -3.802, -5.117, 6.109]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.183019 |
Adjusted Error |
4.820579 cents |
TE Error |
1.302704 cents/octave |
Artemis (31 & 22f & 29g)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 82 | 90 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 1 | -3 | 2 | -5 | 0 | ] |
⟨ | 0 | 1 | 1 | 4 | 1 | 6 | 3 | ] |
⟨ | 0 | 0 | 2 | 4 | 1 | 6 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.6677, 1901.9983, -159.6040]
TE Step Tunings (cents)
⟨22.52505, -2.04618, 18.91060]
TE Tuning Map (cents)
⟨1201.668, 1901.998, 2784.458, 3364.574, 4145.730, 4446.027, 4907.975]
TE Mistunings (cents)
⟨1.668, 0.043, -1.856, -4.252, -5.588, 5.499, 3.019]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.186127 |
Adjusted Error |
5.142140 cents |
TE Error |
1.258027 cents/octave |
Artemis (31 & 29g & 9p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | 132 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | 37 | 38 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 1 | 0 | 1 | -3 | 2 | -5 | 0 | -3 | ] |
⟨ | 0 | 1 | 1 | 4 | 1 | 6 | 3 | 5 | ] |
⟨ | 0 | 0 | 2 | 4 | 1 | 6 | 5 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.6838, 1901.5858, -159.5447]
TE Step Tunings (cents)
⟨17.90479, 20.67071, 5.24276]
TE Tuning Map (cents)
⟨1201.684, 1901.586, 2784.180, 3363.113, 4145.409, 4443.827, 4907.034, 5105.154]
TE Mistunings (cents)
⟨1.684, -0.369, -2.134, -5.713, -5.909, 3.300, 2.078, 7.641]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.169469 |
Adjusted Error |
5.832611 cents |
TE Error |
1.373049 cents/octave |
Artemis (29g & 31 & 22fh)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | 131 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | 132 | 140 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 82 | 90 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 1 | 0 | 1 | -3 | 2 | -5 | 0 | -3 | -3 | ] |
⟨ | 0 | 1 | 1 | 4 | 1 | 6 | 3 | 5 | 5 | ] |
⟨ | 0 | 0 | 2 | 4 | 1 | 6 | 5 | 5 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.7161, 1902.0678, -159.9063]
TE Step Tunings (cents)
⟨21.01779, 21.64541, -3.58216]
TE Tuning Map (cents)
⟨1201.716, 1902.068, 2783.971, 3363.498, 4145.594, 4444.388, 4906.672, 5105.659, 5425.472]
TE Mistunings (cents)
⟨1.716, 0.113, -2.343, -5.328, -5.724, 3.861, 1.716, 8.146, -2.803]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.170328 |
Adjusted Error |
5.962072 cents |
TE Error |
1.318004 cents/octave |
Astro (1171 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 1171 | 1856 | 2719 | ] |
⟨ | 118 | 187 | 274 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9946, 132.1941]
TE Step Tunings (cents)
⟨1.02912, -0.04331]
TE Tuning Map (cents)
⟨1199.995, 1901.957, 2786.324]
TE Mistunings (cents)
⟨-0.005, 0.002, 0.010]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.649401 |
Adjusted Error |
0.009291 cents |
TE Error |
0.004001 cents/octave |
Astrology (22 & 38)
Contorted
Magic (order 2)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 22 | 35 | 51 | ] |
⟨ | 38 | 60 | 88 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.6240, 220.1703]
TE Step Tunings (cents)
⟨21.13255, 19.37716]
TE Tuning Map (cents)
⟨1201.248, 1902.269, 2782.950]
TE Mistunings (cents)
⟨1.248, 0.314, -3.364]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.790526 |
Adjusted Error |
2.577115 cents |
TE Error |
1.109903 cents/octave |
Astrology (22 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 16 | 25 | 37 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 5 | 5 | 6 | ] |
⟨ | 0 | -5 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.7094, 219.3153]
TE Step Tunings (cents)
⟨44.60550, 13.63111]
TE Tuning Map (cents)
⟨1199.419, 1901.970, 2779.231, 3378.941]
TE Mistunings (cents)
⟨-0.581, 0.015, -7.082, 10.115]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.527133 |
Adjusted Error |
6.676416 cents |
TE Error |
2.378187 cents/octave |
Astrology (22 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 5 | 5 | 6 | 8 | ] |
⟨ | 0 | -5 | -1 | -1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0669, 219.4946]
TE Step Tunings (cents)
⟨44.24438, 14.17234]
TE Tuning Map (cents)
⟨1200.134, 1902.862, 2780.840, 3380.907, 4142.052]
TE Mistunings (cents)
⟨0.134, 0.907, -5.474, 12.081, -9.266]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.260965 |
Adjusted Error |
8.696329 cents |
TE Error |
2.513803 cents/octave |
Astrology (22p & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 5 | 5 | 6 | 8 | 7 | ] |
⟨ | 0 | -5 | -1 | -1 | -3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.8107, 220.5110]
TE Step Tunings (cents)
⟨38.34440, 22.37780]
TE Tuning Map (cents)
⟨1201.621, 1901.499, 2783.543, 3384.353, 4144.953, 4426.186]
TE Mistunings (cents)
⟨1.621, -0.456, -2.771, 15.528, -6.365, -14.342]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.256182 |
Adjusted Error |
11.011956 cents |
TE Error |
2.975851 cents/octave |
Athene (12f & 19e & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | -9 | -4 | ] |
⟨ | 0 | 1 | 0 | 2 | 2 | -1 | ] |
⟨ | 0 | 0 | 1 | 2 | 4 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9181, 1901.1045, 2785.7693]
TE Step Tunings (cents)
⟨28.56082, 23.14278, 18.97616]
TE Tuning Map (cents)
⟨1199.918, 1901.105, 2785.769, 3374.157, 4146.023, 4442.300]
TE Mistunings (cents)
⟨-0.082, -0.850, -0.544, 5.331, -5.295, 1.773]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.175501 |
Adjusted Error |
3.859754 cents |
TE Error |
1.043053 cents/octave |
Atomic (4296 & 12276)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 4296 | 6809 | 9975 | ] |
⟨ | 12276 | 19457 | 28504 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨100.0000, 1.9552]
TE Step Tunings (cents)
⟨0.13080, 0.05198]
TE Tuning Map (cents)
⟨1200.000, 1901.955, 2786.314]
TE Mistunings (cents)
⟨-0.000, 0.000, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
19.091883 |
Adjusted Error |
0.000098 cents |
TE Error |
0.000042 cents/octave |
Aufo (53 & 108)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 108 | 171 | 251 | 303 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 6 | -7 | 19 | ] |
⟨ | 0 | -9 | 19 | -33 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9764, 588.7706]
TE Step Tunings (cents)
⟨11.52819, 5.45354]
TE Tuning Map (cents)
⟨1199.976, 1900.923, 2786.806, 3370.123]
TE Mistunings (cents)
⟨-0.024, -1.032, 0.492, 1.297]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.348391 |
Adjusted Error |
1.159760 cents |
TE Error |
0.413115 cents/octave |
Augene (12 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨398.7516, 90.4599]
TE Step Tunings (cents)
⟨16.63629, 36.91183]
TE Tuning Map (cents)
⟨1196.255, 1903.298, 2791.261, 3370.933]
TE Mistunings (cents)
⟨-3.745, 1.343, 4.948, 2.107]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.430604 |
Adjusted Error |
6.253522 cents |
TE Error |
2.227549 cents/octave |
Augene (12 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 8 | 10 | ] |
⟨ | 0 | -1 | 0 | 2 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.5059, 88.4916]
TE Step Tunings (cents)
⟨43.95217, 44.53945]
TE Tuning Map (cents)
⟨1195.518, 1904.038, 2789.542, 3365.031, 4162.043]
TE Mistunings (cents)
⟨-4.482, 2.083, 3.228, -3.795, 10.725]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.445911 |
Adjusted Error |
9.177366 cents |
TE Error |
2.652854 cents/octave |
Augene (12f & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 5 | 7 | 8 | 10 | 11 | ] |
⟨ | 0 | -1 | 0 | 2 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.0750, 87.5631]
TE Step Tunings (cents)
⟨39.74070, 47.82244]
TE Tuning Map (cents)
⟨1194.225, 1902.812, 2786.525, 3359.726, 4155.876, 4466.388]
TE Mistunings (cents)
⟨-5.775, 0.857, 0.211, -9.100, 4.558, 25.860]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.330459 |
Adjusted Error |
14.703736 cents |
TE Error |
3.973511 cents/octave |
Augment (6 & 15)
Equal Temperament Mappings
| 2 | 5 | 7 | 11 | |
[ ⟨ | 6 | 14 | 17 | 21 | ] |
⟨ | 15 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7 | 11 | |
[ ⟨ | 3 | 7 | 9 | 11 | ] |
⟨ | 0 | 0 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.9320, 227.6656]
TE Step Tunings (cents)
⟨58.46790, 56.39924]
TE Tuning Map (cents)
⟨1196.796, 2792.524, 3362.722, 4160.586]
TE Mistunings (cents)
⟨-3.204, 6.210, -6.104, 9.268]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.490473 |
Adjusted Error |
9.366700 cents |
TE Error |
2.707583 cents/octave |
Augmented (12 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 15 | 24 | 35 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.0176, 93.1331]
TE Step Tunings (cents)
⟨66.64783, 26.48526]
TE Tuning Map (cents)
⟨1197.053, 1901.955, 2793.123]
TE Mistunings (cents)
⟨-2.947, -0.000, 6.810]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.894463 |
Adjusted Error |
5.573697 cents |
TE Error |
2.400461 cents/octave |
August (12 & 3d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 3 | 5 | 7 | 9 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.1285, 103.7628]
TE Step Tunings (cents)
⟨103.76281, -15.92276]
TE Tuning Map (cents)
⟨1197.385, 1891.880, 2793.899, 3384.631]
TE Mistunings (cents)
⟨-2.615, -10.075, 7.586, 15.805]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.013401 |
Adjusted Error |
13.287812 cents |
TE Error |
4.733214 cents/octave |
August (12 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 0 | -1 | 0 | -2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.9641, 107.2078]
TE Step Tunings (cents)
⟨77.34086, 29.86689]
TE Tuning Map (cents)
⟨1196.892, 1887.613, 2792.749, 3376.262, 4174.190]
TE Mistunings (cents)
⟨-3.108, -14.342, 6.435, 7.436, 22.872]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.952479 |
Adjusted Error |
18.944768 cents |
TE Error |
5.476266 cents/octave |
August (9 & 12f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | 12 | ] |
⟨ | 0 | -1 | 0 | -2 | -2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.1455, 110.9789]
TE Step Tunings (cents)
⟨44.77020, 66.20872]
TE Tuning Map (cents)
⟨1197.436, 1884.749, 2794.018, 3370.352, 4168.643, 4456.809]
TE Mistunings (cents)
⟨-2.564, -17.206, 7.705, 1.526, 17.325, 16.281]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.991753 |
Adjusted Error |
20.277733 cents |
TE Error |
5.479817 cents/octave |
Augustus (9 & 3de)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] |
⟨ | 0 | -1 | 0 | -2 | -2 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.5016, 114.7875]
TE Step Tunings (cents)
⟨114.78751, 56.13903]
TE Tuning Map (cents)
⟨1201.505, 1887.720, 2803.511, 3374.939, 4175.942, 4405.517]
TE Mistunings (cents)
⟨1.505, -14.235, 17.197, 6.113, 24.624, -35.010]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.966613 |
Adjusted Error |
25.400437 cents |
TE Error |
6.864167 cents/octave |
Avalokita (9 & 31 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 2 | -2 | 6 | ] |
⟨ | 0 | 1 | 0 | 1 | 1 | 1 | ] |
⟨ | 0 | 0 | 3 | -1 | 5 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.4359, 1901.2184, 929.4864]
TE Step Tunings (cents)
⟨-4.09866, 23.67349, 18.57206]
TE Tuning Map (cents)
⟨1198.436, 1901.218, 2788.459, 3368.604, 4151.779, 4444.402]
TE Mistunings (cents)
⟨-1.564, -0.737, 2.146, -0.222, 0.461, 3.874]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.200994 |
Adjusted Error |
3.252833 cents |
TE Error |
0.879040 cents/octave |
Avila (2c & 9)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1210.8952, 667.6000]
TE Step Tunings (cents)
⟨46.07541, 124.30493]
TE Tuning Map (cents)
⟨1210.895, 1878.495, 2794.705]
TE Mistunings (cents)
⟨10.895, -23.460, 8.391]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.090024 |
Adjusted Error |
25.110098 cents |
TE Error |
10.814331 cents/octave |
Baba (5 & 6)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 6 | 10 | 14 | 17 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1185.3594, 223.9379]
TE Step Tunings (cents)
⟨158.26804, 65.66987]
TE Tuning Map (cents)
⟨1185.359, 1922.843, 2818.595, 3332.140]
TE Mistunings (cents)
⟨-14.641, 20.888, 32.281, -36.686]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.770589 |
Adjusted Error |
38.494471 cents |
TE Error |
13.712007 cents/octave |
Baffin (270 & 130 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 13 | -9 | -1 | ] |
⟨ | 0 | 2 | 0 | -7 | 4 | 3 | ] |
⟨ | 0 | 0 | 1 | -2 | 4 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9633, 951.0591, 2786.6655]
TE Step Tunings (cents)
⟨4.00970, 0.80133, 0.15139]
TE Tuning Map (cents)
⟨1199.963, 1902.118, 2786.666, 3368.779, 4151.228, 4439.879]
TE Mistunings (cents)
⟨-0.037, 0.163, 0.352, -0.047, -0.090, -0.648]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.474843 |
Adjusted Error |
0.389683 cents |
TE Error |
0.105307 cents/octave |
Baldur (270 & 342 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 1 | 3 | 7 | ] |
⟨ | 0 | 2 | 1 | 1 | -2 | ] |
⟨ | 0 | 0 | 2 | 1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0149, 950.9717, 617.7007]
TE Step Tunings (cents)
⟨1.48800, 2.09277, 0.63495]
TE Tuning Map (cents)
⟨1200.030, 1901.943, 2786.388, 3368.717, 4151.263]
TE Mistunings (cents)
⟨0.030, -0.012, 0.074, -0.109, -0.055]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.395436 |
Adjusted Error |
0.094355 cents |
TE Error |
0.027275 cents/octave |
Baldy (6 & 47)
Equal Temperament Mappings
| 2 | 9 | 5 | 7 | 13 | |
[ ⟨ | 6 | 19 | 14 | 17 | 22 | ] |
⟨ | 47 | 149 | 109 | 132 | 174 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 5 | 7 | 13 | |
[ ⟨ | 1 | 3 | 3 | 4 | 2 | ] |
⟨ | 0 | 1 | -4 | -7 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0173, 204.0934]
TE Step Tunings (cents)
⟨7.75073, 24.54283]
TE Tuning Map (cents)
⟨1200.017, 3804.145, 2783.679, 3371.416, 4440.968]
TE Mistunings (cents)
⟨0.017, 0.235, -2.635, 2.590, 0.441]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.805532 |
Adjusted Error |
2.431655 cents |
TE Error |
0.657126 cents/octave |
Bamity (46 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | -1 | 3 | 3 | ] |
⟨ | 0 | 5 | 13 | 6 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.5062, 260.6129]
TE Step Tunings (cents)
⟨22.77169, 10.96533]
TE Tuning Map (cents)
⟨1201.012, 1903.571, 2787.462, 3365.196, 4147.035]
TE Mistunings (cents)
⟨1.012, 1.616, 1.148, -3.630, -4.283]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.599856 |
Adjusted Error |
3.632665 cents |
TE Error |
1.050076 cents/octave |
Bamity (46 & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 1 | -1 | 3 | 3 | 0 | ] |
⟨ | 0 | 5 | 13 | 6 | 9 | 17 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.3940, 260.7894]
TE Step Tunings (cents)
⟨24.34344, 5.78500]
TE Tuning Map (cents)
⟨1200.788, 1904.341, 2789.868, 3365.918, 4148.286, 4433.419]
TE Mistunings (cents)
⟨0.788, 2.386, 3.554, -2.908, -3.032, -7.108]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.577259 |
Adjusted Error |
4.955595 cents |
TE Error |
1.339191 cents/octave |
Baragon (5p & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 3 | 2 | ] |
⟨ | 0 | -2 | -8 | -1 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.1900, 251.4223]
TE Step Tunings (cents)
⟨27.73572, 55.92165]
TE Tuning Map (cents)
⟨1201.190, 1899.535, 2793.381, 3352.148, 4162.336]
TE Mistunings (cents)
⟨1.190, -2.420, 7.068, -16.678, 11.018]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.777895 |
Adjusted Error |
11.828081 cents |
TE Error |
3.419082 cents/octave |
Beatles (10 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.6420, 354.9082]
TE Step Tunings (cents)
⟨9.38502, 40.84414]
TE Tuning Map (cents)
⟨1196.642, 1906.458, 2789.036, 3366.935]
TE Mistunings (cents)
⟨-3.358, 4.503, 2.723, -1.891]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.913753 |
Adjusted Error |
6.459612 cents |
TE Error |
2.300960 cents/octave |
Beatles (27e & 10e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 10 | 16 | 23 | 28 | 34 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 5 | 4 | 10 | ] |
⟨ | 0 | 2 | -9 | -4 | -22 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.7188, 355.1661]
TE Step Tunings (cents)
⟨38.49540, 15.73431]
TE Tuning Map (cents)
⟨1196.719, 1907.051, 2787.099, 3366.211, 4153.534]
TE Mistunings (cents)
⟨-3.281, 5.096, 0.785, -2.615, 2.216]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.744763 |
Adjusted Error |
7.337961 cents |
TE Error |
2.121146 cents/octave |
Beatles (27e & 10e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 10 | 16 | 23 | 28 | 34 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 5 | 4 | 10 | 4 | ] |
⟨ | 0 | 2 | -9 | -4 | -22 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.2728, 355.4198]
TE Step Tunings (cents)
⟨37.62035, 18.15235]
TE Tuning Map (cents)
⟨1197.273, 1908.112, 2787.586, 3367.412, 4153.492, 4433.671]
TE Mistunings (cents)
⟨-2.727, 6.157, 1.272, -1.414, 2.174, -6.856]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.594053 |
Adjusted Error |
7.836987 cents |
TE Error |
2.117853 cents/octave |
Beatles (17 & 10)
Contorted
Archy (order 2)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 17 | 27 | 48 | ] |
⟨ | 10 | 16 | 28 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.9667, 353.7641]
TE Step Tunings (cents)
⟨53.25871, 29.15686]
TE Tuning Map (cents)
⟨1196.967, 1904.495, 3372.810]
TE Mistunings (cents)
⟨-3.033, 2.540, 3.984]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.100288 |
Adjusted Error |
6.017469 cents |
TE Error |
2.143466 cents/octave |
Beep (5 & 4)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 4 | 6 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | -2 | -3 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1204.7939, 264.4470]
TE Step Tunings (cents)
⟨147.00609, 117.44087]
TE Tuning Map (cents)
⟨1204.794, 1880.694, 2821.041, 3349.935]
TE Mistunings (cents)
⟨4.794, -21.261, 34.727, -18.891]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.561466 |
Adjusted Error |
30.492203 cents |
TE Error |
10.861542 cents/octave |
Belauensis (15 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |
⟨ | 0 | -6 | -10 | -3 | -8 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1112, 81.6981]
TE Step Tunings (cents)
⟨55.33716, 26.36099]
TE Tuning Map (cents)
⟨1199.111, 1908.033, 2780.352, 3352.239, 4142.860, 4469.652]
TE Mistunings (cents)
⟨-0.889, 6.078, -5.962, -16.587, -8.458, 29.124]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.543188 |
Adjusted Error |
16.884867 cents |
TE Error |
4.562935 cents/octave |
Belobog (31 & 118 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -3 | -9 | ] |
⟨ | 0 | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 0 | 2 | 5 | 8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0100, 1901.7272, 1393.5621]
TE Step Tunings (cents)
⟨-0.79097, 4.90475, 4.96746]
TE Tuning Map (cents)
⟨1200.010, 1901.727, 2787.124, 3367.780, 4151.861]
TE Mistunings (cents)
⟨0.010, -0.228, 0.810, -1.046, 0.543]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.275327 |
Adjusted Error |
0.855713 cents |
TE Error |
0.247357 cents/octave |
Benediction (72 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | 7 | ] |
⟨ | 0 | 6 | -7 | -2 | 15 | -34 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8613, 116.6573]
TE Step Tunings (cents)
⟨13.79135, 6.70593]
TE Tuning Map (cents)
⟨1200.861, 1900.805, 2785.983, 3369.269, 4151.582, 4439.682]
TE Mistunings (cents)
⟨0.861, -1.150, -0.331, 0.443, 0.264, -0.846]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.530301 |
Adjusted Error |
1.769289 cents |
TE Error |
0.478129 cents/octave |
Beyla (72 & 46 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 1 | 6 | ] |
⟨ | 0 | 1 | 0 | 7 | -6 | ] |
⟨ | 0 | 0 | 1 | -4 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4711, 1901.8589, 2786.2710]
TE Step Tunings (cents)
⟨11.42917, 5.50475, 2.34627]
TE Tuning Map (cents)
⟨1200.471, 1901.859, 2786.271, 3368.399, 4150.486]
TE Mistunings (cents)
⟨0.471, -0.096, -0.043, -0.426, -0.832]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.294305 |
Adjusted Error |
0.856985 cents |
TE Error |
0.247724 cents/octave |
Beyla (72 & 53 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 1 | 6 | 2 | ] |
⟨ | 0 | 1 | 0 | 7 | -6 | 4 | ] |
⟨ | 0 | 0 | 1 | -4 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6842, 1902.1037, 2786.4383]
TE Step Tunings (cents)
⟨11.00132, 4.23198, 4.00639]
TE Tuning Map (cents)
⟨1200.684, 1902.104, 2786.438, 3369.657, 4150.798, 4436.906]
TE Mistunings (cents)
⟨0.684, 0.149, 0.125, 0.831, -0.520, -3.621]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.254842 |
Adjusted Error |
1.879339 cents |
TE Error |
0.507869 cents/octave |
Bidia (12 & 68)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 68 | 108 | 158 | 191 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 4 | 6 | 10 | 13 | ] |
⟨ | 0 | 1 | -2 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨299.6892, 105.2547]
TE Step Tunings (cents)
⟨8.80551, 16.07486]
TE Tuning Map (cents)
⟨1198.757, 1903.390, 2786.382, 3369.686]
TE Mistunings (cents)
⟨-1.243, 1.435, 0.069, 0.860]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.637277 |
Adjusted Error |
2.201545 cents |
TE Error |
0.784206 cents/octave |
Bidia (12 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 10 | 13 | 17 | ] |
⟨ | 0 | 1 | -2 | -5 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨299.6816, 104.9750]
TE Step Tunings (cents)
⟨-1.72956, 15.24351]
TE Tuning Map (cents)
⟨1198.726, 1903.064, 2786.866, 3370.985, 4149.811]
TE Mistunings (cents)
⟨-1.274, 1.109, 0.552, 2.159, -1.507]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.678051 |
Adjusted Error |
2.657295 cents |
TE Error |
0.768130 cents/octave |
Bidia (80 & 68p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] |
⟨ | 68 | 108 | 158 | 191 | 235 | 252 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 4 | 6 | 10 | 13 | 17 | 12 | ] |
⟨ | 0 | 1 | -2 | -5 | -9 | 8 | ] ⟩ |
TE Generator Tunings (cents)
⟨299.7546, 105.2148]
TE Step Tunings (cents)
⟨9.87565, 6.01421]
TE Tuning Map (cents)
⟨1199.018, 1903.742, 2787.116, 3370.735, 4148.894, 4438.773]
TE Mistunings (cents)
⟨-0.982, 1.787, 0.802, 1.909, -2.423, -1.754]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.277362 |
Adjusted Error |
2.839498 cents |
TE Error |
0.767341 cents/octave |
Big Brother (31 & 22 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 3 | 1 | 3 | ] |
⟨ | 0 | 1 | 3 | 2 | 2 | ] |
⟨ | 0 | 0 | 4 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6614, 1900.9273, -1629.4372]
TE Step Tunings (cents)
⟨28.53864, 14.04610, 0.49639]
TE Tuning Map (cents)
⟨1200.661, 1900.927, 2787.017, 3373.079, 4144.965]
TE Mistunings (cents)
⟨0.661, -1.028, 0.704, 4.253, -6.353]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.138268 |
Adjusted Error |
3.979912 cents |
TE Error |
1.150452 cents/octave |
Big Brother (9 & 31 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 3 | 1 | 3 | 1 | ] |
⟨ | 0 | 1 | 3 | 2 | 2 | 0 | ] |
⟨ | 0 | 0 | 4 | 1 | 2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0299, 1899.0270, -1626.0667]
TE Step Tunings (cents)
⟨1.61065, 35.19272, 11.69498]
TE Tuning Map (cents)
⟨1199.030, 1899.027, 2789.904, 3371.017, 4143.010, 4451.163]
TE Mistunings (cents)
⟨-0.970, -2.928, 3.590, 2.191, -8.308, 10.636]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.140616 |
Adjusted Error |
6.985503 cents |
TE Error |
1.887749 cents/octave |
Big Brother (8d & 9p & 22f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | 33 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | 37 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 82 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 3 | 1 | 3 | 1 | 5 | ] |
⟨ | 0 | 1 | 3 | 2 | 2 | 0 | 2 | ] |
⟨ | 0 | 0 | 4 | 1 | 2 | -2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.2279, 1899.5511, -1626.2018]
TE Step Tunings (cents)
⟨13.89434, 33.03111, 35.89969]
TE Tuning Map (cents)
⟨1198.228, 1899.551, 2788.530, 3371.128, 4141.382, 4450.631, 4911.636]
TE Mistunings (cents)
⟨-1.772, -2.404, 2.216, 2.302, -9.936, 10.104, 6.681]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.136847 |
Adjusted Error |
7.786086 cents |
TE Error |
1.904870 cents/octave |
Bikleismic (72 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 6 | 7 | 16 | 14 | ] |
⟨ | 0 | -6 | -5 | -22 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2679, 283.4052]
TE Step Tunings (cents)
⟨15.74582, 1.96578]
TE Tuning Map (cents)
⟨1200.536, 1901.176, 2784.849, 3369.371, 4152.672]
TE Mistunings (cents)
⟨0.536, -0.779, -1.465, 0.545, 1.354]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.180329 |
Adjusted Error |
1.635451 cents |
TE Error |
0.472751 cents/octave |
Bikleismic (72 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 6 | 7 | 16 | 14 | 14 | ] |
⟨ | 0 | -6 | -5 | -22 | -15 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.3591, 283.4434]
TE Step Tunings (cents)
⟨15.66468, 2.14298]
TE Tuning Map (cents)
⟨1200.718, 1901.494, 2785.297, 3369.991, 4153.377, 4436.820]
TE Mistunings (cents)
⟨0.718, -0.461, -1.017, 1.165, 2.059, -3.707]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.729773 |
Adjusted Error |
2.302235 cents |
TE Error |
0.622152 cents/octave |
Bimeantone (12 & 38d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 4 | 4 | 5 | ] |
⟨ | 0 | 1 | 4 | 10 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.7547, 96.1370]
TE Step Tunings (cents)
⟨24.33851, 23.93282]
TE Tuning Map (cents)
⟨1201.509, 1898.401, 2787.567, 3364.388, 4157.417]
TE Mistunings (cents)
⟨1.509, -3.554, 1.253, -4.437, 6.099]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.890883 |
Adjusted Error |
5.621786 cents |
TE Error |
1.625060 cents/octave |
Bimeantone (12f & 38df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 4 | 4 | 5 | 5 | ] |
⟨ | 0 | 1 | 4 | 10 | 12 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.8369, 95.9701]
TE Step Tunings (cents)
⟨20.92134, 25.01626]
TE Tuning Map (cents)
⟨1201.674, 1898.481, 2787.228, 3363.049, 4155.826, 4443.736]
TE Mistunings (cents)
⟨1.674, -3.474, 0.914, -5.777, 4.508, 3.209]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.096330 |
Adjusted Error |
5.741857 cents |
TE Error |
1.551669 cents/octave |
Bipelog (14c & 2p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 14 | 22 | 32 | 39 | ] |
⟨ | 2 | 3 | 5 | 6 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨603.8104, 81.7111]
TE Step Tunings (cents)
⟨81.71107, 31.83293]
TE Tuning Map (cents)
⟨1207.621, 1893.142, 2773.919, 3377.729]
TE Mistunings (cents)
⟨7.621, -8.813, -12.395, 8.903]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.558956 |
Adjusted Error |
15.852662 cents |
TE Error |
5.646832 cents/octave |
Bipelog (14c & 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |
⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 6 | 7 | ] |
⟨ | 0 | 1 | -3 | -3 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨604.0123, 81.8231]
TE Step Tunings (cents)
⟨81.82311, 31.25056]
TE Tuning Map (cents)
⟨1208.025, 1893.860, 2774.592, 3378.605, 4146.263]
TE Mistunings (cents)
⟨8.025, -8.095, -11.721, 9.779, -5.055]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.398558 |
Adjusted Error |
17.655407 cents |
TE Error |
5.103557 cents/octave |
Birds (31 & 217)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 217 | 344 | 504 | 609 | 751 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 0 | 1 | 0 | 0 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨38.7101, 4.9378]
TE Step Tunings (cents)
⟨4.14573, 4.93776]
TE Tuning Map (cents)
⟨1200.012, 1901.731, 2787.124, 3367.775, 4151.852]
TE Mistunings (cents)
⟨0.012, -0.224, 0.811, -1.051, 0.534]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.195381 |
Adjusted Error |
0.855738 cents |
TE Error |
0.247364 cents/octave |
Birds (31 & 217)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 217 | 344 | 504 | 609 | 751 | 803 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 0 | 1 | 0 | 0 | 2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨38.7074, 5.1699]
TE Step Tunings (cents)
⟨2.51776, 5.16995]
TE Tuning Map (cents)
⟨1199.930, 1901.833, 2786.933, 3367.544, 4152.032, 4441.012]
TE Mistunings (cents)
⟨-0.070, -0.122, 0.619, -1.282, 0.714, 0.484]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.335455 |
Adjusted Error |
0.894060 cents |
TE Error |
0.241609 cents/octave |
Birugugu (31 & 27 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 27 | 43 | 63 | 76 | ] |
⟨ | 7 | 11 | 16 | 20 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 0 | 6 | ] |
⟨ | 0 | 2 | 0 | 5 | ] |
⟨ | 0 | 0 | 1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1808, 350.6521, 2788.8375]
TE Step Tunings (cents)
⟨23.44414, 16.37959, 4.30910]
TE Tuning Map (cents)
⟨1199.181, 1900.485, 2788.837, 3370.671]
TE Mistunings (cents)
⟨-0.819, -1.470, 2.524, 1.845]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.183325 |
Adjusted Error |
2.489043 cents |
TE Error |
0.886615 cents/octave |
Biruyo (12 & 10 & 4)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 4 | 6 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 0 | 0 | 1 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.6767, 1901.9550, 2779.3415]
TE Step Tunings (cents)
⟨58.66777, 44.25715, 13.19215]
TE Tuning Map (cents)
⟨1199.353, 1901.955, 2779.341, 3379.018]
TE Mistunings (cents)
⟨-0.647, 0.000, -6.972, 10.192]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.088983 |
Adjusted Error |
6.675330 cents |
TE Error |
2.377800 cents/octave |
Biruyo Nowa (6 & 10)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨599.6767, 219.0420]
TE Step Tunings (cents)
⟨104.14339, 57.44931]
TE Tuning Map (cents)
⟨1199.353, 2779.341, 3379.018]
TE Mistunings (cents)
⟨-0.647, -6.972, 10.192]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.376091 |
Adjusted Error |
7.708007 cents |
TE Error |
2.745647 cents/octave |
Bischismic (130 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 130 | 206 | 302 | 365 | ] |
⟨ | 118 | 187 | 274 | 331 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 3 | 6 | 9 | ] |
⟨ | 0 | 1 | -8 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0073, 101.5934]
TE Step Tunings (cents)
⟨6.06330, 3.48971]
TE Tuning Map (cents)
⟨1200.015, 1901.615, 2787.297, 3368.198]
TE Mistunings (cents)
⟨0.015, -0.340, 0.983, -0.628]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.190909 |
Adjusted Error |
0.736645 cents |
TE Error |
0.262398 cents/octave |
Bischismic (118 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 6 | 9 | 12 | ] |
⟨ | 0 | 1 | -8 | -20 | -30 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0167, 101.6151]
TE Step Tunings (cents)
⟨4.79523, 4.87843]
TE Tuning Map (cents)
⟨1200.033, 1901.665, 2787.180, 3367.849, 4151.748]
TE Mistunings (cents)
⟨0.033, -0.290, 0.866, -0.977, 0.430]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.427004 |
Adjusted Error |
0.861705 cents |
TE Error |
0.249089 cents/octave |
Bischismic (130 & 118p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | 437 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 6 | 9 | 12 | 3 | ] |
⟨ | 0 | 1 | -8 | -20 | -30 | 26 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9612, 101.5835]
TE Step Tunings (cents)
⟨6.18631, 3.35341]
TE Tuning Map (cents)
⟨1199.922, 1901.467, 2787.099, 3367.981, 4152.030, 4441.054]
TE Mistunings (cents)
⟨-0.078, -0.488, 0.785, -0.845, 0.712, 0.526]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.495950 |
Adjusted Error |
0.916952 cents |
TE Error |
0.247795 cents/octave |
Bisector (22 & 46 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | 0 | 3 | ] |
⟨ | 0 | 1 | 1 | 2 | 1 | ] |
⟨ | 0 | 0 | 2 | -1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.3116, 1904.0766, 441.3351]
TE Step Tunings (cents)
⟨6.82710, 20.24018, 8.52704]
TE Tuning Map (cents)
⟨1200.623, 1904.077, 2786.747, 3366.818, 4146.346]
TE Mistunings (cents)
⟨0.623, 2.122, 0.433, -2.008, -4.972]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.200323 |
Adjusted Error |
3.386583 cents |
TE Error |
0.978942 cents/octave |
Bisemidim (58 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 50 | 79 | 116 | 140 | 173 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | 2 | 2 | 5 | ] |
⟨ | 0 | 9 | 11 | 15 | 8 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.6377, 144.5392]
TE Step Tunings (cents)
⟨15.65377, 5.82713]
TE Tuning Map (cents)
⟨1199.275, 1900.490, 2789.207, 3367.363, 4154.502]
TE Mistunings (cents)
⟨-0.725, -1.465, 2.893, -1.463, 3.184]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.317080 |
Adjusted Error |
3.113358 cents |
TE Error |
0.899962 cents/octave |
Bisemidim (58 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 1 | 2 | 2 | 5 | 5 | ] |
⟨ | 0 | 9 | 11 | 15 | 8 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.5236, 144.5379]
TE Step Tunings (cents)
⟨21.37192, -5.06551]
TE Tuning Map (cents)
⟨1199.047, 1900.365, 2788.964, 3367.116, 4153.921, 4442.997]
TE Mistunings (cents)
⟨-0.953, -1.590, 2.651, -1.710, 2.603, 2.469]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.999952 |
Adjusted Error |
3.240153 cents |
TE Error |
0.875613 cents/octave |
Bisesqui (342 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 2 | 14 | 10 | 23 | ] |
⟨ | 0 | 4 | -32 | -15 | -55 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0429, 175.4474]
TE Step Tunings (cents)
⟨3.26928, 0.63070]
TE Tuning Map (cents)
⟨1200.086, 1901.875, 2786.282, 3368.717, 4151.377]
TE Mistunings (cents)
⟨0.086, -0.080, -0.032, -0.109, 0.059]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.596803 |
Adjusted Error |
0.168374 cents |
TE Error |
0.048671 cents/octave |
Bison (130 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 130 | 206 | 302 | 365 | ] |
⟨ | 46 | 73 | 107 | 129 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 5 | 7 | 3 | ] |
⟨ | 0 | -7 | -9 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9415, 156.9093]
TE Step Tunings (cents)
⟨9.26559, -0.10096]
TE Tuning Map (cents)
⟨1199.883, 1901.342, 2787.406, 3368.918]
TE Mistunings (cents)
⟨-0.117, -0.613, 1.093, 0.092]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.452257 |
Adjusted Error |
0.871822 cents |
TE Error |
0.310549 cents/octave |
Bison (46 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 5 | 7 | 3 | 3 | ] |
⟨ | 0 | -7 | -9 | 10 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8778, 156.8512]
TE Step Tunings (cents)
⟨2.59706, 8.30993]
TE Tuning Map (cents)
⟨1199.756, 1901.431, 2787.484, 3368.145, 4152.401]
TE Mistunings (cents)
⟨-0.244, -0.524, 1.170, -0.681, 1.083]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.267152 |
Adjusted Error |
1.178230 cents |
TE Error |
0.340585 cents/octave |
Bison (130 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 5 | 7 | 3 | 3 | 4 | ] |
⟨ | 0 | -7 | -9 | 10 | 15 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9164, 156.8818]
TE Step Tunings (cents)
⟨8.78361, 1.26009]
TE Tuning Map (cents)
⟨1199.833, 1901.409, 2787.478, 3368.567, 4152.976, 4439.129]
TE Mistunings (cents)
⟨-0.167, -0.546, 1.165, -0.259, 1.659, -1.398]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.153599 |
Adjusted Error |
1.333589 cents |
TE Error |
0.360387 cents/octave |
Bisupermajor (140 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 140 | 222 | 325 | 393 | ] |
⟨ | 118 | 187 | 274 | 331 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.0295, 162.8141]
TE Step Tunings (cents)
⟨5.56063, 3.57264]
TE Tuning Map (cents)
⟨1200.059, 1902.542, 2786.107, 3367.870]
TE Mistunings (cents)
⟨0.059, 0.587, -0.207, -0.956]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.837741 |
Adjusted Error |
0.722428 cents |
TE Error |
0.257334 cents/octave |
Bisupermajor (118 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | 6 | 1 | 8 | ] |
⟨ | 0 | 8 | -5 | 17 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.1226, 162.8066]
TE Step Tunings (cents)
⟨9.49529, 3.62732]
TE Tuning Map (cents)
⟨1200.245, 1902.575, 2786.703, 3367.835, 4149.755]
TE Mistunings (cents)
⟨0.245, 0.620, 0.389, -0.991, -1.563]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.690287 |
Adjusted Error |
1.168345 cents |
TE Error |
0.337727 cents/octave |
Blackbirds (4 & 20)
Equal Temperament Mappings
| 2 | 11 | 13 | |
[ ⟨ | 4 | 14 | 15 | ] |
⟨ | 20 | 69 | 74 | ] ⟩ |
Reduced Mapping
| 2 | 11 | 13 | |
[ ⟨ | 4 | 14 | 15 | ] |
⟨ | 0 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨299.9738, 53.3351]
TE Step Tunings (cents)
⟨33.29812, 53.33513]
TE Tuning Map (cents)
⟨1199.895, 4146.298, 4446.272]
TE Mistunings (cents)
⟨-0.105, -5.020, 5.744]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.528257 |
Adjusted Error |
4.545285 cents |
TE Error |
1.228309 cents/octave |
Blacksmith (5 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 10 | 16 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 0 | 0 | -1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.4454, 87.0309]
TE Step Tunings (cents)
⟨65.38349, 87.03095]
TE Tuning Map (cents)
⟨1197.227, 1915.563, 2786.314, 3352.235]
TE Mistunings (cents)
⟨-2.773, 13.608, -0.000, -16.590]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.934589 |
Adjusted Error |
15.139493 cents |
TE Error |
5.392796 cents/octave |
Blacksmith (5p & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |
⟨ | 0 | 0 | -1 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.3606, 84.8252]
TE Step Tunings (cents)
⟨-15.11509, 84.82522]
TE Tuning Map (cents)
⟨1196.803, 1914.885, 2787.502, 3351.048, 4153.955]
TE Mistunings (cents)
⟨-3.197, 12.930, 1.188, -17.778, 2.637]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.154217 |
Adjusted Error |
16.785469 cents |
TE Error |
4.852089 cents/octave |
Blacksmith (10p & 5p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 11 | 14 | 18 | 18 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.2112, 150.5402]
TE Step Tunings (cents)
⟨88.67103, 61.86918]
TE Tuning Map (cents)
⟨1196.056, 1913.690, 2781.864, 3348.957, 4155.262, 4456.343]
TE Mistunings (cents)
⟨-3.944, 11.735, -4.450, -19.869, 3.944, 15.815]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.147218 |
Adjusted Error |
18.109343 cents |
TE Error |
4.893835 cents/octave |
Blacksmith-Farrier (5e & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |
⟨ | 0 | 0 | -1 | 0 | -2 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.2234, 82.9185]
TE Step Tunings (cents)
⟨-9.53216, 82.91852]
TE Tuning Map (cents)
⟨1196.117, 1913.787, 2787.762, 3349.128, 4140.184, 4462.326]
TE Mistunings (cents)
⟨-3.883, 11.832, 1.449, -19.698, -11.134, 21.799]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.158584 |
Adjusted Error |
19.434078 cents |
TE Error |
5.251829 cents/octave |
Blackwood (5 & 15)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨238.8615, 80.0247]
TE Step Tunings (cents)
⟨-1.21269, 80.02474]
TE Tuning Map (cents)
⟨1194.308, 1910.892, 2786.314]
TE Mistunings (cents)
⟨-5.692, 8.937, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.019941 |
Adjusted Error |
10.741151 cents |
TE Error |
4.625962 cents/octave |
Blair (9 & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 3 | 1 | 3 | 3 | ] |
⟨ | 0 | 7 | -3 | 8 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.8377, 271.7161]
TE Step Tunings (cents)
⟨31.43415, 41.76956]
TE Tuning Map (cents)
⟨1201.838, 1902.013, 2790.365, 3375.567, 4148.945, 4420.661]
TE Mistunings (cents)
⟨1.838, 0.058, 4.051, 6.741, -2.373, -19.866]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.879107 |
Adjusted Error |
9.729646 cents |
TE Error |
2.629322 cents/octave |
Blair (9 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 31 | 33 | ] |
⟨ | 22 | 35 | 51 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 1 | 0 | 3 | 3 | 3 | ] |
⟨ | 0 | 7 | -3 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.0868, 272.0305]
TE Step Tunings (cents)
⟨25.76238, 44.10115]
TE Tuning Map (cents)
⟨1202.087, 1904.214, 2790.169, 4150.321, 4422.352]
TE Mistunings (cents)
⟨2.087, 2.259, 3.855, -0.997, -18.176]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.898921 |
Adjusted Error |
9.556963 cents |
TE Error |
2.582656 cents/octave |
Bleu (17 & 9)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 48 | 59 | 63 | ] |
⟨ | 9 | 14 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | 5 | 7 | 4 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.9922, 139.8722]
TE Step Tunings (cents)
⟨59.85795, 20.15633]
TE Tuning Map (cents)
⟨1198.992, 1898.353, 3377.090, 4156.465, 4436.210]
TE Mistunings (cents)
⟨-1.008, -3.602, 8.264, 5.148, -4.318]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.090525 |
Adjusted Error |
7.102627 cents |
TE Error |
1.919401 cents/octave |
Bluebird (15 & 31 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | -5 | 9 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | 4 | ] |
⟨ | 0 | 0 | 1 | 3 | 5 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.7194, 1900.3688, 2789.3582]
TE Step Tunings (cents)
⟨-1.78755, 22.96145, 19.02696]
TE Tuning Map (cents)
⟨1198.719, 1900.369, 2789.358, 3368.618, 4152.456, 4443.159]
TE Mistunings (cents)
⟨-1.281, -1.586, 3.045, -0.208, 1.138, 2.632]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.198683 |
Adjusted Error |
3.371291 cents |
TE Error |
0.911052 cents/octave |
Bluebirds (13 & 33)
Equal Temperament Mappings
| 2 | 11 | 13 | |
[ ⟨ | 13 | 45 | 48 | ] |
⟨ | 33 | 114 | 122 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8805, 182.5019]
TE Step Tunings (cents)
⟨18.15966, 29.23651]
TE Tuning Map (cents)
⟨1200.880, 4150.147, 4438.518]
TE Mistunings (cents)
⟨0.880, -1.171, -2.009]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.579391 |
Adjusted Error |
2.325390 cents |
TE Error |
0.628409 cents/octave |
Bohpier (41 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 0 | ] |
⟨ | 0 | 13 | 19 | 23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0000, 146.4741]
TE Step Tunings (cents)
⟨28.20745, 5.43680]
TE Tuning Map (cents)
⟨1200.000, 1904.163, 2783.007, 3368.904]
TE Mistunings (cents)
⟨-0.000, 2.208, -3.306, 0.078]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.547488 |
Adjusted Error |
2.796469 cents |
TE Error |
0.996122 cents/octave |
Bohpier (41 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 0 | 2 | ] |
⟨ | 0 | 13 | 19 | 23 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2362, 146.4513]
TE Step Tunings (cents)
⟨27.62576, 8.32252]
TE Tuning Map (cents)
⟨1199.236, 1903.867, 2782.575, 3368.380, 4155.888]
TE Mistunings (cents)
⟨-0.764, 1.912, -3.739, -0.446, 4.570]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.350742 |
Adjusted Error |
3.914501 cents |
TE Error |
1.131545 cents/octave |
Bohpier (41 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 0 | 2 | 2 | ] |
⟨ | 0 | 13 | 19 | 23 | 12 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5564, 146.4263]
TE Step Tunings (cents)
⟨27.14604, 10.69610]
TE Tuning Map (cents)
⟨1198.556, 1903.542, 2782.100, 3367.805, 4154.228, 4447.081]
TE Mistunings (cents)
⟨-1.444, 1.587, -4.214, -1.021, 2.911, 6.553]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.135445 |
Adjusted Error |
4.861676 cents |
TE Error |
1.313810 cents/octave |
Borneo (270 & 72 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 0 | 0 | 4 | 8 | -3 | ] |
⟨ | 0 | 2 | 0 | -4 | 1 | 3 | ] |
⟨ | 0 | 0 | 1 | 2 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0003, 951.0850, 2786.5833]
TE Step Tunings (cents)
⟨4.32231, 0.42081, 0.03080]
TE Tuning Map (cents)
⟨1200.001, 1902.170, 2786.583, 3368.827, 4151.087, 4439.838]
TE Mistunings (cents)
⟨0.001, 0.215, 0.270, 0.002, -0.231, -0.690]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.445227 |
Adjusted Error |
0.402874 cents |
TE Error |
0.108872 cents/octave |
Borwell (31 & 75e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 75 | 119 | 174 | 211 | 260 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 7 | 0 | 9 | 17 | ] |
⟨ | 0 | -14 | 6 | -16 | -35 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0213, 464.2560]
TE Step Tunings (cents)
⟨18.58372, 8.31901]
TE Tuning Map (cents)
⟨1200.021, 1900.565, 2785.536, 3372.095, 4151.401]
TE Mistunings (cents)
⟨0.021, -1.390, -0.778, 3.270, 0.084]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.942850 |
Adjusted Error |
2.314885 cents |
TE Error |
0.669152 cents/octave |
Bosonic (130 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 26 | 41 | 60 | 73 | 90 | ] |
⟨ | 0 | 1 | 2 | 0 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨46.1443, 9.2497]
TE Step Tunings (cents)
⟨9.24973, -0.10434]
TE Tuning Map (cents)
⟨1199.753, 1901.167, 2787.159, 3368.536, 4152.989]
TE Mistunings (cents)
⟨-0.247, -0.788, 0.845, -0.290, 1.672]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.692850 |
Adjusted Error |
1.280485 cents |
TE Error |
0.370143 cents/octave |
Bosonic (130 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] |
⟨ | 0 | 1 | 2 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨46.1469, 9.2373]
TE Step Tunings (cents)
⟨9.23730, -0.03955]
TE Tuning Map (cents)
⟨1199.820, 1901.262, 2787.291, 3368.726, 4153.224, 4439.343]
TE Mistunings (cents)
⟨-0.180, -0.693, 0.977, -0.099, 1.906, -1.184]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.852046 |
Adjusted Error |
1.358006 cents |
TE Error |
0.366985 cents/octave |
Bossier (37 & 20)
Equal Temperament Mappings
| 2 | 7 | 11 | 13 | |
[ ⟨ | 37 | 104 | 128 | 137 | ] |
⟨ | 20 | 56 | 69 | 74 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.8676, 421.2626]
TE Step Tunings (cents)
⟨26.17856, 11.56305]
TE Tuning Map (cents)
⟨1199.868, 3370.101, 4148.706, 4442.128]
TE Mistunings (cents)
⟨-0.132, 1.275, -2.612, 1.600]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.138138 |
Adjusted Error |
1.832499 cents |
TE Error |
0.495211 cents/octave |
Brahmagupta (441 & 1106)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 441 | 699 | 1024 | 1238 | ] |
⟨ | 1106 | 1753 | 2568 | 3105 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 20 | ] |
⟨ | 0 | 3 | 8 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨171.4275, 5.4299]
TE Step Tunings (cents)
⟨0.78600, 0.77158]
TE Tuning Map (cents)
⟨1199.993, 1901.992, 2786.280, 3368.822]
TE Mistunings (cents)
⟨-0.007, 0.037, -0.034, -0.004]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
19.266779 |
Adjusted Error |
0.040461 cents |
TE Error |
0.014412 cents/octave |
Brahmagupta (224 & 217)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | ] |
⟨ | 217 | 344 | 504 | 609 | 751 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |
⟨ | 0 | 3 | 8 | -11 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨171.4208, 5.4184]
TE Step Tunings (cents)
⟨3.45056, 1.96783]
TE Tuning Map (cents)
⟨1199.945, 1901.884, 2786.079, 3368.813, 4152.027]
TE Mistunings (cents)
⟨-0.055, -0.071, -0.234, -0.013, 0.709]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
17.855458 |
Adjusted Error |
0.370160 cents |
TE Error |
0.107000 cents/octave |
breed (171 & 99 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 130 | 206 | 302 | 365 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 1 | 2 | ] |
⟨ | 0 | 2 | 1 | 1 | ] |
⟨ | 0 | 0 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0206, 350.9724, 617.6826]
TE Step Tunings (cents)
⟨5.72522, 1.77208, 0.35056]
TE Tuning Map (cents)
⟨1200.021, 1901.965, 2786.358, 3368.696]
TE Mistunings (cents)
⟨0.021, 0.010, 0.044, -0.130]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.160134 |
Adjusted Error |
0.076486 cents |
TE Error |
0.027245 cents/octave |
Bridgetown (29 & 5)
Equal Temperament Mappings
| 2 | 3 | 11/5 | 13/5 | |
[ ⟨ | 29 | 46 | 33 | 40 | ] |
⟨ | 5 | 8 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 11/5 | 13/5 | |
[ ⟨ | 1 | 2 | 3 | 2 | ] |
⟨ | 0 | -2 | -9 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5045, 248.1827]
TE Step Tunings (cents)
⟨41.40893, -0.27087]
TE Tuning Map (cents)
⟨1199.505, 1902.644, 1364.869, 1654.461]
TE Mistunings (cents)
⟨-0.495, 0.689, -0.135, 0.247]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
3.031205 |
Adjusted Error |
0.549309 cents |
TE Error |
0.346575 cents/octave |
Bug (5 & 4)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0000, 260.3879]
TE Step Tunings (cents)
⟨158.44830, 101.93963]
TE Tuning Map (cents)
⟨1200.000, 1879.224, 2818.836]
TE Mistunings (cents)
⟨0.000, -22.731, 32.523]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.601999 |
Adjusted Error |
26.873841 cents |
TE Error |
11.573933 cents/octave |
Bunya (41 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 34 | 54 | 79 | 96 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.3025, 175.7849]
TE Step Tunings (cents)
⟨24.82512, 5.36684]
TE Tuning Map (cents)
⟨1200.302, 1903.442, 2782.367, 3370.105]
TE Mistunings (cents)
⟨0.302, 1.487, -3.947, 1.279]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.384711 |
Adjusted Error |
2.831516 cents |
TE Error |
1.008606 cents/octave |
Bunya (41 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | -1 | 2 | ] |
⟨ | 0 | 4 | 9 | 26 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7543, 175.7411]
TE Step Tunings (cents)
⟨23.57543, 6.85770]
TE Tuning Map (cents)
⟨1199.754, 1902.718, 2781.424, 3369.513, 4156.919]
TE Mistunings (cents)
⟨-0.246, 0.763, -4.890, 0.687, 5.601]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.056377 |
Adjusted Error |
4.211139 cents |
TE Error |
1.217292 cents/octave |
Bunya (41 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | -1 | 2 | 4 | ] |
⟨ | 0 | 4 | 9 | 26 | 10 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1124, 175.7557]
TE Step Tunings (cents)
⟨19.86803, 11.30951]
TE Tuning Map (cents)
⟨1199.112, 1902.135, 2780.914, 3370.536, 4155.782, 4444.938]
TE Mistunings (cents)
⟨-0.888, 0.180, -5.400, 1.710, 4.464, 4.411]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.210337 |
Adjusted Error |
4.696797 cents |
TE Error |
1.269254 cents/octave |
Buzzard (53 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 58 | 92 | 135 | 163 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | -6 | 4 | ] |
⟨ | 0 | 4 | 21 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3071, 475.3615]
TE Step Tunings (cents)
⟨13.09808, 8.70878]
TE Tuning Map (cents)
⟨1199.307, 1901.446, 2786.748, 3371.144]
TE Mistunings (cents)
⟨-0.693, -0.509, 0.435, 2.318]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.931326 |
Adjusted Error |
1.600518 cents |
TE Error |
0.570116 cents/octave |
Buzzard (58 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | -6 | 4 | -12 | ] |
⟨ | 0 | 4 | 21 | -3 | 39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2531, 475.4043]
TE Step Tunings (cents)
⟨12.11401, 9.37058]
TE Tuning Map (cents)
⟨1199.253, 1901.617, 2787.972, 3370.799, 4149.731]
TE Mistunings (cents)
⟨-0.747, -0.338, 1.658, 1.973, -1.587]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.934398 |
Adjusted Error |
2.085980 cents |
TE Error |
0.602983 cents/octave |
Buzzard (58 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | -6 | 4 | -12 | -7 | ] |
⟨ | 0 | 4 | 21 | -3 | 39 | 27 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2406, 475.3962]
TE Step Tunings (cents)
⟨11.94566, 9.55457]
TE Tuning Map (cents)
⟨1199.241, 1901.585, 2787.877, 3370.774, 4149.565, 4441.013]
TE Mistunings (cents)
⟨-0.759, -0.370, 1.563, 1.948, -1.753, 0.486]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.636184 |
Adjusted Error |
2.049116 cents |
TE Error |
0.553749 cents/octave |
Calliope (12 & 14c & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | -4 | 0 | -6 | ] |
⟨ | 0 | 1 | 4 | 0 | 6 | ] |
⟨ | 0 | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.1032, 1896.6716, 3368.8259]
TE Step Tunings (cents)
⟨53.56660, 29.45074, 20.99908]
TE Tuning Map (cents)
⟨1202.103, 1896.672, 2778.274, 3368.826, 4167.411]
TE Mistunings (cents)
⟨2.103, -5.283, -8.040, 0.000, 16.093]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.094258 |
Adjusted Error |
10.847896 cents |
TE Error |
3.135745 cents/octave |
Canopus (b13 & b62)
Equal Temperament Mappings
| 3 | 5 | 7 | |
[ ⟨ | 13 | 19 | 23 | ] |
⟨ | 62 | 91 | 110 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1901.7828, 583.9055]
TE Step Tunings (cents)
⟨68.26738, 16.35979]
TE Tuning Map (cents)
⟨1901.783, 2785.821, 3369.726]
TE Mistunings (cents)
⟨-0.172, -0.493, 0.900]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.564293 |
Adjusted Error |
0.647803 cents |
TE Error |
0.230752 cents/octave |
Canou (99 & 19 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 94 | 149 | 218 | 264 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -1 | ] |
⟨ | 0 | 1 | 2 | 2 | ] |
⟨ | 0 | 0 | 4 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9597, 1902.3090, -254.6168]
TE Step Tunings (cents)
⟨8.61255, 3.38568, 3.01052]
TE Tuning Map (cents)
⟨1199.960, 1902.309, 2786.151, 3368.509]
TE Mistunings (cents)
⟨-0.040, 0.354, -0.163, -0.317]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.316194 |
Adjusted Error |
0.369246 cents |
TE Error |
0.131528 cents/octave |
Cantrip (19p & 6f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 6 | 10 | 14 | 17 | 21 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | 2 | 3 | 1 | ] |
⟨ | 0 | 10 | 2 | 5 | 3 | 17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4755, 190.4354]
TE Step Tunings (cents)
⟨57.86329, 16.84550]
TE Tuning Map (cents)
⟨1200.475, 1904.354, 2781.822, 3353.128, 4172.733, 4437.877]
TE Mistunings (cents)
⟨0.475, 2.399, -4.492, -15.698, 21.415, -2.651]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.270513 |
Adjusted Error |
13.201032 cents |
TE Error |
3.567423 cents/octave |
Casablanca (31 & 42)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 42 | 67 | 98 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -7 | -4 | 1 | ] |
⟨ | 0 | 19 | 14 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6310, 542.0152]
TE Step Tunings (cents)
⟨28.34969, 7.63787]
TE Tuning Map (cents)
⟨1199.631, 1900.872, 2789.689, 3367.692]
TE Mistunings (cents)
⟨-0.369, -1.083, 3.375, -1.134]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.680948 |
Adjusted Error |
2.381827 cents |
TE Error |
0.848424 cents/octave |
Casablanca (31 & 11b)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 11 | 18 | 26 | 31 | 38 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -7 | -4 | 1 | 3 | ] |
⟨ | 0 | 19 | 14 | 4 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6479, 542.3693]
TE Step Tunings (cents)
⟨37.17744, 4.37703]
TE Tuning Map (cents)
⟨1200.648, 1900.481, 2790.578, 3370.125, 4144.313]
TE Mistunings (cents)
⟨0.648, -1.474, 4.265, 1.299, -7.005]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.565016 |
Adjusted Error |
4.634164 cents |
TE Error |
1.339574 cents/octave |
Cassandra (41 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -1 | -3 | 13 | ] |
⟨ | 0 | -1 | 8 | 14 | -23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3108, 497.9720]
TE Step Tunings (cents)
⟨14.32163, 11.56838]
TE Tuning Map (cents)
⟨1200.311, 1902.650, 2783.465, 3370.676, 4150.684]
TE Mistunings (cents)
⟨0.311, 0.695, -2.848, 1.850, -0.633]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.025735 |
Adjusted Error |
2.326486 cents |
TE Error |
0.672505 cents/octave |
Cassandra (41 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -1 | -3 | 13 | 12 | ] |
⟨ | 0 | -1 | 8 | 14 | -23 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1727, 497.9591]
TE Step Tunings (cents)
⟨11.96746, 13.38692]
TE Tuning Map (cents)
⟨1200.173, 1902.386, 2783.500, 3370.909, 4149.186, 4442.891]
TE Mistunings (cents)
⟨0.173, 0.431, -2.814, 2.083, -2.132, 2.363]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.232965 |
Adjusted Error |
2.577287 cents |
TE Error |
0.696481 cents/octave |
Cata (53 & 34)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 53 | 84 | 123 | 196 | ] |
⟨ | 34 | 54 | 79 | 126 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.1213, 317.1076]
TE Step Tunings (cents)
⟨19.43199, 5.00665]
TE Tuning Map (cents)
⟨1200.121, 1902.646, 2785.660, 4439.507]
TE Mistunings (cents)
⟨0.121, 0.691, -0.654, -1.021]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.553107 |
Adjusted Error |
1.110388 cents |
TE Error |
0.300069 cents/octave |
Cataclysmic (19e & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | -3 | -5 | ] |
⟨ | 0 | 6 | 5 | 22 | 32 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9656, 317.0333]
TE Step Tunings (cents)
⟨20.55973, 23.80384]
TE Tuning Map (cents)
⟨1199.966, 1902.200, 2785.132, 3374.835, 4145.236]
TE Mistunings (cents)
⟨-0.034, 0.245, -1.182, 6.009, -6.082]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.461527 |
Adjusted Error |
4.363850 cents |
TE Error |
1.261436 cents/octave |
Cataclysmic (19e & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | -3 | -5 | 0 | ] |
⟨ | 0 | 6 | 5 | 22 | 32 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0866, 317.0589]
TE Step Tunings (cents)
⟨20.77585, 23.68663]
TE Tuning Map (cents)
⟨1200.087, 1902.354, 2785.381, 3375.037, 4145.453, 4438.825]
TE Mistunings (cents)
⟨0.087, 0.399, -0.932, 6.211, -5.865, -1.703]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.174415 |
Adjusted Error |
4.329278 cents |
TE Error |
1.169936 cents/octave |
Catafourth (130 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 13 | 17 | 13 | 32 | ] |
⟨ | 0 | -28 | -36 | -25 | -70 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0224, 489.2610]
TE Step Tunings (cents)
⟨7.05181, 2.75037]
TE Tuning Map (cents)
⟨1200.022, 1900.982, 2786.983, 3368.765, 4152.443]
TE Mistunings (cents)
⟨0.022, -0.973, 0.669, -0.061, 1.125]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.275888 |
Adjusted Error |
1.164860 cents |
TE Error |
0.336720 cents/octave |
Catafourth (130 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 13 | 17 | 13 | 32 | 9 | ] |
⟨ | 0 | -28 | -36 | -25 | -70 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1028, 489.2982]
TE Step Tunings (cents)
⟨6.60143, 3.31958]
TE Tuning Map (cents)
⟨1200.103, 1900.986, 2787.012, 3368.881, 4152.415, 4440.048]
TE Mistunings (cents)
⟨0.103, -0.969, 0.698, 0.055, 1.097, -0.479]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.431710 |
Adjusted Error |
1.162450 cents |
TE Error |
0.314138 cents/octave |
Cataharry (72 & 53 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 130 | 206 | 302 | 365 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -2 | ] |
⟨ | 0 | 2 | 0 | 9 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1074, 950.6741, 2786.6031]
TE Step Tunings (cents)
⟨4.22183, 1.90466, 6.11683]
TE Tuning Map (cents)
⟨1200.107, 1901.348, 2786.603, 3369.249]
TE Mistunings (cents)
⟨0.107, -0.607, 0.289, 0.423]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.199749 |
Adjusted Error |
0.621996 cents |
TE Error |
0.221559 cents/octave |
Catakleismic (72 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 53 | 84 | 123 | 149 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.5972, 316.8895]
TE Step Tunings (cents)
⟨13.21978, 4.69383]
TE Tuning Map (cents)
⟨1200.597, 1901.337, 2785.045, 3369.777]
TE Mistunings (cents)
⟨0.597, -0.618, -1.269, 0.951]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.868157 |
Adjusted Error |
1.348009 cents |
TE Error |
0.480170 cents/octave |
Catakleismic (72 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | -3 | 9 | ] |
⟨ | 0 | 6 | 5 | 22 | -21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6532, 316.8913]
TE Step Tunings (cents)
⟨13.90831, 3.75953]
TE Tuning Map (cents)
⟨1200.653, 1901.348, 2785.109, 3369.648, 4151.162]
TE Mistunings (cents)
⟨0.653, -0.607, -1.204, 0.822, -0.155]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.587812 |
Adjusted Error |
1.492236 cents |
TE Error |
0.431353 cents/octave |
Catakleismic (72 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | -3 | 9 | 0 | ] |
⟨ | 0 | 6 | 5 | 22 | -21 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7998, 316.9486]
TE Step Tunings (cents)
⟨12.91967, 5.10536]
TE Tuning Map (cents)
⟨1200.800, 1901.692, 2785.543, 3370.471, 4151.277, 4437.281]
TE Mistunings (cents)
⟨0.800, -0.263, -0.771, 1.645, -0.041, -3.247]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.270026 |
Adjusted Error |
2.077208 cents |
TE Error |
0.561341 cents/octave |
Catakleismic (19 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 70 | ] |
⟨ | 53 | 84 | 123 | 149 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 1 | 0 | 1 | -3 | 0 | ] |
⟨ | 0 | 6 | 5 | 22 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7854, 316.9483]
TE Step Tunings (cents)
⟨12.73736, 18.09010]
TE Tuning Map (cents)
⟨1200.785, 1901.690, 2785.527, 3370.506, 4437.276]
TE Mistunings (cents)
⟨0.785, -0.265, -0.787, 1.680, -3.252]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.568542 |
Adjusted Error |
2.275132 cents |
TE Error |
0.614827 cents/octave |
Catalan (15 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 6 | 4 | ] |
⟨ | 0 | 6 | 5 | -12 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.0491, 317.4989]
TE Step Tunings (cents)
⟨21.52110, 25.71272]
TE Tuning Map (cents)
⟨1197.049, 1904.993, 2784.544, 3372.308, 4153.199]
TE Mistunings (cents)
⟨-2.951, 3.038, -1.770, 3.482, 1.881]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.739392 |
Adjusted Error |
5.951380 cents |
TE Error |
1.720335 cents/octave |
Cataleptic (19p & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | -3 | 4 | ] |
⟨ | 0 | 6 | 5 | 22 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.6702, 316.7315]
TE Step Tunings (cents)
⟨19.16027, 24.54780]
TE Tuning Map (cents)
⟨1198.670, 1900.389, 2782.328, 3372.083, 4161.218]
TE Mistunings (cents)
⟨-1.330, -1.566, -3.986, 3.257, 9.900]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.032524 |
Adjusted Error |
6.036977 cents |
TE Error |
1.745078 cents/octave |
Cataleptic (19p & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | -3 | 4 | 0 | ] |
⟨ | 0 | 6 | 5 | 22 | -2 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8549, 316.8149]
TE Step Tunings (cents)
⟨17.98682, 25.20898]
TE Tuning Map (cents)
⟨1198.855, 1900.890, 2782.930, 3373.364, 4161.790, 4435.409]
TE Mistunings (cents)
⟨-1.145, -1.065, -3.384, 4.538, 10.472, -5.119]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.800572 |
Adjusted Error |
6.333493 cents |
TE Error |
1.711551 cents/octave |
Catalytic (72 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | -3 | -10 | ] |
⟨ | 0 | 6 | 5 | 22 | 51 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8112, 316.8671]
TE Step Tunings (cents)
⟨16.41990, 0.97781]
TE Tuning Map (cents)
⟨1200.811, 1901.203, 2785.147, 3368.644, 4152.113]
TE Mistunings (cents)
⟨0.811, -0.752, -1.167, -0.182, 0.795]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.193826 |
Adjusted Error |
1.689610 cents |
TE Error |
0.488407 cents/octave |
Catalytic (72 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | -3 | -10 | 0 | ] |
⟨ | 0 | 6 | 5 | 22 | 51 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0826, 316.9251]
TE Step Tunings (cents)
⟨16.16329, 1.96453]
TE Tuning Map (cents)
⟨1201.083, 1901.550, 2785.708, 3369.104, 4152.353, 4436.951]
TE Mistunings (cents)
⟨1.083, -0.405, -0.606, 0.278, 1.035, -3.577]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.793839 |
Adjusted Error |
2.310289 cents |
TE Error |
0.624328 cents/octave |
Catbird (12f & 8d & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | 2 | 0 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | -5 | ] |
⟨ | 0 | 0 | 1 | 3 | 2 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.8794, 1901.7723, 2788.7526]
TE Step Tunings (cents)
⟨11.55860, 30.81909, 42.71703]
TE Tuning Map (cents)
⟨1196.879, 1901.772, 2788.753, 3365.834, 4167.719, 4434.901]
TE Mistunings (cents)
⟨-3.121, -0.183, 2.439, -2.992, 16.401, -5.626]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.119813 |
Adjusted Error |
9.161880 cents |
TE Error |
2.475889 cents/octave |
Catcall (12 & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 0 | 0 | 0 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨99.8548, 32.7285]
TE Step Tunings (cents)
⟨34.39790, 32.72846]
TE Tuning Map (cents)
⟨1198.258, 1897.242, 2795.935, 3362.335, 4161.174]
TE Mistunings (cents)
⟨-1.742, -4.713, 9.621, -6.491, 9.856]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.916514 |
Adjusted Error |
10.087167 cents |
TE Error |
2.915845 cents/octave |
Catcall (12f & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 0 | 0 | 0 | -1 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨99.8353, 37.1711]
TE Step Tunings (cents)
⟨25.49321, 37.17106]
TE Tuning Map (cents)
⟨1198.024, 1896.871, 2795.389, 3357.230, 4155.912, 4455.418]
TE Mistunings (cents)
⟨-1.976, -5.084, 9.075, -11.596, 4.594, 14.891]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.860646 |
Adjusted Error |
12.131649 cents |
TE Error |
3.278434 cents/octave |
Catler (12 & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 24 | 38 | 56 | 67 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 0 | 0 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨99.8700, 26.7551]
TE Step Tunings (cents)
⟨46.35988, 26.75508]
TE Tuning Map (cents)
⟨1198.440, 1897.531, 2796.361, 3368.826]
TE Mistunings (cents)
⟨-1.560, -4.424, 10.047, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.853309 |
Adjusted Error |
7.552312 cents |
TE Error |
2.690188 cents/octave |
Cavalier (4e & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | 3 | 4 | 1 | ] |
⟨ | 0 | 4 | 3 | 3 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.9715, 323.9503]
TE Step Tunings (cents)
⟨-4.55306, 46.92905]
TE Tuning Map (cents)
⟨1201.943, 1896.773, 2774.765, 3375.737, 4164.425]
TE Mistunings (cents)
⟨1.943, -5.182, -11.548, 6.911, 13.107]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.238691 |
Adjusted Error |
11.945536 cents |
TE Error |
3.453034 cents/octave |
Cavalier (4ef & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 1 | 3 | 4 | 1 | 2 | ] |
⟨ | 0 | 4 | 3 | 3 | 11 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.9786, 323.9232]
TE Step Tunings (cents)
⟨-4.15055, 46.86767]
TE Tuning Map (cents)
⟨1201.957, 1896.671, 2774.705, 3375.684, 4164.133, 4441.189]
TE Mistunings (cents)
⟨1.957, -5.284, -11.608, 6.858, 12.815, 0.661]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.198572 |
Adjusted Error |
11.668770 cents |
TE Error |
3.153347 cents/octave |
Ceratitid (22 & 1ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 1 | 2 | 3 | 3 | 4 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -9 | -15 | -4 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.3195, 54.3002]
TE Step Tunings (cents)
⟨54.30018, 3.71556]
TE Tuning Map (cents)
⟨1198.320, 1907.937, 2780.456, 3377.758, 4141.676]
TE Mistunings (cents)
⟨-1.680, 5.982, -5.858, 8.932, -9.642]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.453775 |
Adjusted Error |
9.945670 cents |
TE Error |
2.874943 cents/octave |
Ceratitid (22p & 1ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |
⟨ | 0 | -9 | -15 | -4 | -12 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4566, 54.6862]
TE Step Tunings (cents)
⟨54.68618, -2.63937]
TE Tuning Map (cents)
⟨1200.457, 1908.738, 2781.077, 3382.625, 4145.592, 4419.023]
TE Mistunings (cents)
⟨0.457, 6.783, -5.237, 13.799, -5.726, -21.504]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.306086 |
Adjusted Error |
13.868780 cents |
TE Error |
3.747874 cents/octave |
Cerberus (72 & 58 & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 1 | 0 | 2 | 3 | 1 | ] |
⟨ | 0 | 3 | 0 | 5 | -1 | -4 | ] |
⟨ | 0 | 0 | 1 | 0 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9568, 433.8374, 2787.0177]
TE Step Tunings (cents)
⟨9.56848, 8.30526, 1.33081]
TE Tuning Map (cents)
⟨1199.914, 1901.469, 2787.018, 3369.101, 4153.051, 4438.642]
TE Mistunings (cents)
⟨-0.086, -0.486, 0.704, 0.275, 1.733, -1.885]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.295378 |
Adjusted Error |
1.275955 cents |
TE Error |
0.344812 cents/octave |
Chagall (83 & 17)
Equal Temperament Mappings
| 2 | 7 | 9 | 11 | 13 | |
[ ⟨ | 83 | 233 | 263 | 287 | 307 | ] |
⟨ | 17 | 48 | 54 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 7 | 9 | 11 | 13 | |
[ ⟨ | 1 | -8 | -2 | -5 | -1 | ] |
⟨ | 0 | 23 | 11 | 18 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3135, 564.0052]
TE Step Tunings (cents)
⟨14.41959, 0.20514]
TE Tuning Map (cents)
⟨1200.313, 3369.612, 3803.430, 4150.526, 4439.738]
TE Mistunings (cents)
⟨0.313, 0.786, -0.480, -0.792, -0.789]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.717901 |
Adjusted Error |
0.902471 cents |
TE Error |
0.243882 cents/octave |
Charisma (3de & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | -1 | 0 | ] |
⟨ | 0 | 5 | 1 | 12 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5382, 379.8120]
TE Step Tunings (cents)
⟨13.19843, 61.10226]
TE Tuning Map (cents)
⟨1200.538, 1899.060, 2780.888, 3357.206, 4177.932]
TE Mistunings (cents)
⟨0.538, -2.895, -5.425, -11.620, 26.614]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.681175 |
Adjusted Error |
14.297395 cents |
TE Error |
4.132874 cents/octave |
Charisma (19p & 3def)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 3 | 5 | 7 | 9 | 11 | 12 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | 0 | -2 | ] |
⟨ | 0 | 5 | 1 | 12 | 11 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3673, 379.9070]
TE Step Tunings (cents)
⟨60.64621, 16.02981]
TE Tuning Map (cents)
⟨1200.367, 1899.535, 2780.642, 3358.517, 4178.978, 4437.592]
TE Mistunings (cents)
⟨0.367, -2.420, -5.672, -10.309, 27.660, -2.936]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.826303 |
Adjusted Error |
14.048084 cents |
TE Error |
3.796328 cents/octave |
Chartreuse (b57 & b78)
Equal Temperament Mappings
| 3 | 7 | 13 | 17 | |
[ ⟨ | 57 | 101 | 133 | 147 | ] |
⟨ | 78 | 138 | 182 | 201 | ] ⟩ |
Reduced Mapping
| 3 | 7 | 13 | 17 | |
[ ⟨ | 3 | 7 | 7 | 9 | ] |
⟨ | 0 | -4 | 0 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨634.1772, 267.5916]
TE Step Tunings (cents)
⟨18.56726, 10.82305]
TE Tuning Map (cents)
⟨1902.532, 3368.874, 4439.240, 4904.820]
TE Mistunings (cents)
⟨0.577, 0.048, -1.287, -0.136]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.120944 |
Adjusted Error |
1.031524 cents |
TE Error |
0.252363 cents/octave |
Chartreuse (b21 & b57)
Equal Temperament Mappings
| 3 | 13/9 | 17/9 | 7/3 | |
[ ⟨ | 21 | 7 | 12 | 16 | ] |
⟨ | 57 | 19 | 33 | 44 | ] ⟩ |
Reduced Mapping
| 3 | 13/9 | 17/9 | 7/3 | |
[ ⟨ | 3 | 1 | 3 | 4 | ] |
⟨ | 0 | 0 | -3 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨635.2959, 268.4296]
TE Step Tunings (cents)
⟨17.79473, 26.88067]
TE Tuning Map (cents)
⟨1905.888, 635.296, 1100.599, 1467.465]
TE Mistunings (cents)
⟨3.933, -1.322, -0.446, 0.594]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
3.089212 |
Adjusted Error |
2.839387 cents |
TE Error |
1.791454 cents/octave |
Chromat (99 & 60)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 60 | 95 | 139 | 168 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.9549, 60.5216]
TE Step Tunings (cents)
⟨10.56715, 2.56196]
TE Tuning Map (cents)
⟨1199.865, 1902.428, 2786.555, 3368.075]
TE Mistunings (cents)
⟨-0.135, 0.473, 0.242, -0.751]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.965688 |
Adjusted Error |
0.611181 cents |
TE Error |
0.217707 cents/octave |
Clio (12 & 31 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | -4 | 0 | -12 | ] |
⟨ | 0 | 1 | 4 | 0 | 8 | ] |
⟨ | 0 | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6459, 1898.2713, 3370.4426]
TE Step Tunings (cents)
⟨7.01524, 36.88988, -3.87476]
TE Tuning Map (cents)
⟨1200.646, 1898.271, 2790.502, 3370.443, 4148.863]
TE Mistunings (cents)
⟨0.646, -3.684, 4.188, 1.617, -2.455]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.148233 |
Adjusted Error |
4.869695 cents |
TE Error |
1.407658 cents/octave |
Clyde (19 & 68)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 68 | 108 | 158 | 191 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 6 | 6 | 12 | ] |
⟨ | 0 | -12 | -10 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8387, 441.2754]
TE Step Tunings (cents)
⟨10.76218, 14.63761]
TE Tuning Map (cents)
⟨1199.839, 1903.727, 2786.278, 3366.178]
TE Mistunings (cents)
⟨-0.161, 1.772, -0.036, -2.647]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.435155 |
Adjusted Error |
2.065576 cents |
TE Error |
0.735773 cents/octave |
Clyde (87 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 6 | 6 | 12 | -5 | ] |
⟨ | 0 | -12 | -10 | -25 | 23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9638, 441.3417]
TE Step Tunings (cents)
⟨14.25507, -2.11722]
TE Tuning Map (cents)
⟨1199.964, 1903.683, 2786.366, 3366.024, 4151.039]
TE Mistunings (cents)
⟨-0.036, 1.728, 0.053, -2.802, -0.279]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.646723 |
Adjusted Error |
2.290989 cents |
TE Error |
0.662244 cents/octave |
Clyde (87 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 6 | 6 | 12 | -5 | 14 | ] |
⟨ | 0 | -12 | -10 | -25 | 23 | -28 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9311, 441.3380]
TE Step Tunings (cents)
⟨14.09542, -1.38794]
TE Tuning Map (cents)
⟨1199.931, 1903.530, 2786.207, 3365.723, 4151.119, 4441.571]
TE Mistunings (cents)
⟨-0.069, 1.575, -0.107, -3.103, -0.199, 1.043]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.449147 |
Adjusted Error |
2.290816 cents |
TE Error |
0.619066 cents/octave |
Coblack (15 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 50 | 79 | 116 | 140 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨240.2510, 73.1208]
TE Step Tunings (cents)
⟨10.45481, 20.88866]
TE Tuning Map (cents)
⟨1201.255, 1901.120, 2789.003, 3363.514]
TE Mistunings (cents)
⟨1.255, -0.835, 2.689, -5.311]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.891640 |
Adjusted Error |
3.653398 cents |
TE Error |
1.301366 cents/octave |
Coblack (15 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 50 | 79 | 116 | 140 | 173 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 7 | 11 | 14 | 17 | ] |
⟨ | 0 | 3 | 2 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨240.1539, 73.3110]
TE Step Tunings (cents)
⟨12.64838, 20.22088]
TE Tuning Map (cents)
⟨1200.770, 1901.011, 2788.315, 3362.155, 4155.928]
TE Mistunings (cents)
⟨0.770, -0.944, 2.002, -6.671, 4.610]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.572559 |
Adjusted Error |
4.670264 cents |
TE Error |
1.350009 cents/octave |
Coditone (53 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 50 | 79 | 116 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 6 | 3 | 13 | ] |
⟨ | 0 | -13 | -2 | -30 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4422, 407.8399]
TE Step Tunings (cents)
⟨15.52114, 7.55643]
TE Tuning Map (cents)
⟨1200.442, 1900.734, 2785.647, 3370.551]
TE Mistunings (cents)
⟨0.442, -1.221, -0.667, 1.725]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.599911 |
Adjusted Error |
1.568654 cents |
TE Error |
0.558766 cents/octave |
Coditone (53 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 6 | 3 | 13 | -3 | ] |
⟨ | 0 | -13 | -2 | -30 | 19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8030, 408.0143]
TE Step Tunings (cents)
⟨2.63356, 10.30315]
TE Tuning Map (cents)
⟨1200.803, 1900.632, 2786.381, 3370.011, 4149.863]
TE Mistunings (cents)
⟨0.803, -1.323, 0.067, 1.185, -1.455]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.856475 |
Adjusted Error |
2.015482 cents |
TE Error |
0.582605 cents/octave |
Coditone (53 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 6 | 3 | 13 | -3 | 2 | ] |
⟨ | 0 | -13 | -2 | -30 | 19 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7386, 407.9866]
TE Step Tunings (cents)
⟨3.23471, 9.99319]
TE Tuning Map (cents)
⟨1200.739, 1900.606, 2786.243, 3370.005, 4149.529, 4441.410]
TE Mistunings (cents)
⟨0.739, -1.349, -0.071, 1.179, -1.789, 0.883]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.570914 |
Adjusted Error |
2.010564 cents |
TE Error |
0.543331 cents/octave |
Coendou (7p & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 1 | 4 | ] |
⟨ | 0 | -3 | -5 | 13 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.0557, 166.4034]
TE Step Tunings (cents)
⟨13.47691, 38.23163]
TE Tuning Map (cents)
⟨1203.056, 1906.901, 2777.150, 3366.300, 4146.609]
TE Mistunings (cents)
⟨3.056, 4.946, -9.164, -2.526, -4.709]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.481027 |
Adjusted Error |
9.450477 cents |
TE Error |
2.731801 cents/octave |
Coendou (7p & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 1 | 4 | 3 | ] |
⟨ | 0 | -3 | -5 | 13 | -4 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.0269, 166.3928]
TE Step Tunings (cents)
⟨13.28455, 38.27707]
TE Tuning Map (cents)
⟨1203.027, 1906.875, 2777.117, 3366.134, 4146.536, 4441.045]
TE Mistunings (cents)
⟨3.027, 4.920, -9.197, -2.692, -4.782, 0.517]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.329514 |
Adjusted Error |
9.231154 cents |
TE Error |
2.494610 cents/octave |
Coleto (27e & 4p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 4 | 6 | 9 | 11 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | 0 | 1 | 4 | ] |
⟨ | 0 | 10 | 9 | 7 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.1298, 309.8505]
TE Step Tunings (cents)
⟨43.27217, 6.94531]
TE Tuning Map (cents)
⟨1196.130, 1902.375, 2788.655, 3365.083, 4164.818]
TE Mistunings (cents)
⟨-3.870, 0.420, 2.341, -3.743, 13.500]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.541856 |
Adjusted Error |
8.897054 cents |
TE Error |
2.571825 cents/octave |
Comic (22 & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 4 | 5 | 6 | ] |
⟨ | 0 | 2 | 7 | 7 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨598.8325, 55.0762]
TE Step Tunings (cents)
⟨55.07625, -7.00616]
TE Tuning Map (cents)
⟨1197.665, 1906.650, 2780.864, 3379.696, 4143.758]
TE Mistunings (cents)
⟨-2.335, 4.695, -5.450, 10.871, -7.560]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.300232 |
Adjusted Error |
9.724080 cents |
TE Error |
2.810889 cents/octave |
Comic (22p & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] |
⟨ | 0 | 2 | 7 | 7 | 10 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.1383, 54.4472]
TE Step Tunings (cents)
⟨54.44724, 1.21864]
TE Tuning Map (cents)
⟨1200.277, 1909.309, 2781.684, 3381.822, 4145.302, 4418.757]
TE Mistunings (cents)
⟨0.277, 7.354, -4.630, 12.996, -6.016, -21.771]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.189133 |
Adjusted Error |
13.899279 cents |
TE Error |
3.756116 cents/octave |
Commatic (58 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 4 | 5 | 6 | ] |
⟨ | 0 | 5 | 19 | 18 | 27 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0403, 20.3913]
TE Step Tunings (cents)
⟨3.00608, 8.69261]
TE Tuning Map (cents)
⟨1200.081, 1902.077, 2787.596, 3367.245, 4150.807]
TE Mistunings (cents)
⟨0.081, 0.122, 1.282, -1.581, -0.511]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.217884 |
Adjusted Error |
1.253414 cents |
TE Error |
0.362318 cents/octave |
Compton (12 & 72)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 72 | 114 | 167 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨100.0514, 15.1253]
TE Step Tunings (cents)
⟨9.29940, 15.12533]
TE Tuning Map (cents)
⟨1200.617, 1900.976, 2786.314]
TE Mistunings (cents)
⟨0.617, -0.979, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.435023 |
Adjusted Error |
1.169834 cents |
TE Error |
0.503820 cents/octave |
Compton (72 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 0 | 0 | -1 | -2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨100.0634, 16.7446]
TE Step Tunings (cents)
⟨16.74460, -0.40420]
TE Tuning Map (cents)
⟨1200.761, 1901.205, 2785.031, 3368.666, 4152.429]
TE Mistunings (cents)
⟨0.761, -0.750, -1.283, -0.160, 1.111]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.279767 |
Adjusted Error |
1.705134 cents |
TE Error |
0.492894 cents/octave |
Compton (72 & 12f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 0 | 0 | -1 | -2 | -3 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨100.0509, 16.0454]
TE Step Tunings (cents)
⟨16.04540, 3.77852]
TE Tuning Map (cents)
⟨1200.611, 1900.967, 2785.380, 3369.640, 4154.002, 4438.110]
TE Mistunings (cents)
⟨0.611, -0.988, -0.934, 0.814, 2.684, -2.418]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.947330 |
Adjusted Error |
2.155824 cents |
TE Error |
0.582586 cents/octave |
Comptone (72 & 60e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 60 | 95 | 139 | 168 | 207 | 222 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 44 | ] |
⟨ | 0 | 0 | -1 | -2 | -3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨100.0927, 17.4045]
TE Step Tunings (cents)
⟨13.07009, 4.33444]
TE Tuning Map (cents)
⟨1201.113, 1901.762, 2785.192, 3368.344, 4151.681, 4438.889]
TE Mistunings (cents)
⟨1.113, -0.193, -1.122, -0.482, 0.363, -1.638]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.743623 |
Adjusted Error |
1.983030 cents |
TE Error |
0.535890 cents/octave |
Cotritone (72 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 37 | 59 | 86 | 104 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -13 | -4 | -4 | ] |
⟨ | 0 | 30 | 13 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4418, 583.5996]
TE Step Tunings (cents)
⟨14.76761, 3.70740]
TE Tuning Map (cents)
⟨1200.442, 1902.244, 2785.027, 3368.627]
TE Mistunings (cents)
⟨0.442, 0.289, -1.286, -0.199]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.010225 |
Adjusted Error |
1.031857 cents |
TE Error |
0.367555 cents/octave |
Cotritone (72 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -13 | -4 | -4 | 2 | ] |
⟨ | 0 | 30 | 13 | 14 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4063, 583.5847]
TE Step Tunings (cents)
⟨14.67913, 3.87862]
TE Tuning Map (cents)
⟨1200.406, 1902.259, 2784.976, 3368.561, 4151.567]
TE Mistunings (cents)
⟨0.406, 0.304, -1.338, -0.265, 0.249]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.789379 |
Adjusted Error |
1.145234 cents |
TE Error |
0.331047 cents/octave |
Cotritone (72 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | 137 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -13 | -4 | -4 | 2 | -7 | ] |
⟨ | 0 | 30 | 13 | 14 | 3 | 22 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6126, 583.6844]
TE Step Tunings (cents)
⟨14.70198, 3.83973]
TE Tuning Map (cents)
⟨1200.613, 1902.570, 2785.447, 3369.132, 4152.278, 4436.770]
TE Mistunings (cents)
⟨0.613, 0.615, -0.866, 0.306, 0.961, -3.758]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.196953 |
Adjusted Error |
2.018463 cents |
TE Error |
0.545466 cents/octave |
Countdown (65 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 65 | 103 | 151 | 225 | ] |
⟨ | 15 | 24 | 35 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 5 | 7 | 11 | 17 | ] |
⟨ | 0 | 3 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.9046, 74.0952]
TE Step Tunings (cents)
⟨17.61901, 3.61912]
TE Tuning Map (cents)
⟨1199.523, 1901.617, 2787.140, 4152.473]
TE Mistunings (cents)
⟨-0.477, -0.338, 0.827, 1.155]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.618120 |
Adjusted Error |
1.236829 cents |
TE Error |
0.357524 cents/octave |
Counteracro (270 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 10 | 11 | 27 | 55 | ] |
⟨ | 0 | -32 | -33 | -92 | -196 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8877, 315.5238]
TE Step Tunings (cents)
⟨4.48670, -0.60644]
TE Tuning Map (cents)
⟨1199.888, 1902.116, 2786.480, 3368.780, 4151.163]
TE Mistunings (cents)
⟨-0.112, 0.161, 0.166, -0.046, -0.155]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
19.116050 |
Adjusted Error |
0.269492 cents |
TE Error |
0.077901 cents/octave |
Counteracro (270 & 251e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 251 | 398 | 583 | 705 | 869 | 929 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 10 | 11 | 27 | 55 | 25 | ] |
⟨ | 0 | -32 | -33 | -92 | -196 | -81 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9285, 315.5348]
TE Step Tunings (cents)
⟨3.94779, 0.53396]
TE Tuning Map (cents)
⟨1199.929, 1902.172, 2786.566, 3368.870, 4151.251, 4439.896]
TE Mistunings (cents)
⟨-0.071, 0.217, 0.252, 0.044, -0.066, -0.632]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
17.482798 |
Adjusted Error |
0.386545 cents |
TE Error |
0.104459 cents/octave |
Countercata (53 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 140 | 222 | 325 | 393 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 1 | 11 | ] |
⟨ | 0 | 6 | 5 | -31 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9175, 317.0996]
TE Step Tunings (cents)
⟨3.00131, 7.43463]
TE Tuning Map (cents)
⟨1199.917, 1902.598, 2785.416, 3369.004]
TE Mistunings (cents)
⟨-0.083, 0.643, -0.898, 0.178]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.796764 |
Adjusted Error |
0.800088 cents |
TE Error |
0.284997 cents/octave |
Countercata (87 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 11 | -5 | ] |
⟨ | 0 | 6 | 5 | -31 | 32 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0987, 317.1881]
TE Step Tunings (cents)
⟨9.58670, 6.90671]
TE Tuning Map (cents)
⟨1200.099, 1903.129, 2786.039, 3368.255, 4149.525]
TE Mistunings (cents)
⟨0.099, 1.174, -0.275, -0.571, -1.793]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.678189 |
Adjusted Error |
1.452807 cents |
TE Error |
0.419955 cents/octave |
Countercata (87 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 11 | -5 | 0 | ] |
⟨ | 0 | 6 | 5 | -31 | 32 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0943, 317.1866]
TE Step Tunings (cents)
⟨9.57052, 6.93320]
TE Tuning Map (cents)
⟨1200.094, 1903.120, 2786.027, 3368.252, 4149.500, 4440.613]
TE Mistunings (cents)
⟨0.094, 1.165, -0.286, -0.574, -1.818, 0.085]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.194935 |
Adjusted Error |
1.419147 cents |
TE Error |
0.383508 cents/octave |
Counterhanson (224 & 205)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 224 | 355 | 520 | ] |
⟨ | 205 | 325 | 476 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0419, 316.0916]
TE Step Tunings (cents)
⟨3.47823, 2.05326]
TE Tuning Map (cents)
⟨1200.042, 1902.081, 2786.031]
TE Mistunings (cents)
⟨0.042, 0.126, -0.282]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.541892 |
Adjusted Error |
0.202736 cents |
TE Error |
0.087314 cents/octave |
Countermeantone (19 & 183)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 183 | 290 | 425 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | |
[ ⟨ | 1 | 10 | 12 | ] |
⟨ | 0 | -20 | -23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9479, 504.8912]
TE Step Tunings (cents)
⟨-0.88819, 6.64931]
TE Tuning Map (cents)
⟨1199.948, 1901.654, 2786.876]
TE Mistunings (cents)
⟨-0.052, -0.301, 0.562]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.423535 |
Adjusted Error |
0.418450 cents |
TE Error |
0.180216 cents/octave |
Counterschismic (730 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 730 | 1157 | 1695 | ] |
⟨ | 53 | 84 | 123 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0116, 498.0873]
TE Step Tunings (cents)
⟨1.62765, 0.22321]
TE Tuning Map (cents)
⟨1200.012, 1901.936, 2786.315]
TE Mistunings (cents)
⟨0.012, -0.019, 0.001]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.990921 |
Adjusted Error |
0.022436 cents |
TE Error |
0.009663 cents/octave |
Crepuscular (8d & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 2 | 3 | 4 | 6 | ] |
⟨ | 0 | 5 | 7 | 7 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.1691, 140.3920]
TE Step Tunings (cents)
⟨27.58869, 37.60110]
TE Tuning Map (cents)
⟨1198.338, 1900.298, 2780.251, 3379.420, 4156.582]
TE Mistunings (cents)
⟨-1.662, -1.657, -6.063, 10.594, 5.264]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.421891 |
Adjusted Error |
8.073023 cents |
TE Error |
2.333627 cents/octave |
Crepuscular (8d & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 2 | 3 | 4 | 6 | 6 | ] |
⟨ | 0 | 5 | 7 | 7 | 4 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.2713, 140.3832]
TE Step Tunings (cents)
⟨27.16732, 37.73862]
TE Tuning Map (cents)
⟨1198.543, 1900.459, 2780.496, 3379.768, 4157.161, 4437.927]
TE Mistunings (cents)
⟨-1.457, -1.496, -5.817, 10.942, 5.843, -2.601]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.225216 |
Adjusted Error |
7.969480 cents |
TE Error |
2.153658 cents/octave |
Cuboctahedra (31 & 14ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 14 | 22 | 32 | 39 | 49 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 8 | 6 | -4 | ] |
⟨ | 0 | -4 | -16 | -9 | 21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.4501, 426.5073]
TE Step Tunings (cents)
⟨36.14860, 5.77453]
TE Tuning Map (cents)
⟨1201.450, 1898.321, 2787.484, 3370.135, 4150.853]
TE Mistunings (cents)
⟨1.450, -3.634, 1.171, 1.309, -0.465]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.293619 |
Adjusted Error |
4.334363 cents |
TE Error |
1.252912 cents/octave |
Cynder (31 & 5)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 5 | 8 | 12 | 14 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.9371, 232.3746]
TE Step Tunings (cents)
⟨39.06418, -2.01049]
TE Tuning Map (cents)
⟨1200.937, 1898.061, 2788.495, 3370.437]
TE Mistunings (cents)
⟨0.937, -3.894, 2.181, 1.611]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.188080 |
Adjusted Error |
4.001451 cents |
TE Error |
1.425346 cents/octave |
Cynder (5e & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 3 | 0 | ] |
⟨ | 0 | 3 | 12 | -1 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2016, 231.5487]
TE Step Tunings (cents)
⟨14.25923, 43.45790]
TE Tuning Map (cents)
⟨1201.202, 1895.848, 2778.585, 3372.056, 4167.877]
TE Mistunings (cents)
⟨1.202, -6.107, -7.729, 3.230, 16.559]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.411381 |
Adjusted Error |
11.114145 cents |
TE Error |
3.212708 cents/octave |
Cynder (5e & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 3 | 0 | 1 | ] |
⟨ | 0 | 3 | 12 | -1 | 18 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.1585, 231.5163]
TE Step Tunings (cents)
⟨13.63084, 43.57709]
TE Tuning Map (cents)
⟨1201.159, 1895.707, 2778.195, 3371.959, 4167.293, 4442.387]
TE Mistunings (cents)
⟨1.159, -6.248, -8.118, 3.133, 15.975, 1.859]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.262379 |
Adjusted Error |
10.886186 cents |
TE Error |
2.941863 cents/octave |
Cypress (31 & 20cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 20 | 32 | 47 | 57 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 7 | 10 | 15 | 17 | ] |
⟨ | 0 | -12 | -17 | -27 | -30 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1196, 541.8260]
TE Step Tunings (cents)
⟨35.44409, 5.06764]
TE Tuning Map (cents)
⟨1200.120, 1898.925, 2790.154, 3372.491, 4147.253]
TE Mistunings (cents)
⟨0.120, -3.030, 3.840, 3.665, -4.065]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.417715 |
Adjusted Error |
4.765950 cents |
TE Error |
1.377668 cents/octave |
Cypress (31 & 20cdef)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 20 | 32 | 47 | 57 | 70 | 75 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 7 | 10 | 15 | 17 | 15 | ] |
⟨ | 0 | -12 | -17 | -27 | -30 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4530, 541.5309]
TE Step Tunings (cents)
⟨35.54004, 4.88559]
TE Tuning Map (cents)
⟨1199.453, 1897.801, 2788.506, 3370.462, 4144.776, 4453.524]
TE Mistunings (cents)
⟨-0.547, -4.154, 2.192, 1.636, -6.542, 12.996]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.121970 |
Adjusted Error |
7.448625 cents |
TE Error |
2.012903 cents/octave |
Dakota (53 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | 19 | |
[ ⟨ | 53 | 84 | 123 | 196 | 225 | ] |
⟨ | 24 | 38 | 56 | 89 | 102 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | 19 | |
[ ⟨ | 1 | 2 | -1 | 1 | 3 | ] |
⟨ | 0 | -2 | 16 | 13 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2613, 249.1909]
TE Step Tunings (cents)
⟨20.72632, 4.24026]
TE Tuning Map (cents)
⟨1200.261, 1902.141, 2786.792, 4439.742, 5095.929]
TE Mistunings (cents)
⟨0.261, 0.186, 0.479, -0.785, -1.584]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.867583 |
Adjusted Error |
1.055341 cents |
TE Error |
0.248437 cents/octave |
Dakota (53 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | 19 | 37 | |
[ ⟨ | 53 | 84 | 123 | 196 | 225 | 276 | ] |
⟨ | 24 | 38 | 56 | 89 | 102 | 125 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | 19 | 37 | |
[ ⟨ | 1 | 2 | -1 | 1 | 3 | 5 | ] |
⟨ | 0 | -2 | 16 | 13 | 6 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2990, 249.1928]
TE Step Tunings (cents)
⟨20.86804, 3.92888]
TE Tuning Map (cents)
⟨1200.299, 1902.212, 2786.786, 4439.805, 5096.054, 6250.688]
TE Mistunings (cents)
⟨0.299, 0.257, 0.472, -0.723, -1.459, -0.656]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.713536 |
Adjusted Error |
1.220018 cents |
TE Error |
0.234193 cents/octave |
Dakota (53 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | 37 | |
[ ⟨ | 53 | 84 | 123 | 196 | 276 | ] |
⟨ | 77 | 122 | 179 | 285 | 401 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | 37 | |
[ ⟨ | 1 | 2 | -1 | 1 | 5 | ] |
⟨ | 0 | -2 | 16 | 13 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2237, 249.1807]
TE Step Tunings (cents)
⟨16.66551, 4.11625]
TE Tuning Map (cents)
⟨1200.224, 1902.086, 2786.667, 4439.573, 6250.299]
TE Mistunings (cents)
⟨0.224, 0.131, 0.354, -0.955, -1.045]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.966926 |
Adjusted Error |
1.007191 cents |
TE Error |
0.193339 cents/octave |
Darjeeling (15 & 4e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 2 | 0 | ] |
⟨ | 0 | 6 | 5 | 3 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.7103, 318.1084]
TE Step Tunings (cents)
⟨70.72327, 35.21530]
TE Tuning Map (cents)
⟨1201.710, 1908.650, 2792.252, 3357.746, 4135.409]
TE Mistunings (cents)
⟨1.710, 6.695, 5.939, -11.080, -15.909]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.484613 |
Adjusted Error |
12.380360 cents |
TE Error |
3.578727 cents/octave |
Darjeeling (15 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 2 | 0 | 0 | ] |
⟨ | 0 | 6 | 5 | 3 | 13 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.9930, 317.8250]
TE Step Tunings (cents)
⟨28.70966, 40.59726]
TE Tuning Map (cents)
⟨1201.993, 1906.950, 2791.118, 3357.461, 4131.725, 4449.550]
TE Mistunings (cents)
⟨1.993, 4.995, 4.804, -11.365, -19.593, 9.022]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.484504 |
Adjusted Error |
12.871553 cents |
TE Error |
3.478385 cents/octave |
Deca (270 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 10 | 14 | 21 | 24 | 32 | ] |
⟨ | 0 | 5 | 6 | 11 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨120.0004, 44.4185]
TE Step Tunings (cents)
⟨3.94768, 0.70595]
TE Tuning Map (cents)
⟨1200.004, 1902.099, 2786.520, 3368.614, 4150.943]
TE Mistunings (cents)
⟨0.004, 0.144, 0.206, -0.212, -0.375]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.258840 |
Adjusted Error |
0.283382 cents |
TE Error |
0.081916 cents/octave |
Deca (270 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 14 | 21 | 24 | 32 | 37 | ] |
⟨ | 0 | 5 | 6 | 11 | 7 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨120.0067, 44.4006]
TE Step Tunings (cents)
⟨3.56471, 1.25050]
TE Tuning Map (cents)
⟨1200.067, 1902.096, 2786.544, 3368.567, 4151.018, 4440.247]
TE Mistunings (cents)
⟨0.067, 0.141, 0.230, -0.259, -0.300, -0.281]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.908712 |
Adjusted Error |
0.317019 cents |
TE Error |
0.085671 cents/octave |
Decal (130 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 10 | 16 | 24 | 29 | 36 | ] |
⟨ | 0 | -1 | -5 | -6 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨120.0208, 18.7632]
TE Step Tunings (cents)
⟨3.56180, 3.87986]
TE Tuning Map (cents)
⟨1200.208, 1901.569, 2786.683, 3368.023, 4151.879]
TE Mistunings (cents)
⟨0.208, -0.386, 0.369, -0.802, 0.561]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.049777 |
Adjusted Error |
0.751108 cents |
TE Error |
0.217119 cents/octave |
Decal (130 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 24 | 29 | 36 | 37 | ] |
⟨ | 0 | -1 | -5 | -6 | -9 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨120.0182, 18.7510]
TE Step Tunings (cents)
⟨3.78548, 3.72668]
TE Tuning Map (cents)
⟨1200.182, 1901.540, 2786.682, 3368.022, 4151.897, 4440.674]
TE Mistunings (cents)
⟨0.182, -0.415, 0.368, -0.804, 0.579, 0.146]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.751846 |
Adjusted Error |
0.737430 cents |
TE Error |
0.199282 cents/octave |
Decibel (4p & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 14 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 2 | 4 | 5 | 7 | ] |
⟨ | 0 | 2 | 1 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.5822, 356.2589]
TE Step Tunings (cents)
⟨17.45174, 112.93573]
TE Tuning Map (cents)
⟨1199.164, 1911.682, 2754.588, 3354.170, 4197.075]
TE Mistunings (cents)
⟨-0.836, 9.727, -31.726, -14.656, 45.757]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.923713 |
Adjusted Error |
31.979188 cents |
TE Error |
9.244058 cents/octave |
Decimal (4 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 4 | 6 | 9 | 11 | ] |
⟨ | 10 | 16 | 23 | 28 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨603.3490, 350.3879]
TE Step Tunings (cents)
⟨58.10758, 97.42676]
TE Tuning Map (cents)
⟨1206.698, 1907.474, 2763.784, 3367.133]
TE Mistunings (cents)
⟨6.698, 5.519, -22.530, -1.693]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.919674 |
Adjusted Error |
17.277237 cents |
TE Error |
6.154276 cents/octave |
Decimal (4e & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 2 | 4 | 5 | 4 | ] |
⟨ | 0 | 2 | 1 | 1 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨603.6249, 348.6008]
TE Step Tunings (cents)
⟨67.87058, 93.57675]
TE Tuning Map (cents)
⟨1207.250, 1904.452, 2763.101, 3366.726, 4157.504]
TE Mistunings (cents)
⟨7.250, 2.497, -23.213, -2.100, 6.186]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.107518 |
Adjusted Error |
19.492663 cents |
TE Error |
5.634643 cents/octave |
Decimated (4p & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 14 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 2 | 4 | 5 | 8 | ] |
⟨ | 0 | 2 | 1 | 1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨604.6073, 347.5822]
TE Step Tunings (cents)
⟨-14.64658, 90.55721]
TE Tuning Map (cents)
⟨1209.215, 1904.379, 2766.011, 3370.619, 4141.694]
TE Mistunings (cents)
⟨9.215, 2.424, -20.302, 1.793, -9.624]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.192936 |
Adjusted Error |
20.281104 cents |
TE Error |
5.862554 cents/octave |
Decoid (270 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 130 | 206 | 302 | 365 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 0 | -2 | 3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨119.9913, 8.9006]
TE Step Tunings (cents)
⟨4.28317, 0.33428]
TE Tuning Map (cents)
⟨1199.913, 1902.060, 2786.502, 3368.657]
TE Mistunings (cents)
⟨-0.087, 0.105, 0.188, -0.169]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.153794 |
Adjusted Error |
0.208667 cents |
TE Error |
0.074329 cents/octave |
Decoid (270 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 10 | 16 | 23 | 28 | 34 | ] |
⟨ | 0 | -2 | 3 | 1 | 8 | ] ⟩ |
TE Generator Tunings (cents)
⟨119.9921, 8.9294]
TE Step Tunings (cents)
⟨3.90929, 1.11088]
TE Tuning Map (cents)
⟨1199.921, 1902.015, 2786.607, 3368.709, 4151.167]
TE Mistunings (cents)
⟨-0.079, 0.060, 0.293, -0.117, -0.150]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.066818 |
Adjusted Error |
0.255326 cents |
TE Error |
0.073806 cents/octave |
Decoid (270 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 34 | 37 | ] |
⟨ | 0 | -2 | 3 | 1 | 8 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨119.9964, 8.9165]
TE Step Tunings (cents)
⟨4.08155, 0.75342]
TE Tuning Map (cents)
⟨1199.964, 1902.109, 2786.667, 3368.816, 4151.210, 4439.867]
TE Mistunings (cents)
⟨-0.036, 0.154, 0.353, -0.010, -0.108, -0.661]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.197247 |
Adjusted Error |
0.390407 cents |
TE Error |
0.105503 cents/octave |
Deecee (72 & 41 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | 27 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | -3 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7549, 1901.6515, 2784.5682]
TE Step Tunings (cents)
⟨13.73960, 5.18024, -0.09851]
TE Tuning Map (cents)
⟨1200.755, 1901.651, 2784.568, 3368.665, 4153.702, 4438.881]
TE Mistunings (cents)
⟨0.755, -0.304, -1.745, -0.161, 2.384, -1.647]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.255259 |
Adjusted Error |
2.053601 cents |
TE Error |
0.554961 cents/octave |
Deflated (9 & 3p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 9 | 14 | 21 | 25 | ] |
⟨ | 3 | 5 | 7 | 8 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨402.0601, 118.9804]
TE Step Tunings (cents)
⟨118.98037, 45.11901]
TE Tuning Map (cents)
⟨1206.180, 1891.320, 2814.421, 3335.461]
TE Mistunings (cents)
⟨6.180, -10.635, 28.107, -33.365]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.061595 |
Adjusted Error |
27.036638 cents |
TE Error |
9.630645 cents/octave |
Degrees (80 & 60e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 80 | 127 | 186 | 225 | 277 | ] |
⟨ | 60 | 95 | 139 | 168 | 207 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 20 | 32 | 47 | 57 | 70 | ] |
⟨ | 0 | -1 | -2 | -3 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨59.9929, 16.7666]
TE Step Tunings (cents)
⟨9.69314, 7.07344]
TE Tuning Map (cents)
⟨1199.858, 1903.006, 2786.133, 3369.295, 4149.203]
TE Mistunings (cents)
⟨-0.142, 1.051, -0.181, 0.470, -2.115]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.396047 |
Adjusted Error |
1.441182 cents |
TE Error |
0.416595 cents/octave |
Degrees (140 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 140 | 222 | 325 | 393 | 484 | 518 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 20 | 32 | 47 | 57 | 70 | 74 | ] |
⟨ | 0 | -1 | -2 | -3 | -3 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨59.9996, 16.9197]
TE Step Tunings (cents)
⟨7.67911, 1.56145]
TE Tuning Map (cents)
⟨1199.992, 1903.067, 2786.141, 3369.218, 4149.212, 4439.970]
TE Mistunings (cents)
⟨-0.008, 1.112, -0.172, 0.392, -2.106, -0.558]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.466997 |
Adjusted Error |
1.441653 cents |
TE Error |
0.389590 cents/octave |
Delorean (4 & 17c)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.1991, 283.8664]
TE Step Tunings (cents)
⟨32.93199, 62.73360]
TE Tuning Map (cents)
⟨1198.199, 1891.399, 2805.732]
TE Mistunings (cents)
⟨-1.801, -10.556, 19.418]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.635840 |
Adjusted Error |
14.533727 cents |
TE Error |
6.259336 cents/octave |
Demeter (19 & 27 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 27 | 43 | 63 | 76 | ] |
⟨ | 10 | 16 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 2 | 1 | ] |
⟨ | 0 | 1 | 0 | 1 | ] |
⟨ | 0 | 0 | 3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7590, 1903.7715, 129.7983]
TE Step Tunings (cents)
⟨27.88381, 23.44660, 3.69085]
TE Tuning Map (cents)
⟨1199.759, 1903.772, 2788.913, 3363.127]
TE Mistunings (cents)
⟨-0.241, 1.817, 2.599, -5.699]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.130368 |
Adjusted Error |
3.645614 cents |
TE Error |
1.298594 cents/octave |
Demeter (10p & 19e & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | 1 | -3 | ] |
⟨ | 0 | 1 | 0 | 1 | 4 | ] |
⟨ | 0 | 0 | 3 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4063, 1904.5751, 129.9744]
TE Step Tunings (cents)
⟨6.27906, 23.35729, 25.66027]
TE Tuning Map (cents)
⟨1199.406, 1904.575, 2788.736, 3363.930, 4150.056]
TE Mistunings (cents)
⟨-0.594, 2.620, 2.422, -4.896, -1.262]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.198434 |
Adjusted Error |
4.193645 cents |
TE Error |
1.212235 cents/octave |
Demeter (19e & 27e & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | 1 | -3 | 2 | ] |
⟨ | 0 | 1 | 0 | 1 | 4 | 1 | ] |
⟨ | 0 | 0 | 3 | 2 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0478, 1905.1888, 129.6779]
TE Step Tunings (cents)
⟨17.68683, 23.80469, 7.63005]
TE Tuning Map (cents)
⟨1200.048, 1905.189, 2789.129, 3364.592, 4150.290, 4434.962]
TE Mistunings (cents)
⟨0.048, 3.234, 2.816, -4.234, -1.028, -5.565]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.171286 |
Adjusted Error |
4.838926 cents |
TE Error |
1.307662 cents/octave |
Demeter (10 & 27eg & 19eg)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | 41 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | 111 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | 77 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 2 | 1 | -3 | 2 | -1 | ] |
⟨ | 0 | 1 | 0 | 1 | 4 | 1 | 3 | ] |
⟨ | 0 | 0 | 3 | 2 | 1 | 1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0341, 1905.2007, 129.7033]
TE Step Tunings (cents)
⟨7.54276, 23.94571, 25.16170]
TE Tuning Map (cents)
⟨1200.034, 1905.201, 2789.178, 3364.641, 4150.404, 4434.972, 4904.678]
TE Mistunings (cents)
⟨0.034, 3.246, 2.864, -4.185, -0.914, -5.556, -0.278]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.163832 |
Adjusted Error |
4.950143 cents |
TE Error |
1.211055 cents/octave |
Demeter (27eg & 29g & 19egh)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | 111 | 115 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | 77 | 80 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 1 | 0 | 2 | 1 | -3 | 2 | -1 | -2 | ] |
⟨ | 0 | 1 | 0 | 1 | 4 | 1 | 3 | 4 | ] |
⟨ | 0 | 0 | 3 | 2 | 1 | 1 | 3 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2266, 1905.8251, 129.2935]
TE Step Tunings (cents)
⟨22.54582, 11.51404, 13.55696]
TE Tuning Map (cents)
⟨1200.227, 1905.825, 2788.334, 3364.639, 4151.914, 4435.572, 4905.129, 5093.553]
TE Mistunings (cents)
⟨0.227, 3.870, 2.020, -4.187, 0.596, -4.956, 0.174, -3.960]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.171566 |
Adjusted Error |
5.134734 cents |
TE Error |
1.208762 cents/octave |
Demolished (12 & 4e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |
⟨ | 0 | 1 | 1 | 1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨299.6589, 89.7791]
TE Step Tunings (cents)
⟨89.77912, 30.32157]
TE Tuning Map (cents)
⟨1198.636, 1887.733, 2786.709, 3386.027, 4164.903]
TE Mistunings (cents)
⟨-1.364, -14.222, 0.396, 17.201, 13.585]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.158119 |
Adjusted Error |
18.000718 cents |
TE Error |
5.203374 cents/octave |
Deutone (6 & 19)
Equal Temperament Mappings
| 2 | 9 | 5 | 7 | 13 | |
[ ⟨ | 6 | 19 | 14 | 17 | 22 | ] |
⟨ | 19 | 60 | 44 | 53 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 5 | 7 | 13 | |
[ ⟨ | 1 | 3 | 2 | 2 | 4 | ] |
⟨ | 0 | 1 | 2 | 5 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.3657, 191.5946]
TE Step Tunings (cents)
⟨30.19977, 53.79827]
TE Tuning Map (cents)
⟨1203.366, 3801.692, 2789.920, 3364.704, 4430.274]
TE Mistunings (cents)
⟨3.366, -2.218, 3.607, -4.122, -10.254]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.789857 |
Adjusted Error |
8.118179 cents |
TE Error |
2.193842 cents/octave |
Diana (31 & 53 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | -3 | 2 | 7 | ] |
⟨ | 0 | 1 | 1 | 4 | 1 | -2 | ] |
⟨ | 0 | 0 | 2 | 4 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.9152, 1902.4287, -159.1261]
TE Step Tunings (cents)
⟨9.20691, 12.81646, 8.14581]
TE Tuning Map (cents)
⟨1200.915, 1902.429, 2785.092, 3370.465, 4145.133, 4442.423]
TE Mistunings (cents)
⟨0.915, 0.474, -1.222, 1.639, -6.185, 1.895]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.221633 |
Adjusted Error |
3.379180 cents |
TE Error |
0.913183 cents/octave |
Diaschismic (12 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 46 | 73 | 107 | 129 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.4466, 103.5853]
TE Step Tunings (cents)
⟨15.32554, 22.06493]
TE Tuning Map (cents)
⟨1198.893, 1901.925, 2790.062, 3367.444]
TE Mistunings (cents)
⟨-1.107, -0.030, 3.749, -1.382]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.627079 |
Adjusted Error |
2.833293 cents |
TE Error |
1.009239 cents/octave |
Diaschismic (12 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 7 | 9 | ] |
⟨ | 0 | 1 | -2 | -8 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.4488, 103.6189]
TE Step Tunings (cents)
⟨14.55982, 22.26478]
TE Tuning Map (cents)
⟨1198.898, 1901.965, 2790.006, 3367.190, 4151.612]
TE Mistunings (cents)
⟨-1.102, 0.010, 3.692, -1.636, 0.294]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.192346 |
Adjusted Error |
3.129178 cents |
TE Error |
0.904535 cents/octave |
Diaschismic (58 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 5 | 7 | 9 | 10 | ] |
⟨ | 0 | 1 | -2 | -8 | -12 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.4468, 103.6080]
TE Step Tunings (cents)
⟨14.80203, 7.39947]
TE Tuning Map (cents)
⟨1198.894, 1901.948, 2790.018, 3367.263, 4151.724, 4440.347]
TE Mistunings (cents)
⟨-1.106, -0.007, 3.704, -1.563, 0.406, -0.181]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.561293 |
Adjusted Error |
3.057136 cents |
TE Error |
0.826155 cents/octave |
Dichosis (3p & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 8 | 10 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 2 | 4 | 5 | ] |
⟨ | 0 | 2 | 1 | -4 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.8896, 360.0244]
TE Step Tunings (cents)
⟨6.57532, 117.81636]
TE Tuning Map (cents)
⟨1197.890, 1917.938, 2755.804, 3351.461, 4189.326]
TE Mistunings (cents)
⟨-2.110, 15.983, -30.510, -17.365, 38.008]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.061977 |
Adjusted Error |
32.370346 cents |
TE Error |
9.357129 cents/octave |
Dichotic (10 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 7 | 11 | 16 | 20 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.9794, 356.5546]
TE Step Tunings (cents)
⟨93.92316, 37.39254]
TE Tuning Map (cents)
⟨1200.979, 1914.089, 2758.513, 3377.699]
TE Mistunings (cents)
⟨0.979, 12.134, -27.800, 8.873]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.972583 |
Adjusted Error |
20.481512 cents |
TE Error |
7.295662 cents/octave |
Dichotic (7p & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 2 | 4 | 2 | ] |
⟨ | 0 | 2 | 1 | -4 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7252, 354.1814]
TE Step Tunings (cents)
⟨57.36200, 79.81912]
TE Tuning Map (cents)
⟨1199.725, 1908.088, 2753.632, 3382.175, 4170.357]
TE Mistunings (cents)
⟨-0.275, 6.133, -32.682, 13.350, 19.039]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.030746 |
Adjusted Error |
25.235583 cents |
TE Error |
7.294719 cents/octave |
Dicot (7 & 3)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1206.4097, 350.4563]
TE Step Tunings (cents)
⟨155.04084, 40.37461]
TE Tuning Map (cents)
⟨1206.410, 1907.322, 2763.276]
TE Mistunings (cents)
⟨6.410, 5.367, -23.038]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.520928 |
Adjusted Error |
16.472965 cents |
TE Error |
7.094520 cents/octave |
Dicot (4 & 3d)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1206.2462, 338.1317]
TE Step Tunings (cents)
⟨191.85106, 146.28064]
TE Tuning Map (cents)
⟨1206.246, 1882.510, 2750.624, 3426.887]
TE Mistunings (cents)
⟨6.246, -19.445, -35.690, 58.062]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.500706 |
Adjusted Error |
41.008929 cents |
TE Error |
14.607675 cents/octave |
Dicot (3de & 4e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 2 | 2 | 2 | ] |
⟨ | 0 | 2 | 1 | 3 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1204.1482, 343.3072]
TE Step Tunings (cents)
⟨169.08063, 174.22658]
TE Tuning Map (cents)
⟨1204.148, 1890.763, 2751.604, 3438.218, 4124.833]
TE Mistunings (cents)
⟨4.148, -11.192, -34.710, 69.392, -26.485]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.540188 |
Adjusted Error |
47.938641 cents |
TE Error |
13.857375 cents/octave |
Diesic (31 & 1ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 1 | 2 | 3 | 3 | 4 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -13 | -21 | -6 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5005, 38.5809]
TE Step Tunings (cents)
⟨38.58088, 4.49313]
TE Tuning Map (cents)
⟨1200.500, 1899.449, 2791.303, 3370.016, 4146.127]
TE Mistunings (cents)
⟨0.500, -2.506, 4.989, 1.190, -5.191]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.454361 |
Adjusted Error |
4.842669 cents |
TE Error |
1.399845 cents/octave |
Diesic (31 & 1ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |
⟨ | 0 | -13 | -21 | -6 | -17 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3181, 38.4218]
TE Step Tunings (cents)
⟨38.42184, 8.24110]
TE Tuning Map (cents)
⟨1199.318, 1899.152, 2791.096, 3367.423, 4144.101, 4451.476]
TE Mistunings (cents)
⟨-0.682, -2.803, 4.782, -1.403, -7.217, 10.948]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.283704 |
Adjusted Error |
6.953864 cents |
TE Error |
1.879199 cents/octave |
Diminished (12 & 4)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨299.6536, 99.3923]
TE Step Tunings (cents)
⟨99.39225, 1.47683]
TE Tuning Map (cents)
⟨1198.614, 1897.314, 2796.275]
TE Mistunings (cents)
⟨-1.386, -4.641, 9.961]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.054166 |
Adjusted Error |
7.206471 cents |
TE Error |
3.103658 cents/octave |
Diminished (12 & 4)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 4 | 6 | 9 | 11 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨299.0548, 99.2099]
TE Step Tunings (cents)
⟨99.20990, 1.42513]
TE Tuning Map (cents)
⟨1196.219, 1893.539, 2790.703, 3388.813]
TE Mistunings (cents)
⟨-3.781, -8.416, 4.390, 19.987]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.914754 |
Adjusted Error |
13.806908 cents |
TE Error |
4.918120 cents/octave |
Diminished (12 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 14 | ] |
⟨ | 0 | 1 | 1 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨297.8775, 108.2476]
TE Step Tunings (cents)
⟨81.38235, 26.86521]
TE Tuning Map (cents)
⟨1191.510, 1895.512, 2789.145, 3384.900, 4170.285]
TE Mistunings (cents)
⟨-8.490, -6.443, 2.831, 16.074, 18.967]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.000471 |
Adjusted Error |
19.132446 cents |
TE Error |
5.530517 cents/octave |
Diminished (8d & 12f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 4 | 7 | 10 | 12 | 14 | 15 | ] |
⟨ | 0 | -1 | -1 | -1 | 0 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨297.2914, 184.5453]
TE Step Tunings (cents)
⟨40.94707, 71.79909]
TE Tuning Map (cents)
⟨1189.166, 1896.495, 2788.369, 3382.952, 4162.080, 4459.371]
TE Mistunings (cents)
⟨-10.834, -5.460, 2.055, 14.126, 10.762, 18.844]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.009635 |
Adjusted Error |
20.876177 cents |
TE Error |
5.641540 cents/octave |
Ditonic (53 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 50 | 79 | 116 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.2973, 407.6749]
TE Step Tunings (cents)
⟨21.31014, 1.41719]
TE Tuning Map (cents)
⟨1200.297, 1902.010, 2785.542]
TE Mistunings (cents)
⟨0.297, 0.055, -0.772]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.679404 |
Adjusted Error |
0.599564 cents |
TE Error |
0.258218 cents/octave |
Ditonic (50 & 3p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 50 | 79 | 116 | 140 | 173 | 185 | ] |
⟨ | 3 | 5 | 7 | 8 | 10 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 6 | 3 | -4 | -3 | 2 | ] |
⟨ | 0 | -13 | -2 | 20 | 19 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3993, 408.3627]
TE Step Tunings (cents)
⟨23.68886, 5.65206]
TE Tuning Map (cents)
⟨1201.399, 1899.680, 2787.472, 3361.657, 4154.694, 4444.612]
TE Mistunings (cents)
⟨1.399, -2.275, 1.159, -7.169, 3.376, 4.084]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.939798 |
Adjusted Error |
5.438048 cents |
TE Error |
1.469568 cents/octave |
Ditonic (53 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 183 | 196 | ] |
⟨ | 50 | 79 | 116 | 173 | 185 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 1 | 6 | 3 | -3 | 2 | ] |
⟨ | 0 | -13 | -2 | 19 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8035, 407.9652]
TE Step Tunings (cents)
⟨15.40068, 7.69134]
TE Tuning Map (cents)
⟨1200.803, 1901.274, 2786.480, 4148.928, 4441.433]
TE Mistunings (cents)
⟨0.803, -0.681, 0.166, -2.390, 0.905]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.447208 |
Adjusted Error |
1.938898 cents |
TE Error |
0.523964 cents/octave |
Divination (22 & 60)
Contorted
Magic (order 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 60 | 95 | 139 | 168 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 5 | 5 | 10 | ] |
⟨ | 0 | -5 | -1 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.5412, 219.8461]
TE Step Tunings (cents)
⟨10.57050, 16.14219]
TE Tuning Map (cents)
⟨1201.082, 1903.476, 2782.860, 3367.259]
TE Mistunings (cents)
⟨1.082, 1.521, -3.454, -1.567]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.597358 |
Adjusted Error |
3.015814 cents |
TE Error |
1.074254 cents/octave |
Divination (22 & 38d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 5 | 5 | 10 | 8 | ] |
⟨ | 0 | -5 | -1 | -12 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.8336, 220.0719]
TE Step Tunings (cents)
⟨24.46975, 17.45613]
TE Tuning Map (cents)
⟨1201.667, 1903.809, 2784.096, 3367.474, 4146.453]
TE Mistunings (cents)
⟨1.667, 1.854, -2.217, -1.352, -4.865]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.333439 |
Adjusted Error |
4.171165 cents |
TE Error |
1.205737 cents/octave |
Divination (22f & 38df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 82 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 5 | 5 | 10 | 8 | 14 | ] |
⟨ | 0 | -5 | -1 | -12 | -3 | -18 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.9670, 220.4344]
TE Step Tunings (cents)
⟨18.51483, 20.91073]
TE Tuning Map (cents)
⟨1201.934, 1902.663, 2784.401, 3364.457, 4146.433, 4445.718]
TE Mistunings (cents)
⟨1.934, 0.708, -1.913, -4.369, -4.885, 5.191]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.826548 |
Adjusted Error |
5.010982 cents |
TE Error |
1.354158 cents/octave |
Dodifo (289 & 494)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 289 | 458 | 671 | ] |
⟨ | 494 | 783 | 1147 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0201, 357.0937]
TE Step Tunings (cents)
⟨1.33149, 1.65024]
TE Tuning Map (cents)
⟨1200.020, 1901.962, 2786.257]
TE Mistunings (cents)
⟨0.020, 0.007, -0.057]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.626986 |
Adjusted Error |
0.042694 cents |
TE Error |
0.018387 cents/octave |
Dodifo (84 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 84 | 133 | 195 | 311 | ] |
⟨ | 121 | 192 | 281 | 448 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 12 | 5 | 4 | ] |
⟨ | 0 | -35 | -9 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7711, 357.0070]
TE Step Tunings (cents)
⟨6.08352, 5.69219]
TE Tuning Map (cents)
⟨1199.771, 1902.009, 2785.793, 4442.077]
TE Mistunings (cents)
⟨-0.229, 0.054, -0.521, 1.550]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.094965 |
Adjusted Error |
0.977824 cents |
TE Error |
0.264245 cents/octave |
Domain (171 & 1335)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 1335 | 2116 | 3100 | 3748 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | -3 | -9 | -8 | ] |
⟨ | 0 | 17 | 35 | 36 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0013, 182.4672]
TE Step Tunings (cents)
⟨2.33972, 0.59919]
TE Tuning Map (cents)
⟨1200.004, 1901.939, 2786.342, 3368.810]
TE Mistunings (cents)
⟨0.004, -0.016, 0.028, -0.016]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
17.348590 |
Adjusted Error |
0.023954 cents |
TE Error |
0.008533 cents/octave |
Dominant (12 & 5)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 5 | 8 | 12 | 14 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1195.4122, 496.5212]
TE Step Tunings (cents)
⟨91.78184, 18.80602]
TE Tuning Map (cents)
⟨1195.412, 1894.303, 2795.564, 3383.867]
TE Mistunings (cents)
⟨-4.588, -7.652, 9.250, 15.041]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.897840 |
Adjusted Error |
13.237136 cents |
TE Error |
4.715163 cents/octave |
Dominant (12 & 5p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 5 | 8 | 12 | 14 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 2 | 1 | ] |
⟨ | 0 | -1 | -4 | 2 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1194.1045, 494.3059]
TE Step Tunings (cents)
⟨83.32039, 38.85196]
TE Tuning Map (cents)
⟨1194.105, 1893.903, 2799.195, 3376.821, 4159.940]
TE Mistunings (cents)
⟨-5.895, -8.052, 12.881, 7.995, 8.622]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.178787 |
Adjusted Error |
15.902907 cents |
TE Error |
4.596971 cents/octave |
Dominatrix (7p & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 2 | 6 | 5 | ] |
⟨ | 0 | -1 | -4 | 2 | -6 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1193.3659, 498.6835]
TE Step Tunings (cents)
⟨106.68574, 89.31315]
TE Tuning Map (cents)
⟨1193.366, 1888.048, 2778.730, 3384.099, 4168.094, 4470.779]
TE Mistunings (cents)
⟨-6.634, -13.907, -7.584, 15.273, 16.776, 30.251]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.882143 |
Adjusted Error |
23.963119 cents |
TE Error |
6.475749 cents/octave |
Domineering (12 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 2 | 6 | ] |
⟨ | 0 | -1 | -4 | 2 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1194.8521, 499.0733]
TE Step Tunings (cents)
⟨91.04309, 14.61929]
TE Tuning Map (cents)
⟨1194.852, 1890.631, 2783.115, 3387.851, 4174.673]
TE Mistunings (cents)
⟨-5.148, -11.324, -3.199, 19.025, 23.355]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.963541 |
Adjusted Error |
20.227906 cents |
TE Error |
5.847176 cents/octave |
Dominion (5p & 12p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 44 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 2 | 1 | 7 | ] |
⟨ | 0 | -1 | -4 | 2 | 6 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.1591, 493.0981]
TE Step Tunings (cents)
⟨58.61804, 75.17241]
TE Tuning Map (cents)
⟨1195.159, 1897.220, 2808.244, 3376.515, 4153.748, 4421.329]
TE Mistunings (cents)
⟨-4.841, -4.735, 21.930, 7.689, 2.430, -19.199]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.349678 |
Adjusted Error |
18.897365 cents |
TE Error |
5.106789 cents/octave |
Donar (270 & 494 & 684)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 494 | 783 | 1147 | 1387 | 1709 | 1828 | ] |
⟨ | 684 | 1084 | 1588 | 1920 | 2366 | 2531 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 1 | -2 | 2 | 7 | ] |
⟨ | 0 | 1 | 0 | 7 | 5 | 3 | ] |
⟨ | 0 | 0 | 2 | -8 | -6 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0175, 1901.9810, 1093.1197]
TE Step Tunings (cents)
⟨0.75195, 0.82817, 0.85949]
TE Tuning Map (cents)
⟨1200.035, 1901.981, 2786.257, 3368.874, 4151.222, 4440.467]
TE Mistunings (cents)
⟨0.035, 0.026, -0.057, 0.049, -0.096, -0.061]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.726719 |
Adjusted Error |
0.088505 cents |
TE Error |
0.023917 cents/octave |
Doublethink (9 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 3 | 1 | 3 | 2 | ] |
⟨ | 0 | 14 | -6 | 16 | 4 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6935, 135.8013]
TE Step Tunings (cents)
⟨6.69403, 21.51787]
TE Tuning Map (cents)
⟨1200.694, 1901.218, 2787.273, 3373.514, 4145.286, 4438.406]
TE Mistunings (cents)
⟨0.694, -0.737, 0.959, 4.688, -6.032, -2.122]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.781183 |
Adjusted Error |
4.004279 cents |
TE Error |
1.082109 cents/octave |
Doublewide (22 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 22 | 35 | 51 | ] |
⟨ | 26 | 41 | 60 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.6864, 274.7945]
TE Step Tunings (cents)
⟨31.79016, 19.30728]
TE Tuning Map (cents)
⟨1201.373, 1904.254, 2779.735]
TE Mistunings (cents)
⟨1.373, 2.299, -6.579]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.058442 |
Adjusted Error |
4.647023 cents |
TE Error |
2.001364 cents/octave |
Doublewide (22 & 4)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 4 | 6 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 5 | 6 | 7 | ] |
⟨ | 0 | -4 | -3 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0467, 274.3022]
TE Step Tunings (cents)
⟨51.44224, 17.09105]
TE Tuning Map (cents)
⟨1200.093, 1903.025, 2777.374, 3377.420]
TE Mistunings (cents)
⟨0.093, 1.070, -8.940, 8.594]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.793221 |
Adjusted Error |
6.970653 cents |
TE Error |
2.482997 cents/octave |
Doublewide (22 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 5 | 6 | 7 | 6 | ] |
⟨ | 0 | -4 | -3 | -3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.1922, 274.5431]
TE Step Tunings (cents)
⟨32.09258, 19.01337]
TE Tuning Map (cents)
⟨1200.384, 1902.788, 2777.524, 3377.716, 4150.239]
TE Mistunings (cents)
⟨0.384, 0.833, -8.790, 8.890, -1.079]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.154473 |
Adjusted Error |
7.717000 cents |
TE Error |
2.230713 cents/octave |
Draco (58 & 53 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -2 | -6 | ] |
⟨ | 0 | 2 | 0 | 9 | 9 | ] |
⟨ | 0 | 0 | 1 | -1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3884, 950.8215, 2788.2598]
TE Step Tunings (cents)
⟨12.50657, 10.18078, -1.92865]
TE Tuning Map (cents)
⟨1199.388, 1901.643, 2788.260, 3370.357, 4149.323]
TE Mistunings (cents)
⟨-0.612, -0.312, 1.946, 1.531, -1.995]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.308475 |
Adjusted Error |
2.043853 cents |
TE Error |
0.590806 cents/octave |
Draco (58 & 53 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -2 | -6 | -1 | ] |
⟨ | 0 | 2 | 0 | 9 | 9 | 3 | ] |
⟨ | 0 | 0 | 1 | -1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3566, 950.7994, 2788.1041]
TE Step Tunings (cents)
⟨12.24569, 8.61908, 1.69975]
TE Tuning Map (cents)
⟨1199.357, 1901.599, 2788.104, 3370.377, 4149.159, 4441.146]
TE Mistunings (cents)
⟨-0.643, -0.356, 1.790, 1.551, -2.159, 0.618]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.268371 |
Adjusted Error |
2.016510 cents |
TE Error |
0.544938 cents/octave |
Duodecim (12 & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 0 | 0 | 0 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨99.6710, 34.8622]
TE Step Tunings (cents)
⟨64.80875, 34.86220]
TE Tuning Map (cents)
⟨1196.051, 1893.748, 2790.787, 3388.812, 4151.318]
TE Mistunings (cents)
⟨-3.949, -8.207, 4.473, 19.987, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.392080 |
Adjusted Error |
15.221382 cents |
TE Error |
4.399966 cents/octave |
Dwynwen (15 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 2 | 3 | 3 | 2 | ] |
⟨ | 0 | 9 | 5 | -3 | 7 | 26 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1405, 78.2280]
TE Step Tunings (cents)
⟨-1.93382, 26.72061]
TE Tuning Map (cents)
⟨1200.141, 1904.192, 2791.421, 3365.738, 4148.018, 4434.209]
TE Mistunings (cents)
⟨0.141, 2.237, 5.107, -3.088, -3.300, -6.319]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.880939 |
Adjusted Error |
5.208511 cents |
TE Error |
1.407539 cents/octave |
Echidna (22 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 58 | 92 | 135 | 163 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.3067, 164.9535]
TE Step Tunings (cents)
⟨10.80327, 16.56796]
TE Tuning Map (cents)
⟨1198.613, 1902.366, 2787.641, 3370.379]
TE Mistunings (cents)
⟨-1.387, 0.411, 1.327, 1.554]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.628444 |
Adjusted Error |
2.273362 cents |
TE Error |
0.809788 cents/octave |
Echidna (22 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 3 | 7 | 5 | ] |
⟨ | 0 | -3 | 6 | -5 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.3096, 164.9576]
TE Step Tunings (cents)
⟨10.70538, 16.60518]
TE Tuning Map (cents)
⟨1198.619, 1902.365, 2787.674, 3370.379, 4151.251]
TE Mistunings (cents)
⟨-1.381, 0.410, 1.361, 1.553, -0.067]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.730106 |
Adjusted Error |
2.505948 cents |
TE Error |
0.724381 cents/octave |
Echidna (58 & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 3 | 7 | 5 | 3 | ] |
⟨ | 0 | -3 | 6 | -5 | 7 | 16 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.3410, 165.0629]
TE Step Tunings (cents)
⟨17.66849, 7.90497]
TE Tuning Map (cents)
⟨1198.682, 1902.175, 2788.400, 3370.073, 4152.145, 4439.029]
TE Mistunings (cents)
⟨-1.318, 0.220, 2.086, 1.247, 0.827, -1.499]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.595975 |
Adjusted Error |
2.608914 cents |
TE Error |
0.705028 cents/octave |
Echidnic (46 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 2 | 7 | 6 | 3 | ] |
⟨ | 0 | 3 | -6 | -1 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8052, 235.0197]
TE Step Tunings (cents)
⟨24.51185, 7.20656]
TE Tuning Map (cents)
⟨1199.610, 1904.670, 2788.518, 3363.812, 4149.613]
TE Mistunings (cents)
⟨-0.390, 2.715, 2.205, -5.014, -1.705]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.802631 |
Adjusted Error |
4.214202 cents |
TE Error |
1.218178 cents/octave |
Echidnic (10p & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 2 | 7 | 6 | 3 | 7 | ] |
⟨ | 0 | 3 | -6 | -1 | 10 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9612, 235.0725]
TE Step Tunings (cents)
⟨7.01567, 24.56013]
TE Tuning Map (cents)
⟨1199.922, 1905.140, 2789.294, 3364.695, 4150.608, 4434.801]
TE Mistunings (cents)
⟨-0.078, 3.185, 2.980, -4.131, -0.709, -5.726]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.471183 |
Adjusted Error |
4.846798 cents |
TE Error |
1.309790 cents/octave |
Edson (29 & 41)
Equal Temperament Mappings
| 2 | 3 | 7/5 | 11/5 | 13/5 | |
[ ⟨ | 29 | 46 | 14 | 33 | 40 | ] |
⟨ | 41 | 65 | 20 | 47 | 57 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7/5 | 11/5 | 13/5 | |
[ ⟨ | 1 | 2 | -2 | -3 | -4 | ] |
⟨ | 0 | -1 | 6 | 10 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.9836, 496.4505]
TE Step Tunings (cents)
⟨28.25310, 9.25960]
TE Tuning Map (cents)
⟨1198.984, 1901.517, 580.735, 1367.554, 1657.921]
TE Mistunings (cents)
⟨-1.016, -0.438, -1.777, 2.549, 3.707]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
5.295594 |
Adjusted Error |
3.666874 cents |
TE Error |
2.313540 cents/octave |
Egads (1783 & 3125)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 1783 | 2826 | 4140 | ] |
⟨ | 3125 | 4953 | 7256 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | |
[ ⟨ | 1 | 15 | 16 | ] |
⟨ | 0 | -51 | -52 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0006, 315.6481]
TE Step Tunings (cents)
⟨0.25306, 0.23961]
TE Tuning Map (cents)
⟨1200.001, 1901.957, 2786.309]
TE Mistunings (cents)
⟨0.001, 0.002, -0.004]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.468279 |
Adjusted Error |
0.003059 cents |
TE Error |
0.001318 cents/octave |
Ekadash (72 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 5 | 8 | 5 | 6 | 19 | ] |
⟨ | 0 | -6 | -11 | 2 | 3 | -38 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2583, 183.2662]
TE Step Tunings (cents)
⟨2.79734, 5.25846]
TE Tuning Map (cents)
⟨1200.517, 1901.694, 2786.138, 3367.824, 4151.348, 4440.792]
TE Mistunings (cents)
⟨0.517, -0.261, -0.176, -1.002, 0.030, 0.265]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.917398 |
Adjusted Error |
0.993187 cents |
TE Error |
0.268397 cents/octave |
Emka (224 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 224 | 355 | 520 | ] |
⟨ | 87 | 138 | 202 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.1125, 551.8361]
TE Step Tunings (cents)
⟨5.24097, 0.30040]
TE Tuning Map (cents)
⟨1200.113, 1902.000, 2785.986]
TE Mistunings (cents)
⟨0.113, 0.045, -0.328]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.353412 |
Adjusted Error |
0.244883 cents |
TE Error |
0.105466 cents/octave |
Emka (50 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 50 | 79 | 116 | 140 | ] |
⟨ | 87 | 138 | 202 | 244 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 14 | 6 | 12 | ] |
⟨ | 0 | -27 | -8 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4715, 551.9991]
TE Step Tunings (cents)
⟨5.05860, 10.89128]
TE Tuning Map (cents)
⟨1200.472, 1902.626, 2786.837, 3365.677]
TE Mistunings (cents)
⟨0.472, 0.671, 0.523, -3.149]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.367636 |
Adjusted Error |
1.835937 cents |
TE Error |
0.653974 cents/octave |
Emka (87 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 50 | 79 | 116 | 140 | 173 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 14 | 6 | 12 | 3 | ] |
⟨ | 0 | -27 | -8 | -20 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2568, 551.8832]
TE Step Tunings (cents)
⟨11.74492, 3.56898]
TE Tuning Map (cents)
⟨1200.257, 1902.748, 2786.475, 3365.417, 4152.654]
TE Mistunings (cents)
⟨0.257, 0.793, 0.161, -3.409, 1.336]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.381019 |
Adjusted Error |
2.157438 cents |
TE Error |
0.623640 cents/octave |
Emka (87 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 50 | 79 | 116 | 140 | 173 | 185 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 14 | 6 | 12 | 3 | 6 | ] |
⟨ | 0 | -27 | -8 | -20 | 1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1524, 551.8284]
TE Step Tunings (cents)
⟨12.08354, 2.97769]
TE Tuning Map (cents)
⟨1200.152, 1902.766, 2786.287, 3365.260, 4152.286, 4441.772]
TE Mistunings (cents)
⟨0.152, 0.811, -0.027, -3.566, 0.968, 1.244]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.023687 |
Adjusted Error |
2.183871 cents |
TE Error |
0.590165 cents/octave |
Emka (87 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 301 | 322 | ] |
⟨ | 224 | 355 | 520 | 775 | 829 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 1 | 14 | 6 | 3 | 6 | ] |
⟨ | 0 | -27 | -8 | 1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9718, 551.7624]
TE Step Tunings (cents)
⟨2.32638, 4.45347]
TE Tuning Map (cents)
⟨1199.972, 1902.021, 2785.732, 4151.678, 4441.019]
TE Mistunings (cents)
⟨-0.028, 0.066, -0.582, 0.360, 0.491]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.498734 |
Adjusted Error |
0.506800 cents |
TE Error |
0.136957 cents/octave |
Emka (87 & 37)
Equal Temperament Mappings
| 2 | 5 | 11 | 13 | |
[ ⟨ | 87 | 202 | 301 | 322 | ] |
⟨ | 37 | 86 | 128 | 137 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 11 | 13 | |
[ ⟨ | 1 | 6 | 3 | 6 | ] |
⟨ | 0 | -8 | 1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8959, 551.6509]
TE Step Tunings (cents)
⟨12.85077, 2.21296]
TE Tuning Map (cents)
⟨1199.896, 2786.169, 4151.339, 4441.121]
TE Mistunings (cents)
⟨-0.104, -0.145, 0.021, 0.594]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.474972 |
Adjusted Error |
0.372354 cents |
TE Error |
0.100624 cents/octave |
Emkay (224 & 311)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | ] |
⟨ | 311 | 493 | 722 | 873 | 1076 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 14 | 6 | -28 | 3 | ] |
⟨ | 0 | -27 | -8 | 67 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9959, 551.7727]
TE Step Tunings (cents)
⟨1.90439, 2.48686]
TE Tuning Map (cents)
⟨1199.996, 1902.079, 2785.794, 3368.887, 4151.760]
TE Mistunings (cents)
⟨-0.004, 0.124, -0.520, 0.062, 0.442]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.183589 |
Adjusted Error |
0.418450 cents |
TE Error |
0.120959 cents/octave |
Emkay (224 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 14 | 6 | -28 | 3 | 6 | ] |
⟨ | 0 | -27 | -8 | 67 | 1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9695, 551.7609]
TE Step Tunings (cents)
⟨4.41851, 2.41637]
TE Tuning Map (cents)
⟨1199.969, 1902.029, 2785.730, 3368.834, 4151.669, 4441.012]
TE Mistunings (cents)
⟨-0.031, 0.074, -0.584, 0.008, 0.351, 0.485]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.060265 |
Adjusted Error |
0.462754 cents |
TE Error |
0.125054 cents/octave |
Enipucrop (7 & 1p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1210.2699, 174.5816]
TE Step Tunings (cents)
⟨174.58158, -11.80110]
TE Tuning Map (cents)
⟨1210.270, 1896.795, 2769.703]
TE Mistunings (cents)
⟨10.270, -5.160, -16.611]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.140571 |
Adjusted Error |
17.336749 cents |
TE Error |
7.466531 cents/octave |
Enjera (12f & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] |
⟨ | 0 | 1 | 4 | 4 | 6 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.2609, 94.0046]
TE Step Tunings (cents)
⟨94.00458, 35.23343]
TE Tuning Map (cents)
⟨1198.522, 1891.787, 2773.062, 3372.323, 4159.593, 4476.840]
TE Mistunings (cents)
⟨-1.478, -10.168, -13.252, 3.497, 8.275, 36.313]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.265551 |
Adjusted Error |
20.238809 cents |
TE Error |
5.469298 cents/octave |
Enlil (72 & 87 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 0 | 6 | ] |
⟨ | 0 | 6 | 5 | 0 | 1 | ] |
⟨ | 0 | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3808, 317.0421, 3368.5016]
TE Step Tunings (cents)
⟨7.38207, 5.28237, 3.94917]
TE Tuning Map (cents)
⟨1200.381, 1902.253, 2785.591, 3368.502, 4150.826]
TE Mistunings (cents)
⟨0.381, 0.298, -0.722, -0.324, -0.492]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.305746 |
Adjusted Error |
0.862347 cents |
TE Error |
0.249274 cents/octave |
Enlil (72 & 87 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 0 | 6 | 0 | ] |
⟨ | 0 | 6 | 5 | 0 | 1 | 14 | ] |
⟨ | 0 | 0 | 0 | 1 | -1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3561, 317.1025, 3368.4666]
TE Step Tunings (cents)
⟨5.27367, 6.71953, 4.45383]
TE Tuning Map (cents)
⟨1200.356, 1902.615, 2785.868, 3368.467, 4150.772, 4439.435]
TE Mistunings (cents)
⟨0.356, 0.660, -0.445, -0.359, -0.546, -1.093]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.309713 |
Adjusted Error |
1.030586 cents |
TE Error |
0.278504 cents/octave |
Enneadecal (171 & 323)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 171 | 271 | 397 | ] |
⟨ | 323 | 512 | 750 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨63.1586, 7.2418]
TE Step Tunings (cents)
⟨3.20620, 2.01781]
TE Tuning Map (cents)
⟨1200.013, 1901.999, 2786.219]
TE Mistunings (cents)
⟨0.013, 0.044, -0.095]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.001499 |
Adjusted Error |
0.068354 cents |
TE Error |
0.029438 cents/octave |
Enneadecal (171 & 323)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 323 | 512 | 750 | 907 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 0 | 1 | 1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨63.1599, 7.1437]
TE Step Tunings (cents)
⟨4.87612, 1.13381]
TE Tuning Map (cents)
⟨1200.038, 1901.941, 2786.179, 3368.906]
TE Mistunings (cents)
⟨0.038, -0.014, -0.134, 0.080]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.303278 |
Adjusted Error |
0.105920 cents |
TE Error |
0.037729 cents/octave |
Ennealim (72 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 15 | 22 | 26 | 33 | 34 | ] |
⟨ | 0 | -2 | -3 | -2 | -5 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.4088, 49.7357]
TE Step Tunings (cents)
⟨15.79841, 2.34050]
TE Tuning Map (cents)
⟨1200.679, 1901.661, 2785.787, 3369.158, 4153.812, 4436.428]
TE Mistunings (cents)
⟨0.679, -0.294, -0.527, 0.332, 2.494, -4.099]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.575934 |
Adjusted Error |
2.295347 cents |
TE Error |
0.620290 cents/octave |
Ennealiminal (72 & 99p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 99 | 157 | 230 | 278 | 342 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 15 | 22 | 26 | 30 | ] |
⟨ | 0 | -2 | -3 | -2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3884, 49.5240]
TE Step Tunings (cents)
⟨11.21044, 3.97317]
TE Tuning Map (cents)
⟨1200.495, 1901.778, 2785.972, 3369.050, 4150.223]
TE Mistunings (cents)
⟨0.495, -0.177, -0.341, 0.224, -1.095]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.385776 |
Adjusted Error |
0.961246 cents |
TE Error |
0.277862 cents/octave |
Ennealimmal (612 & 441)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 612 | 970 | 1421 | ] |
⟨ | 441 | 699 | 1024 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨133.3333, 49.0141]
TE Step Tunings (cents)
⟨1.69299, 0.37163]
TE Tuning Map (cents)
⟨1200.000, 1901.971, 2786.290]
TE Mistunings (cents)
⟨-0.000, 0.016, -0.023]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.418750 |
Adjusted Error |
0.019312 cents |
TE Error |
0.008317 cents/octave |
Ennealimmal (171 & 441)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 441 | 699 | 1024 | 1238 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 9 | 15 | 22 | 26 | ] |
⟨ | 0 | -2 | -3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3357, 49.0214]
TE Step Tunings (cents)
⟨2.00342, 1.94430]
TE Tuning Map (cents)
⟨1200.022, 1901.993, 2786.322, 3368.687]
TE Mistunings (cents)
⟨0.022, 0.038, 0.009, -0.139]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.723799 |
Adjusted Error |
0.083445 cents |
TE Error |
0.029724 cents/octave |
Ennealimmal (270 & 99e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 15 | 22 | 26 | 37 | ] |
⟨ | 0 | -2 | -3 | -2 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3229, 48.8616]
TE Step Tunings (cents)
⟨4.18570, 0.70472]
TE Tuning Map (cents)
⟨1199.906, 1902.121, 2786.519, 3368.673, 4151.163]
TE Mistunings (cents)
⟨-0.094, 0.166, 0.206, -0.153, -0.155]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.347856 |
Adjusted Error |
0.279114 cents |
TE Error |
0.080682 cents/octave |
Ennealimmic (72 & 270 & 99e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 1 | 1 | 12 | 0 | ] |
⟨ | 0 | 2 | 3 | 2 | 0 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3357, 884.3288, 4151.3179]
TE Step Tunings (cents)
⟨2.23725, 3.65478, 0.52677]
TE Tuning Map (cents)
⟨1200.022, 1901.993, 2786.322, 3368.687, 4151.318]
TE Mistunings (cents)
⟨0.022, 0.038, 0.009, -0.139, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.488530 |
Adjusted Error |
0.091972 cents |
TE Error |
0.026586 cents/octave |
Ennealimmic (270 & 72 & 171)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 171 | 271 | 397 | 480 | 592 | 633 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 1 | 1 | 12 | 0 | -31 | ] |
⟨ | 0 | 2 | 3 | 2 | 0 | 5 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3276, 884.3660, 4151.5679]
TE Step Tunings (cents)
⟨3.60698, -0.06699, 1.35022]
TE Tuning Map (cents)
⟨1199.949, 1902.060, 2786.426, 3368.664, 4151.568, 4440.242]
TE Mistunings (cents)
⟨-0.051, 0.105, 0.112, -0.162, 0.250, -0.286]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.685706 |
Adjusted Error |
0.233383 cents |
TE Error |
0.063069 cents/octave |
Ennealimnic (72 & 99e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 15 | 22 | 26 | 33 | ] |
⟨ | 0 | -2 | -3 | -2 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3514, 49.4015]
TE Step Tunings (cents)
⟨10.01058, 4.84244]
TE Tuning Map (cents)
⟨1200.163, 1901.469, 2785.527, 3368.335, 4153.590]
TE Mistunings (cents)
⟨0.163, -0.486, -0.786, -0.491, 2.272]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.792622 |
Adjusted Error |
1.292073 cents |
TE Error |
0.373493 cents/octave |
Ennealimnic (72 & 99ef)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 99 | 157 | 230 | 278 | 343 | 367 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 15 | 22 | 26 | 33 | 37 | ] |
⟨ | 0 | -2 | -3 | -2 | -5 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3468, 49.3464]
TE Step Tunings (cents)
⟨9.42267, 5.26958]
TE Tuning Map (cents)
⟨1200.121, 1901.509, 2785.591, 3368.324, 4153.713, 4440.368]
TE Mistunings (cents)
⟨0.121, -0.446, -0.723, -0.502, 2.395, -0.159]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.347484 |
Adjusted Error |
1.267325 cents |
TE Error |
0.342480 cents/octave |
Enneaportent (72 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 0 | 2 | -1 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.4072, 16.8633]
TE Step Tunings (cents)
⟨16.86335, -1.49958]
TE Tuning Map (cents)
⟨1200.665, 1901.428, 2784.688, 3368.907, 4152.487]
TE Mistunings (cents)
⟨0.665, -0.527, -1.626, 0.081, 1.169]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.240527 |
Adjusted Error |
1.664828 cents |
TE Error |
0.481243 cents/octave |
Enneaportent (72 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 0 | 2 | -1 | 2 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.4247, 16.9650]
TE Step Tunings (cents)
⟨16.96501, -2.29543]
TE Tuning Map (cents)
⟨1200.822, 1901.875, 2784.953, 3369.547, 4153.130, 4436.944]
TE Mistunings (cents)
⟨0.822, -0.080, -1.361, 0.721, 1.812, -3.583]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.818699 |
Adjusted Error |
2.290939 cents |
TE Error |
0.619099 cents/octave |
Erato (31 & 12 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | -4 | -13 | 0 | ] |
⟨ | 0 | 1 | 4 | 10 | 0 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2422, 1898.4580, 4151.3179]
TE Step Tunings (cents)
⟨31.97721, 1.46038, 10.12759]
TE Tuning Map (cents)
⟨1201.242, 1898.458, 2788.863, 3368.432, 4151.318]
TE Mistunings (cents)
⟨1.242, -3.497, 2.550, -0.394, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.139617 |
Adjusted Error |
4.275290 cents |
TE Error |
1.235836 cents/octave |
Erato (31 & 12f & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | -4 | -13 | 0 | -20 | ] |
⟨ | 0 | 1 | 4 | 10 | 0 | 15 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.6315, 1898.5660, 4151.3179]
TE Step Tunings (cents)
⟨30.28950, -6.47856, 17.91578]
TE Tuning Map (cents)
⟨1201.631, 1898.566, 2787.738, 3364.451, 4151.318, 4445.861]
TE Mistunings (cents)
⟨1.631, -3.389, 1.425, -4.375, -0.000, 5.334]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.155952 |
Adjusted Error |
5.258362 cents |
TE Error |
1.421010 cents/octave |
Eris (31 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 10 | 0 | 6 | 20 | ] |
⟨ | 0 | -29 | 8 | -11 | -57 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0220, 348.2255]
TE Step Tunings (cents)
⟨1.08829, 5.20663]
TE Tuning Map (cents)
⟨1200.022, 1901.680, 2785.804, 3369.651, 4151.585]
TE Mistunings (cents)
⟨0.022, -0.275, -0.510, 0.825, 0.267]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.775038 |
Adjusted Error |
0.640096 cents |
TE Error |
0.185029 cents/octave |
Eros (31 & 46 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 3 | 2 | 7 | ] |
⟨ | 0 | 1 | 1 | 0 | 1 | -2 | ] |
⟨ | 0 | 0 | 4 | 3 | 2 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6458, 1902.5247, -78.6566]
TE Step Tunings (cents)
⟨13.88622, 12.94092, 6.03071]
TE Tuning Map (cents)
⟨1200.646, 1902.525, 2788.544, 3365.967, 4146.503, 4442.158]
TE Mistunings (cents)
⟨0.646, 0.570, 2.230, -2.858, -4.815, 1.630]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.226666 |
Adjusted Error |
3.253024 cents |
TE Error |
0.879091 cents/octave |
Eros (46 & 31 & 29g)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 1 | 3 | 2 | 7 | 6 | ] |
⟨ | 0 | 1 | 1 | 0 | 1 | -2 | -1 | ] |
⟨ | 0 | 0 | 4 | 3 | 2 | 2 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6213, 1902.7264, -78.7966]
TE Step Tunings (cents)
⟨13.19453, 12.54235, 7.06415]
TE Tuning Map (cents)
⟨1200.621, 1902.726, 2788.161, 3365.474, 4146.376, 4441.304, 4907.019]
TE Mistunings (cents)
⟨0.621, 0.771, 1.848, -3.352, -4.942, 0.776, 2.063]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.220878 |
Adjusted Error |
3.461810 cents |
TE Error |
0.846934 cents/octave |
Eros (31 & 29g & 46p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | 132 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | 195 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 1 | 0 | 1 | 3 | 2 | 7 | 6 | 9 | ] |
⟨ | 0 | 1 | 1 | 0 | 1 | -2 | -1 | -3 | ] |
⟨ | 0 | 0 | 4 | 3 | 2 | 2 | 5 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6266, 1902.7249, -78.8007]
TE Step Tunings (cents)
⟨12.58700, 7.10804, 13.13688]
TE Tuning Map (cents)
⟨1200.627, 1902.725, 2788.149, 3365.478, 4146.377, 4441.335, 4907.031, 5097.464]
TE Mistunings (cents)
⟨0.627, 0.770, 1.835, -3.348, -4.941, 0.807, 2.075, -0.049]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.258670 |
Adjusted Error |
3.365443 cents |
TE Error |
0.792255 cents/octave |
Eros (46p & 29g & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | 195 | 208 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | 131 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | 132 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 1 | 0 | 1 | 3 | 2 | 7 | 6 | 9 | 3 | ] |
⟨ | 0 | 1 | 1 | 0 | 1 | -2 | -1 | -3 | 1 | ] |
⟨ | 0 | 0 | 4 | 3 | 2 | 2 | 5 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7312, 1902.9800, -78.8827]
TE Step Tunings (cents)
⟨13.11959, 7.69535, 12.06662]
TE Tuning Map (cents)
⟨1200.731, 1902.980, 2788.180, 3365.545, 4146.677, 4441.393, 4906.994, 5097.640, 5426.291]
TE Mistunings (cents)
⟨0.731, 1.025, 1.867, -3.280, -4.641, 0.865, 2.038, 0.127, -1.984]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.241926 |
Adjusted Error |
3.458487 cents |
TE Error |
0.764550 cents/octave |
Escapade (65 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 65 | 103 | 151 | ] |
⟨ | 152 | 241 | 353 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.8082, 55.2840]
TE Step Tunings (cents)
⟨4.51155, 5.96419]
TE Tuning Map (cents)
⟨1199.808, 1902.060, 2786.605]
TE Mistunings (cents)
⟨-0.192, 0.105, 0.291]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.604625 |
Adjusted Error |
0.319725 cents |
TE Error |
0.137698 cents/octave |
Escapade (22 & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 43 | 68 | 100 | 121 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.9997, 55.2812]
TE Step Tunings (cents)
⟨20.90832, 17.18643]
TE Tuning Map (cents)
⟨1199.000, 1900.469, 2784.968, 3375.874]
TE Mistunings (cents)
⟨-1.000, -1.486, -1.346, 7.048]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.132455 |
Adjusted Error |
4.097116 cents |
TE Error |
1.459422 cents/octave |
Escaped (22 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 87 | 138 | 202 | 244 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 2 | 4 | ] |
⟨ | 0 | -9 | 7 | -26 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9207, 55.1186]
TE Step Tunings (cents)
⟨4.36109, 12.68939]
TE Tuning Map (cents)
⟨1199.921, 1903.774, 2785.672, 3366.598]
TE Mistunings (cents)
⟨-0.079, 1.819, -0.642, -2.228]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.784514 |
Adjusted Error |
1.999443 cents |
TE Error |
0.712216 cents/octave |
Essence (58 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | -1 | -9 | -5 | -9 | ] |
⟨ | 0 | 11 | 36 | 28 | 42 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0989, 227.4387]
TE Step Tunings (cents)
⟨3.11389, 5.36628]
TE Tuning Map (cents)
⟨1200.198, 1901.726, 2786.902, 3367.788, 4151.534]
TE Mistunings (cents)
⟨0.198, -0.229, 0.588, -1.038, 0.216]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.517691 |
Adjusted Error |
0.795864 cents |
TE Error |
0.230056 cents/octave |
Essence (58 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | -1 | -9 | -5 | -9 | -7 | ] |
⟨ | 0 | 11 | 36 | 28 | 42 | 38 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0807, 227.4286]
TE Step Tunings (cents)
⟨2.81352, 5.45777]
TE Tuning Map (cents)
⟨1200.161, 1901.634, 2786.704, 3367.598, 4151.275, 4441.722]
TE Mistunings (cents)
⟨0.161, -0.321, 0.390, -1.228, -0.043, 1.195]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.654716 |
Adjusted Error |
0.944738 cents |
TE Error |
0.255304 cents/octave |
Etypyth (46 & 17g & 58)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | 17 | |
[ ⟨ | 46 | 73 | 129 | 159 | 170 | 188 | ] |
⟨ | 17 | 27 | 48 | 59 | 63 | 70 | ] |
⟨ | 58 | 92 | 163 | 201 | 215 | 237 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 0 | 7 | 12 | -13 | ] |
⟨ | 0 | 1 | 0 | -4 | -7 | 9 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3615, 1903.0184, 3368.8116]
TE Step Tunings (cents)
⟨11.19388, 5.71177, 10.12660]
TE Tuning Map (cents)
⟨1199.361, 1903.018, 3368.812, 4152.268, 4440.020, 4904.278]
TE Mistunings (cents)
⟨-0.639, 1.063, -0.014, 0.950, -0.507, -0.677]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.177887 |
Adjusted Error |
1.651598 cents |
TE Error |
0.404064 cents/octave |
Etypythia (46 & 58 & 121 & 29g)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | 237 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | 495 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 0 | 0 | 7 | 12 | -13 | ] |
⟨ | 0 | 1 | 0 | 0 | -4 | -7 | 9 | ] |
⟨ | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ] |
⟨ | 0 | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3615, 1903.0184, 2786.3137, 3368.8116]
TE Step Tunings (cents)
⟨2.91870, 3.13312, 6.99347, 1.28170]
TE Tuning Map (cents)
⟨1199.361, 1903.018, 2786.314, 3368.812, 4152.268, 4440.020, 4904.278]
TE Mistunings (cents)
⟨-0.639, 1.063, 0.000, -0.014, 0.950, -0.507, -0.677]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.022979 |
Adjusted Error |
1.529082 cents |
TE Error |
0.374091 cents/octave |
Eugene (15 & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 8 | 11 | ] |
⟨ | 0 | -1 | 0 | 2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.1943, 85.6766]
TE Step Tunings (cents)
⟨56.48782, 29.18880]
TE Tuning Map (cents)
⟨1197.583, 1910.295, 2794.360, 3364.908, 4134.108]
TE Mistunings (cents)
⟨-2.417, 8.340, 8.047, -3.918, -17.210]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.665120 |
Adjusted Error |
13.149191 cents |
TE Error |
3.800969 cents/octave |
Euterpe (31 & 12 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | -4 | 0 | 1 | ] |
⟨ | 0 | 1 | 4 | 0 | -2 | ] |
⟨ | 0 | 0 | 0 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2821, 1898.2241, 3372.0269]
TE Step Tunings (cents)
⟨32.76447, 7.93679, 6.45301]
TE Tuning Map (cents)
⟨1201.282, 1898.224, 2787.768, 3372.027, 4148.888]
TE Mistunings (cents)
⟨1.282, -3.731, 1.454, 3.201, -2.430]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.131905 |
Adjusted Error |
4.735930 cents |
TE Error |
1.368991 cents/octave |
Fantastic (72 & 22 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | -10 | -7 | ] |
⟨ | 0 | 1 | 0 | 2 | 0 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2901, 1901.5430, 2784.6434]
TE Step Tunings (cents)
⟨15.46126, 3.74697, 0.41131]
TE Tuning Map (cents)
⟨1200.580, 1901.543, 2784.643, 3369.472, 4151.900]
TE Mistunings (cents)
⟨0.580, -0.412, -1.670, 0.646, 0.582]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.235104 |
Adjusted Error |
1.549333 cents |
TE Error |
0.447858 cents/octave |
Fasum (53 & 67p)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 53 | 84 | 123 | 196 | ] |
⟨ | 67 | 106 | 156 | 248 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | -2 | 12 | 8 | ] |
⟨ | 0 | 10 | -27 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2713, 430.2487]
TE Step Tunings (cents)
⟨20.15300, 1.97257]
TE Tuning Map (cents)
⟨1200.271, 1901.945, 2786.540, 4439.186]
TE Mistunings (cents)
⟨0.271, -0.010, 0.227, -1.342]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.464096 |
Adjusted Error |
0.857234 cents |
TE Error |
0.231657 cents/octave |
Father (3 & 5)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1181.3029, 448.9085]
TE Step Tunings (cents)
⟨118.06310, 165.42272]
TE Tuning Map (cents)
⟨1181.303, 1913.697, 2811.514]
TE Mistunings (cents)
⟨-18.697, 11.742, 25.201]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.442834 |
Adjusted Error |
30.636037 cents |
TE Error |
13.194223 cents/octave |
Father (5 & 3d)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1181.0653, 450.7714]
TE Step Tunings (cents)
⟨171.24892, 108.27359]
TE Tuning Map (cents)
⟨1181.065, 1911.359, 2812.902, 3371.947]
TE Mistunings (cents)
⟨-18.935, 9.404, 26.588, 3.121]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.584293 |
Adjusted Error |
32.195608 cents |
TE Error |
11.468307 cents/octave |
Fermionic (130 & 156e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 156 | 247 | 362 | 438 | 539 | 577 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 26 | 41 | 60 | 73 | 89 | 96 | ] |
⟨ | 0 | 1 | 2 | 0 | 5 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨46.1573, 8.7307]
TE Step Tunings (cents)
⟨6.22686, 2.50384]
TE Tuning Map (cents)
⟨1200.090, 1901.181, 2786.901, 3369.485, 4151.655, 4439.834]
TE Mistunings (cents)
⟨0.090, -0.774, 0.587, 0.659, 0.337, -0.694]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.370455 |
Adjusted Error |
0.967711 cents |
TE Error |
0.261512 cents/octave |
Ferrier (15 & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | ] |
⟨ | 0 | 0 | -1 | 0 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.4094, 81.7287]
TE Step Tunings (cents)
⟨81.72871, -5.77672]
TE Tuning Map (cents)
⟨1197.047, 1915.275, 2791.184, 3351.732, 4145.912]
TE Mistunings (cents)
⟨-2.953, 13.320, 4.871, -17.094, -5.406]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.260419 |
Adjusted Error |
17.176938 cents |
TE Error |
4.965249 cents/octave |
Fervor (27e & 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | -2 | -2 | 3 | ] |
⟨ | 0 | -5 | 9 | 10 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.4439, 575.6559]
TE Step Tunings (cents)
⟨44.13213, 1.93818]
TE Tuning Map (cents)
⟨1195.444, 1903.496, 2790.015, 3365.671, 4161.988]
TE Mistunings (cents)
⟨-4.556, 1.541, 3.701, -3.155, 10.670]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.600856 |
Adjusted Error |
9.155422 cents |
TE Error |
2.646511 cents/octave |
Fervor (27e & 2f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 2 | 3 | 5 | 6 | 7 | 8 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | -2 | -2 | 3 | -4 | ] |
⟨ | 0 | -5 | 9 | 10 | 1 | 16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.6630, 575.9712]
TE Step Tunings (cents)
⟨43.72052, 7.60448]
TE Tuning Map (cents)
⟨1195.663, 1902.796, 2792.415, 3368.386, 4162.960, 4432.888]
TE Mistunings (cents)
⟨-4.337, 0.841, 6.101, -0.440, 11.642, -7.640]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.694632 |
Adjusted Error |
9.744740 cents |
TE Error |
2.633401 cents/octave |
Festival (12 & 14c & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | 1 | -4 | ] |
⟨ | 0 | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.8749, 1896.3869, 2775.3068]
TE Step Tunings (cents)
⟨48.97726, 41.54332, 3.24162]
TE Tuning Map (cents)
⟨1201.750, 1896.387, 2775.307, 3376.182, 4164.581]
TE Mistunings (cents)
⟨1.750, -5.568, -11.007, 7.356, 13.263]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.100777 |
Adjusted Error |
11.927682 cents |
TE Error |
3.447873 cents/octave |
Fibo (103 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 103 | 163 | 239 | 289 | 356 | ] |
⟨ | 140 | 222 | 325 | 393 | 484 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 19 | 8 | 10 | 8 | ] |
⟨ | 0 | -46 | -15 | -19 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4067, 454.4716]
TE Step Tunings (cents)
⟨4.47153, 5.28456]
TE Tuning Map (cents)
⟨1200.407, 1902.033, 2786.179, 3369.106, 4149.594]
TE Mistunings (cents)
⟨0.407, 0.078, -0.134, 0.280, -1.724]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.232107 |
Adjusted Error |
1.013822 cents |
TE Error |
0.293060 cents/octave |
Fibo (103 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] |
⟨ | 140 | 222 | 325 | 393 | 484 | 518 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 19 | 8 | 10 | 8 | 9 | ] |
⟨ | 0 | -46 | -15 | -19 | -12 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3732, 454.4578]
TE Step Tunings (cents)
⟨4.30784, 5.40476]
TE Tuning Map (cents)
⟨1200.373, 1902.034, 2786.119, 3369.034, 4149.492, 4440.950]
TE Mistunings (cents)
⟨0.373, 0.078, -0.195, 0.209, -1.826, 0.422]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.551973 |
Adjusted Error |
1.008637 cents |
TE Error |
0.272572 cents/octave |
Fifive (34 & 60)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 34 | 54 | 79 | ] |
⟨ | 60 | 95 | 139 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.0173, 140.6277]
TE Step Tunings (cents)
⟨18.71076, 9.39781]
TE Tuning Map (cents)
⟨1200.035, 1903.173, 2784.446]
TE Mistunings (cents)
⟨0.035, 1.218, -1.868]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.910433 |
Adjusted Error |
1.492195 cents |
TE Error |
0.642653 cents/octave |
Fifives (26 & 60)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 26 | 41 | 60 | 73 | ] |
⟨ | 60 | 95 | 139 | 168 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.9338, 140.1267]
TE Step Tunings (cents)
⟨2.73484, 18.84603]
TE Tuning Map (cents)
⟨1201.868, 1902.501, 2783.688, 3365.776]
TE Mistunings (cents)
⟨1.868, 0.546, -2.625, -3.050]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.413955 |
Adjusted Error |
3.456893 cents |
TE Error |
1.231370 cents/octave |
Fifives (34 & 8)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 34 | 54 | 79 | 118 | ] |
⟨ | 8 | 13 | 19 | 28 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.3177, 140.7817]
TE Step Tunings (cents)
⟨36.19086, -3.98172]
TE Tuning Map (cents)
⟨1198.635, 1902.544, 2783.425, 4159.033]
TE Mistunings (cents)
⟨-1.365, 0.589, -2.889, 7.715]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.641390 |
Adjusted Error |
5.049334 cents |
TE Error |
1.459585 cents/octave |
Fifives (34 & 8)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 34 | 54 | 79 | 118 | 126 | ] |
⟨ | 8 | 13 | 19 | 28 | 30 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 2 | 2 | 3 | 6 | 6 | ] |
⟨ | 0 | 5 | 7 | 4 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.3154, 140.7816]
TE Step Tunings (cents)
⟨36.18894, -3.97413]
TE Tuning Map (cents)
⟨1198.631, 1902.539, 2783.418, 4159.019, 4440.582]
TE Mistunings (cents)
⟨-1.369, 0.584, -2.896, 7.701, 0.055]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.368519 |
Adjusted Error |
4.830973 cents |
TE Error |
1.305513 cents/octave |
Fifthplus (171 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 22 | 35 | 51 | 62 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 11 | -3 | 20 | ] |
⟨ | 0 | -23 | 13 | -42 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0934, 491.2643]
TE Step Tunings (cents)
⟨6.97449, 0.33888]
TE Tuning Map (cents)
⟨1200.093, 1901.948, 2786.156, 3368.767]
TE Mistunings (cents)
⟨0.093, -0.007, -0.158, -0.059]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.989098 |
Adjusted Error |
0.164929 cents |
TE Error |
0.058749 cents/octave |
Flat (4 & 3p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1221.0611, 337.7412]
TE Step Tunings (cents)
⟨207.83736, 129.90388]
TE Tuning Map (cents)
⟨1221.061, 1896.544, 2779.863, 3325.442]
TE Mistunings (cents)
⟨21.061, -5.411, -6.450, -43.384]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.593321 |
Adjusted Error |
37.184446 cents |
TE Error |
13.245367 cents/octave |
Flattone (19 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 26 | 41 | 60 | 73 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 4 | -1 | ] |
⟨ | 0 | -1 | -4 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.6458, 507.7589]
TE Step Tunings (cents)
⟨38.37218, 18.25286]
TE Tuning Map (cents)
⟨1203.646, 1899.533, 2783.547, 3366.184]
TE Mistunings (cents)
⟨3.646, -2.422, -2.766, -2.642]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.828956 |
Adjusted Error |
5.944067 cents |
TE Error |
2.117319 cents/octave |
Flattone (7p & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | -1 | 6 | ] |
⟨ | 0 | -1 | -4 | 9 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.3659, 507.8733]
TE Step Tunings (cents)
⟨30.66578, 51.98449]
TE Tuning Map (cents)
⟨1202.366, 1896.858, 2777.970, 3368.494, 4166.955]
TE Mistunings (cents)
⟨2.366, -5.097, -8.343, -0.332, 15.637]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.812780 |
Adjusted Error |
10.862374 cents |
TE Error |
3.139930 cents/octave |
Flattone (7p & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | -1 | 6 | 2 | ] |
⟨ | 0 | -1 | -4 | 9 | -6 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.5577, 508.0227]
TE Step Tunings (cents)
⟨31.97044, 51.51393]
TE Tuning Map (cents)
⟨1202.558, 1897.093, 2778.140, 3369.647, 4167.210, 4437.206]
TE Mistunings (cents)
⟨2.558, -4.862, -8.174, 0.821, 15.892, -3.321]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.719377 |
Adjusted Error |
10.718452 cents |
TE Error |
2.896535 cents/octave |
Fleetwood (22 & 4e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 5 | 6 | 7 | 11 | ] |
⟨ | 0 | -4 | -3 | -3 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.6223, 272.7899]
TE Step Tunings (cents)
⟨54.04257, 2.57701]
TE Tuning Map (cents)
⟨1199.245, 1906.952, 2779.364, 3378.987, 4140.737]
TE Mistunings (cents)
⟨-0.755, 4.997, -6.949, 10.161, -10.581]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.948675 |
Adjusted Error |
10.017260 cents |
TE Error |
2.895637 cents/octave |
Fleetwood (22p & 18ddde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 18 | 29 | 42 | 49 | 63 | 67 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 5 | 6 | -3 | 11 | 11 | ] |
⟨ | 0 | -4 | -3 | 19 | -9 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9480, 272.0893]
TE Step Tunings (cents)
⟨49.01132, 6.75816]
TE Tuning Map (cents)
⟨1199.896, 1911.383, 2783.420, 3369.852, 4150.625, 4422.714]
TE Mistunings (cents)
⟨-0.104, 9.428, -2.893, 1.026, -0.693, -17.813]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.570109 |
Adjusted Error |
11.730533 cents |
TE Error |
3.170038 cents/octave |
Fluorine (9 & 2cdd)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 9 | 14 | 21 | 25 | ] |
⟨ | 2 | 3 | 4 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 5 | -3 | ] |
⟨ | 0 | -1 | -6 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1206.5806, 538.0372]
TE Step Tunings (cents)
⟨130.50615, 16.01260]
TE Tuning Map (cents)
⟨1206.581, 1875.124, 2804.680, 3374.742]
TE Mistunings (cents)
⟨6.581, -26.831, 18.366, 5.916]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.632061 |
Adjusted Error |
27.963985 cents |
TE Error |
9.960972 cents/octave |
Foreboding (31 & 15 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 3 | 5 | 1 | ] |
⟨ | 0 | 3 | 0 | -1 | 4 | 2 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2334, 233.4118, 2782.8836]
TE Step Tunings (cents)
⟨13.36558, -1.75036, 19.80868]
TE Tuning Map (cents)
⟨1200.233, 1900.469, 2782.884, 3367.288, 4151.931, 4449.941]
TE Mistunings (cents)
⟨0.233, -1.486, -3.430, -1.538, 0.613, 9.413]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.163292 |
Adjusted Error |
4.757609 cents |
TE Error |
1.285688 cents/octave |
Fortune (2513 & 612)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 2513 | 3983 | 5835 | ] |
⟨ | 612 | 970 | 1421 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0016, 221.5682]
TE Step Tunings (cents)
⟨0.44577, 0.13037]
TE Tuning Map (cents)
⟨1200.002, 1901.953, 2786.313]
TE Mistunings (cents)
⟨0.002, -0.002, -0.001]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.170501 |
Adjusted Error |
0.002764 cents |
TE Error |
0.001190 cents/octave |
Freivald (24p & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | 137 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -3 | 6 | -5 | 3 | 6 | ] |
⟨ | 0 | 10 | -8 | 17 | 1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.7891, 550.3503]
TE Step Tunings (cents)
⟨16.45362, 21.72709]
TE Tuning Map (cents)
⟨1198.789, 1907.136, 2789.932, 3362.010, 4146.718, 4440.983]
TE Mistunings (cents)
⟨-1.211, 5.181, 3.619, -6.816, -4.600, 0.455]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.654418 |
Adjusted Error |
7.127194 cents |
TE Error |
1.926040 cents/octave |
Freya (270 & 342 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | ] |
⟨ | 0 | 2 | 3 | 2 | 1 | ] |
⟨ | 0 | 0 | 4 | 2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0491, 350.9820, -466.6977]
TE Step Tunings (cents)
⟨1.45508, 2.37963, -0.21476]
TE Tuning Map (cents)
⟨1200.049, 1902.013, 2786.302, 3368.716, 4151.173]
TE Mistunings (cents)
⟨0.049, 0.058, -0.011, -0.110, -0.145]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.350839 |
Adjusted Error |
0.130007 cents |
TE Error |
0.037580 cents/octave |
Freya (270 & 311 & 301)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 311 | 493 | 722 | 873 | 1076 | 1151 | ] |
⟨ | 301 | 477 | 699 | 845 | 1041 | 1114 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | 4 | ] |
⟨ | 0 | 2 | 3 | 2 | 1 | -9 | ] |
⟨ | 0 | 0 | 4 | 2 | -3 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9870, 351.0502, -466.6900]
TE Step Tunings (cents)
⟨1.85059, 1.39606, 0.88423]
TE Tuning Map (cents)
⟨1199.987, 1902.087, 2786.352, 3368.681, 4151.094, 4440.636]
TE Mistunings (cents)
⟨-0.013, 0.132, 0.038, -0.145, -0.224, 0.108]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.818233 |
Adjusted Error |
0.185676 cents |
TE Error |
0.050177 cents/octave |
Frigg (270 & 58 & 373)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 373 | 591 | 866 | 1047 | 1290 | 1380 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 4 | 5 | ] |
⟨ | 0 | 2 | 3 | 2 | 4 | 3 | ] |
⟨ | 0 | 0 | 10 | 5 | 11 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0387, 350.9502, -186.6322]
TE Step Tunings (cents)
⟨2.46947, 0.46446, 1.35749]
TE Tuning Map (cents)
⟨1200.039, 1901.939, 2786.645, 3368.856, 4151.001, 4440.193]
TE Mistunings (cents)
⟨0.039, -0.016, 0.331, 0.030, -0.317, -0.334]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.676451 |
Adjusted Error |
0.296676 cents |
TE Error |
0.080173 cents/octave |
Galaxy (46 & 121 & 270)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | 495 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | 999 | 1104 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 5 | -4 | -5 | -4 | -1 | ] |
⟨ | 0 | 1 | 3 | -3 | -3 | -4 | -2 | ] |
⟨ | 0 | 0 | 9 | -14 | -16 | -17 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9096, 1901.9711, -991.0288]
TE Step Tunings (cents)
⟨-1.43783, 0.04857, 4.66731]
TE Tuning Map (cents)
⟨1199.910, 1901.971, 2786.202, 3368.852, 4151.000, 4439.968, 4906.437]
TE Mistunings (cents)
⟨-0.090, 0.016, -0.112, 0.026, -0.318, -0.560, 1.481]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.562315 |
Adjusted Error |
0.643247 cents |
TE Error |
0.157371 cents/octave |
Gallium (31 & 31f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 114 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 0 | 0 | 0 | 0 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨38.7486, 15.5566]
TE Step Tunings (cents)
⟨23.19198, 15.55658]
TE Tuning Map (cents)
⟨1201.205, 1898.679, 2789.896, 3371.125, 4146.096, 4440.528]
TE Mistunings (cents)
⟨1.205, -3.276, 3.583, 2.299, -5.222, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.118931 |
Adjusted Error |
5.022641 cents |
TE Error |
1.357309 cents/octave |
Gamel (31 & 41 & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 3 | -1 | ] |
⟨ | 0 | 3 | 0 | -1 | 11 | ] |
⟨ | 0 | 0 | 1 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6471, 233.4167, 2785.7134]
TE Step Tunings (cents)
⟨18.27576, 15.28759, 1.46146]
TE Tuning Map (cents)
⟨1200.647, 1900.897, 2785.713, 3368.525, 4152.651]
TE Mistunings (cents)
⟨0.647, -1.058, -0.600, -0.301, 1.333]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.244216 |
Adjusted Error |
1.615807 cents |
TE Error |
0.467073 cents/octave |
Gamelan (31 & 41 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 46 | 73 | 107 | 129 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 0 | 3 | ] |
⟨ | 0 | 3 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4862, 233.7822, 2786.3137]
TE Step Tunings (cents)
⟨12.50212, 12.88714, 6.18582]
TE Tuning Map (cents)
⟨1200.486, 1901.833, 2786.314, 3367.676]
TE Mistunings (cents)
⟨0.486, -0.122, -0.000, -1.150]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.159340 |
Adjusted Error |
0.898786 cents |
TE Error |
0.320154 cents/octave |
Gamera (99 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 224 | 355 | 520 | 629 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 6 | 10 | 3 | ] |
⟨ | 0 | -23 | -40 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8484, 230.3068]
TE Step Tunings (cents)
⟨4.74934, 3.25743]
TE Tuning Map (cents)
⟨1199.848, 1902.033, 2786.210, 3369.238]
TE Mistunings (cents)
⟨-0.152, 0.078, -0.103, 0.412]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.906094 |
Adjusted Error |
0.310636 cents |
TE Error |
0.110651 cents/octave |
Gammic (171 & 205)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 171 | 271 | 397 | ] |
⟨ | 205 | 325 | 476 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0419, 35.0977]
TE Step Tunings (cents)
⟨5.23284, 1.48891]
TE Tuning Map (cents)
⟨1200.042, 1901.995, 2786.158]
TE Mistunings (cents)
⟨0.042, 0.040, -0.156]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.204356 |
Adjusted Error |
0.111271 cents |
TE Error |
0.047922 cents/octave |
Gammic (171 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 34 | 54 | 79 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 2 | 0 | ] |
⟨ | 0 | 20 | 11 | 96 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0712, 35.0924]
TE Step Tunings (cents)
⟨6.92811, 0.45191]
TE Tuning Map (cents)
⟨1200.071, 1901.920, 2786.159, 3368.875]
TE Mistunings (cents)
⟨0.071, -0.035, -0.154, 0.049]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.101044 |
Adjusted Error |
0.142316 cents |
TE Error |
0.050694 cents/octave |
Ganesha (270 & 152 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -22 | -9 | ] |
⟨ | 0 | 1 | 0 | 1 | 2 | ] |
⟨ | 0 | 0 | 1 | 10 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9177, 1902.0945, 2786.4995]
TE Step Tunings (cents)
⟨3.88740, 0.92364, 0.32016]
TE Tuning Map (cents)
⟨1199.918, 1902.095, 2786.500, 3368.901, 4150.928]
TE Mistunings (cents)
⟨-0.082, 0.140, 0.186, 0.075, -0.390]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.356837 |
Adjusted Error |
0.286717 cents |
TE Error |
0.082880 cents/octave |
Garibaldi (41 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 53 | 84 | 123 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | -1 | -3 | ] |
⟨ | 0 | -1 | 8 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1250, 497.9667]
TE Step Tunings (cents)
⟨10.51411, 14.51031]
TE Tuning Map (cents)
⟨1200.125, 1902.283, 2783.609, 3371.159]
TE Mistunings (cents)
⟨0.125, 0.328, -2.705, 2.333]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.340841 |
Adjusted Error |
2.037206 cents |
TE Error |
0.725667 cents/octave |
Gariberttet (4 & 9qrr)
Equal Temperament Mappings
| 2 | 5/3 | 7/3 | 13/11 | |
[ ⟨ | 4 | 3 | 5 | 1 | ] |
⟨ | 9 | 6 | 10 | 2 | ] ⟩ |
Reduced Mapping
| 2 | 5/3 | 7/3 | 13/11 | |
[ ⟨ | 1 | 0 | 0 | 0 | ] |
⟨ | 0 | 3 | 5 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0000, 292.4181]
TE Step Tunings (cents)
⟨231.76332, 30.32741]
TE Tuning Map (cents)
⟨1200.000, 877.254, 1462.091, 292.418]
TE Mistunings (cents)
⟨0.000, -7.104, -4.780, 3.208]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.776901 |
Adjusted Error |
10.326198 cents |
TE Error |
8.447531 cents/octave |
Gentsemicanou (80 & 14cf & 38df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 0 | -2 | 1 | 0 | ] |
⟨ | 0 | 1 | 2 | 2 | 2 | 3 | ] |
⟨ | 0 | 0 | 4 | -3 | 1 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9839, 1902.7366, -254.3343]
TE Step Tunings (cents)
⟨11.46953, -1.92829, 8.14214]
TE Tuning Map (cents)
⟨1199.968, 1902.737, 2788.136, 3368.508, 4151.123, 4436.538]
TE Mistunings (cents)
⟨-0.032, 0.782, 1.822, -0.318, -0.195, -3.989]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.486440 |
Adjusted Error |
2.156855 cents |
TE Error |
0.582865 cents/octave |
Gentsemiparakleismic (80 & 38df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | -3 | -2 | -11 | -4 | -4 | ] |
⟨ | 0 | 13 | 14 | 35 | 23 | 24 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0578, 284.8435]
TE Step Tunings (cents)
⟨11.50703, 7.35667]
TE Tuning Map (cents)
⟨1200.116, 1902.793, 2787.694, 3368.888, 4151.170, 4436.014]
TE Mistunings (cents)
⟨0.116, 0.838, 1.380, 0.062, -0.148, -4.514]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.342457 |
Adjusted Error |
2.208053 cents |
TE Error |
0.596700 cents/octave |
Gidorah (5 & 1b)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1193.2399, 229.4622]
TE Step Tunings (cents)
⟨229.46225, 45.92861]
TE Tuning Map (cents)
⟨1193.240, 1881.627, 2845.404, 3350.257]
TE Mistunings (cents)
⟨-6.760, -20.328, 59.090, -18.569]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.872852 |
Adjusted Error |
42.147623 cents |
TE Error |
15.013286 cents/octave |
Gizzard (72 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 1 | 5 | 2 | 8 | -2 | ] |
⟨ | 0 | 6 | -1 | 10 | -3 | 26 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2900, 216.9345]
TE Step Tunings (cents)
⟨9.00959, 5.87117]
TE Tuning Map (cents)
⟨1200.580, 1901.897, 2784.516, 3369.925, 4151.517, 4439.717]
TE Mistunings (cents)
⟨0.580, -0.058, -1.798, 1.099, 0.199, -0.811]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.702621 |
Adjusted Error |
1.614450 cents |
TE Error |
0.436286 cents/octave |
Glacial (6 & 13)
Equal Temperament Mappings
| 2 | 9 | 5 | 11 | 13 | |
[ ⟨ | 6 | 19 | 14 | 21 | 22 | ] |
⟨ | 13 | 41 | 30 | 45 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 5 | 11 | 13 | |
[ ⟨ | 1 | 3 | 2 | 3 | 4 | ] |
⟨ | 0 | 1 | 2 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.7334, 186.1510]
TE Step Tunings (cents)
⟨14.49651, 85.82726]
TE Tuning Map (cents)
⟨1202.733, 3794.351, 2777.769, 4166.653, 4438.632]
TE Mistunings (cents)
⟨2.733, -9.559, -8.545, 15.335, -1.896]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.534218 |
Adjusted Error |
11.704229 cents |
TE Error |
3.162929 cents/octave |
Glamour (19p & 3de)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | 0 | 4 | ] |
⟨ | 0 | 5 | 1 | 12 | 11 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.3024, 379.8436]
TE Step Tunings (cents)
⟨62.77168, 3.21350]
TE Tuning Map (cents)
⟨1202.302, 1899.218, 2784.448, 3355.820, 4178.279, 4429.366]
TE Mistunings (cents)
⟨2.302, -2.737, -1.865, -13.006, 26.961, -11.162]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.788313 |
Adjusted Error |
15.124191 cents |
TE Error |
4.087134 cents/octave |
Godzilla (19 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 24 | 38 | 56 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.3969, 252.1739]
TE Step Tunings (cents)
⟨45.18863, 14.28387]
TE Tuning Map (cents)
⟨1201.397, 1898.446, 2788.196]
TE Mistunings (cents)
⟨1.397, -3.509, 1.883]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.421604 |
Adjusted Error |
3.673804 cents |
TE Error |
1.582221 cents/octave |
Godzilla (19 & 5)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 5 | 8 | 12 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 4 | 3 | ] |
⟨ | 0 | -2 | -8 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.8528, 253.4461]
TE Step Tunings (cents)
⟨63.37782, -0.06516]
TE Tuning Map (cents)
⟨1203.853, 1900.813, 2787.842, 3358.112]
TE Mistunings (cents)
⟨3.853, -1.142, 1.529, -10.713]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.335513 |
Adjusted Error |
7.734272 cents |
TE Error |
2.755003 cents/octave |
Godzilla (14c & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 3 | 6 | ] |
⟨ | 0 | -2 | -8 | -1 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1204.4719, 254.9740]
TE Step Tunings (cents)
⟨70.39817, 43.77952]
TE Tuning Map (cents)
⟨1204.472, 1898.996, 2778.096, 3358.442, 4167.143]
TE Mistunings (cents)
⟨4.472, -2.959, -8.218, -10.384, 15.825]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.481913 |
Adjusted Error |
13.001171 cents |
TE Error |
3.758181 cents/octave |
Godzilla (5e & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 3 | 6 | 6 | ] |
⟨ | 0 | -2 | -8 | -1 | -12 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1204.4822, 254.5504]
TE Step Tunings (cents)
⟨49.74069, 68.26991]
TE Tuning Map (cents)
⟨1204.482, 1899.864, 2781.525, 3358.896, 4172.288, 4426.839]
TE Mistunings (cents)
⟨4.482, -2.091, -4.788, -9.930, 20.970, -13.689]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.432137 |
Adjusted Error |
14.253851 cents |
TE Error |
3.851934 cents/octave |
Gorgik (58 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 1 | 3 | 1 | ] |
⟨ | 0 | -18 | 7 | -1 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.4647, 227.2086]
TE Step Tunings (cents)
⟨17.46364, 5.01550]
TE Tuning Map (cents)
⟨1198.465, 1902.570, 2788.925, 3368.186, 4152.176]
TE Mistunings (cents)
⟨-1.535, 0.615, 2.611, -0.640, 0.858]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.437073 |
Adjusted Error |
3.049553 cents |
TE Error |
0.881518 cents/octave |
Gorgik (58 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | 137 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 1 | 3 | 1 | 2 | ] |
⟨ | 0 | -18 | 7 | -1 | 13 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.4046, 227.1909]
TE Step Tunings (cents)
⟨17.23092, 5.37868]
TE Tuning Map (cents)
⟨1198.405, 1902.587, 2788.741, 3368.023, 4151.886, 4441.527]
TE Mistunings (cents)
⟨-1.595, 0.632, 2.427, -0.803, 0.568, 0.999]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.125067 |
Adjusted Error |
3.013343 cents |
TE Error |
0.814320 cents/octave |
Gorgo (5 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 16 | 25 | 37 | 45 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.0993, 228.5428]
TE Step Tunings (cents)
⟨53.38679, 58.38534]
TE Tuning Map (cents)
⟨1201.099, 1886.728, 2800.899, 3374.755]
TE Mistunings (cents)
⟨1.099, -15.227, 14.585, 5.929]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.378885 |
Adjusted Error |
16.455245 cents |
TE Error |
5.861476 cents/octave |
Gorgo (5e & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | 3 | 1 | ] |
⟨ | 0 | 3 | 7 | -1 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.4896, 227.6556]
TE Step Tunings (cents)
⟨38.02055, 63.21168]
TE Tuning Map (cents)
⟨1201.490, 1884.456, 2795.079, 3376.813, 4161.012]
TE Mistunings (cents)
⟨1.490, -17.499, 8.765, 7.987, 9.694]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.617285 |
Adjusted Error |
19.218186 cents |
TE Error |
5.555302 cents/octave |
Gorgo (5e & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 3 | 1 | 2 | ] |
⟨ | 0 | 3 | 7 | -1 | 13 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2346, 227.4634]
TE Step Tunings (cents)
⟨35.71050, 63.91763]
TE Tuning Map (cents)
⟨1201.235, 1883.625, 2793.478, 3376.240, 4158.259, 4449.640]
TE Mistunings (cents)
⟨1.235, -18.330, 7.165, 7.415, 6.941, 9.112]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.504274 |
Adjusted Error |
19.219791 cents |
TE Error |
5.193921 cents/octave |
Gracecordial (125 & 113)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 125 | 198 | 290 | 351 | 432 | ] |
⟨ | 113 | 179 | 262 | 317 | 391 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -6 | -13 | 28 | ] |
⟨ | 0 | -1 | 20 | 38 | -59 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5580, 499.3986]
TE Step Tunings (cents)
⟨5.81327, 4.19380]
TE Tuning Map (cents)
⟨1200.558, 1901.717, 2784.624, 3369.892, 4151.108]
TE Mistunings (cents)
⟨0.558, -0.238, -1.690, 1.066, -0.210]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.432514 |
Adjusted Error |
1.556031 cents |
TE Error |
0.449794 cents/octave |
Gracecordial (113 & 125f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | ] |
⟨ | 125 | 198 | 290 | 351 | 432 | 462 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | ] |
⟨ | 0 | -1 | 20 | 38 | -59 | -44 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6292, 499.4206]
TE Step Tunings (cents)
⟨5.13970, 4.95874]
TE Tuning Map (cents)
⟨1200.629, 1901.838, 2784.637, 3369.804, 4151.801, 4439.335]
TE Mistunings (cents)
⟨0.629, -0.117, -1.676, 0.978, 0.483, -1.193]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.647025 |
Adjusted Error |
1.632274 cents |
TE Error |
0.441103 cents/octave |
Gracecordial (113 & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | ] |
⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5073, 499.3704]
TE Step Tunings (cents)
⟨10.09128, 5.01601]
TE Tuning Map (cents)
⟨1200.507, 1901.644, 2784.365, 3369.482, 4151.349, 4438.861, 4907.958]
TE Mistunings (cents)
⟨0.507, -0.311, -1.949, 0.656, 0.031, -1.666, 3.003]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.859629 |
Adjusted Error |
2.071149 cents |
TE Error |
0.506708 cents/octave |
Gracecordial (113 & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | 480 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | 3 | ] |
⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4435, 499.3426]
TE Step Tunings (cents)
⟨10.10615, 4.87070]
TE Tuning Map (cents)
⟨1200.443, 1901.544, 2784.191, 3369.254, 4151.204, 4438.682, 4907.706, 5099.358]
TE Mistunings (cents)
⟨0.443, -0.411, -2.122, 0.428, -0.114, -1.846, 2.751, 1.845]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.247279 |
Adjusted Error |
2.131421 cents |
TE Error |
0.501756 cents/octave |
Gracecordial (113 & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | 480 | 511 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | 51 | 54 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | 3 | 17 | ] |
⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | 3 | -30 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4658, 499.3503]
TE Step Tunings (cents)
⟨10.12505, 4.69458]
TE Tuning Map (cents)
⟨1200.466, 1901.581, 2784.212, 3369.257, 4151.373, 4438.833, 4907.808, 5099.448, 5427.409]
TE Mistunings (cents)
⟨0.466, -0.374, -2.102, 0.431, 0.055, -1.695, 2.853, 1.935, -0.866]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.892603 |
Adjusted Error |
2.162569 cents |
TE Error |
0.478068 cents/octave |
Gracecordial (113 & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | |
[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | 480 | 511 | 549 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | 51 | 54 | 58 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | |
[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | 3 | 17 | 19 | ] |
⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | 3 | -30 | -34 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4417, 499.3421]
TE Step Tunings (cents)
⟨10.10300, 4.90021]
TE Tuning Map (cents)
⟨1200.442, 1901.541, 2784.192, 3369.259, 4151.182, 4438.664, 4907.697, 5099.352, 5427.245, 5830.760]
TE Mistunings (cents)
⟨0.442, -0.414, -2.121, 0.433, -0.136, -1.864, 2.742, 1.839, -1.029, 1.183]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.586234 |
Adjusted Error |
2.239524 cents |
TE Error |
0.460999 cents/octave |
Gracecordial (113p & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | 480 | 511 | 549 | 560 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | 51 | 54 | 58 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | 3 | 17 | 19 | 27 | ] |
⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | 3 | -30 | -34 | -53 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4196, 499.3364]
TE Step Tunings (cents)
⟨10.06190, 5.28539]
TE Tuning Map (cents)
⟨1200.420, 1901.503, 2784.209, 3369.326, 4150.905, 4438.432, 4907.583, 5099.268, 5427.043, 5830.537, 5946.503]
TE Mistunings (cents)
⟨0.420, -0.452, -2.104, 0.500, -0.413, -2.095, 2.628, 1.755, -1.231, 0.960, 1.468]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.542768 |
Adjusted Error |
2.230799 cents |
TE Error |
0.450285 cents/octave |
Grackle (12 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 77 | 122 | 179 | 216 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | -1 | -8 | ] |
⟨ | 0 | -1 | 8 | 26 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7997, 498.6774]
TE Step Tunings (cents)
⟨4.56800, 14.86992]
TE Tuning Map (cents)
⟨1199.800, 1900.922, 2789.619, 3367.214]
TE Mistunings (cents)
⟨-0.200, -1.033, 3.306, -1.612]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.924477 |
Adjusted Error |
2.357693 cents |
TE Error |
0.839827 cents/octave |
Gravid (58 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 58 | 92 | 135 | 163 | ] |
⟨ | 7 | 11 | 16 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | -5 | -14 | ] |
⟨ | 0 | 6 | 17 | 39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3441, 516.8578]
TE Step Tunings (cents)
⟨19.97251, 5.84840]
TE Tuning Map (cents)
⟨1199.344, 1901.803, 2789.863, 3366.638]
TE Mistunings (cents)
⟨-0.656, -0.152, 3.549, -2.188]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.118588 |
Adjusted Error |
2.581738 cents |
TE Error |
0.919634 cents/octave |
Gravity (65 & 72)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 65 | 103 | 151 | ] |
⟨ | 72 | 114 | 167 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.1833, 516.9227]
TE Step Tunings (cents)
⟨12.75386, 5.15531]
TE Tuning Map (cents)
⟨1200.183, 1901.353, 2786.770]
TE Mistunings (cents)
⟨0.183, -0.602, 0.456]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.989113 |
Adjusted Error |
0.623652 cents |
TE Error |
0.268592 cents/octave |
Greeley (8 & 23)
Equal Temperament Mappings
| 2 | 5/3 | 7/3 | 11/3 | |
[ ⟨ | 8 | 6 | 10 | 15 | ] |
⟨ | 23 | 17 | 28 | 43 | ] ⟩ |
Reduced Mapping
| 2 | 5/3 | 7/3 | 11/3 | |
[ ⟨ | 1 | 1 | 2 | 2 | ] |
⟨ | 0 | -2 | -6 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1723, 156.0779]
TE Step Tunings (cents)
⟨10.72638, 48.45049]
TE Tuning Map (cents)
⟨1200.172, 888.017, 1463.878, 2244.267]
TE Mistunings (cents)
⟨0.172, 3.658, -2.993, -5.096]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.943479 |
Adjusted Error |
5.781580 cents |
TE Error |
3.084383 cents/octave |
Greenland (270 & 72 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 1 | 3 | 7 | -1 | ] |
⟨ | 0 | 2 | 1 | 1 | -2 | 4 | ] |
⟨ | 0 | 0 | 2 | 1 | 3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9868, 951.0539, 617.8062]
TE Step Tunings (cents)
⟨4.06424, 0.15280, 0.70482]
TE Tuning Map (cents)
⟨1199.974, 1902.108, 2786.653, 3368.820, 4151.218, 4439.841]
TE Mistunings (cents)
⟨-0.026, 0.153, 0.339, -0.005, -0.100, -0.686]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.406619 |
Adjusted Error |
0.389866 cents |
TE Error |
0.105357 cents/octave |
Greenwood (14c & 21p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |
⟨ | 21 | 33 | 49 | 59 | 73 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 15 | 19 | 23 | ] |
⟨ | 0 | 0 | 2 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨172.0869, 100.5302]
TE Step Tunings (cents)
⟨42.58302, 28.97361]
TE Tuning Map (cents)
⟨1204.608, 1892.955, 2782.363, 3370.181, 4159.058]
TE Mistunings (cents)
⟨4.608, -9.000, -3.950, 1.355, 7.740]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.329799 |
Adjusted Error |
12.143339 cents |
TE Error |
3.510212 cents/octave |
Greenwood (14c & 21p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 14 | 22 | 32 | 39 | 48 | 52 | ] |
⟨ | 21 | 33 | 49 | 59 | 73 | 78 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 15 | 19 | 23 | 26 | ] |
⟨ | 0 | 0 | 2 | 1 | 2 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨171.6919, 104.4103]
TE Step Tunings (cents)
⟨30.15302, 37.12862]
TE Tuning Map (cents)
⟨1201.843, 1888.611, 2784.199, 3366.557, 4157.735, 4463.990]
TE Mistunings (cents)
⟨1.843, -13.344, -2.114, -2.269, 6.417, 23.462]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.327913 |
Adjusted Error |
16.507610 cents |
TE Error |
4.460986 cents/octave |
Grendel (31 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 152 | 241 | 353 | 427 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 9 | 2 | 7 | ] |
⟨ | 0 | -23 | 1 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7350, 386.7774]
TE Step Tunings (cents)
⟨3.14758, 7.25105]
TE Tuning Map (cents)
⟨1199.735, 1901.735, 2786.247, 3370.039]
TE Mistunings (cents)
⟨-0.265, -0.220, -0.066, 1.213]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.015477 |
Adjusted Error |
0.738770 cents |
TE Error |
0.263155 cents/octave |
Grendel (31 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 9 | 2 | 7 | 17 | ] |
⟨ | 0 | -23 | 1 | -13 | -42 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7357, 386.7733]
TE Step Tunings (cents)
⟨2.49161, 7.38484]
TE Tuning Map (cents)
⟨1199.736, 1901.836, 2786.245, 3370.097, 4151.029]
TE Mistunings (cents)
⟨-0.264, -0.119, -0.069, 1.271, -0.289]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.153355 |
Adjusted Error |
0.830905 cents |
TE Error |
0.240185 cents/octave |
Grendel (31 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 9 | 2 | 7 | 17 | -5 | ] |
⟨ | 0 | -23 | 1 | -13 | -42 | 27 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4419, 386.6458]
TE Step Tunings (cents)
⟨5.91465, 8.39742]
TE Tuning Map (cents)
⟨1199.442, 1902.122, 2785.530, 3369.697, 4151.386, 4442.229]
TE Mistunings (cents)
⟨-0.558, 0.167, -0.784, 0.871, 0.068, 1.701]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.535278 |
Adjusted Error |
1.303632 cents |
TE Error |
0.352291 cents/octave |
Gross (1783 & 3684)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 1783 | 2826 | 4140 | ] |
⟨ | 3684 | 5839 | 8554 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9990, 91.5309]
TE Step Tunings (cents)
⟨0.20837, 0.22489]
TE Tuning Map (cents)
⟨1199.999, 1901.955, 2786.316]
TE Mistunings (cents)
⟨-0.001, 0.000, 0.002]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
16.667474 |
Adjusted Error |
0.001788 cents |
TE Error |
0.000770 cents/octave |
Grosstone (31 & 12p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 44 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 7 | 11 | -3 | ] |
⟨ | 0 | -1 | -4 | -10 | -18 | 16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9495, 502.7151]
TE Step Tunings (cents)
⟨32.83388, 15.17495]
TE Tuning Map (cents)
⟨1199.950, 1897.184, 2788.938, 3372.495, 4150.572, 4443.593]
TE Mistunings (cents)
⟨-0.050, -4.771, 2.624, 3.669, -0.745, 3.066]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.003648 |
Adjusted Error |
5.401098 cents |
TE Error |
1.459583 cents/octave |
Guanyin (31 & 22 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 2 | -2 | ] |
⟨ | 0 | 1 | 0 | 1 | 1 | ] |
⟨ | 0 | 0 | 3 | -1 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2352, 1901.6519, 929.3140]
TE Step Tunings (cents)
⟨9.09511, 9.52165, 12.20363]
TE Tuning Map (cents)
⟨1199.235, 1901.652, 2787.942, 3370.808, 4149.751]
TE Mistunings (cents)
⟨-0.765, -0.303, 1.628, 1.982, -1.566]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.164735 |
Adjusted Error |
2.085398 cents |
TE Error |
0.602815 cents/octave |
Guanyin (58 & 31 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 2 | -2 | 3 | ] |
⟨ | 0 | 1 | 0 | 1 | 1 | -2 | ] |
⟨ | 0 | 0 | 3 | -1 | 5 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2030, 1901.6993, 929.2893]
TE Step Tunings (cents)
⟨12.30339, -1.11422, 9.81410]
TE Tuning Map (cents)
⟨1199.203, 1901.699, 2787.868, 3370.816, 4149.740, 4440.657]
TE Mistunings (cents)
⟨-0.797, -0.256, 1.554, 1.990, -1.578, 0.129]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.232411 |
Adjusted Error |
2.038665 cents |
TE Error |
0.550925 cents/octave |
Guanyintet (9 & 40)
Equal Temperament Mappings
| 2 | 5 | 7/3 | 11/3 | |
[ ⟨ | 9 | 21 | 11 | 17 | ] |
⟨ | 40 | 93 | 49 | 75 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7/3 | 11/3 | |
[ ⟨ | 1 | 3 | 1 | 3 | ] |
⟨ | 0 | -3 | 1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5799, 269.2999]
TE Step Tunings (cents)
⟨15.22498, 26.53888]
TE Tuning Map (cents)
⟨1198.580, 2787.840, 1467.880, 2249.241]
TE Mistunings (cents)
⟨-1.420, 1.527, 1.009, -0.122]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.323178 |
Adjusted Error |
2.055351 cents |
TE Error |
0.885191 cents/octave |
Guiron (41 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 118 | 187 | 274 | 331 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 7 | 3 | ] |
⟨ | 0 | 3 | -24 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3400, 233.9964]
TE Step Tunings (cents)
⟨3.75956, 8.86608]
TE Tuning Map (cents)
⟨1200.340, 1902.329, 2786.465, 3367.024]
TE Mistunings (cents)
⟨0.340, 0.374, 0.152, -1.802]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.773290 |
Adjusted Error |
1.076192 cents |
TE Error |
0.383347 cents/octave |
Guiron (41 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 7 | 3 | -2 | ] |
⟨ | 0 | 3 | -24 | -1 | 28 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3458, 233.9989]
TE Step Tunings (cents)
⟨3.91559, 8.81192]
TE Tuning Map (cents)
⟨1200.346, 1902.343, 2786.447, 3367.039, 4151.277]
TE Mistunings (cents)
⟨0.346, 0.388, 0.134, -1.787, -0.041]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.930534 |
Adjusted Error |
1.186491 cents |
TE Error |
0.342973 cents/octave |
Guiron (41 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 77 | 122 | 179 | 216 | 266 | 285 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 7 | 3 | -2 | 0 | ] |
⟨ | 0 | 3 | -24 | -1 | 28 | 19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1241, 233.9232]
TE Step Tunings (cents)
⟨10.22187, 10.14321]
TE Tuning Map (cents)
⟨1200.124, 1901.894, 2786.713, 3366.449, 4149.600, 4444.540]
TE Mistunings (cents)
⟨0.124, -0.061, 0.399, -2.377, -1.718, 4.012]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.760649 |
Adjusted Error |
2.233306 cents |
TE Error |
0.603524 cents/octave |
Gwazy (22 & 52p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 52 | 82 | 121 | 146 | 180 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | 6 | 4 | 8 | ] |
⟨ | 0 | 8 | -5 | 6 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8543, 162.5525]
TE Step Tunings (cents)
⟨27.38614, 11.48487]
TE Tuning Map (cents)
⟨1199.709, 1900.275, 2786.363, 3374.732, 4148.624]
TE Mistunings (cents)
⟨-0.291, -1.680, 0.049, 5.906, -2.694]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.140526 |
Adjusted Error |
3.865380 cents |
TE Error |
1.117345 cents/octave |
Gwazy (118 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 118 | 187 | 274 | 408 | ] |
⟨ | 22 | 35 | 51 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 2 | 1 | 6 | 8 | ] |
⟨ | 0 | 8 | -5 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0926, 162.7338]
TE Step Tunings (cents)
⟨10.20587, -0.18668]
TE Tuning Map (cents)
⟨1200.185, 1901.963, 2786.886, 4149.805]
TE Mistunings (cents)
⟨0.185, 0.008, 0.573, -1.512]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.539510 |
Adjusted Error |
0.925540 cents |
TE Error |
0.267541 cents/octave |
Hades (72 & 130 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 130 | 206 | 302 | 365 | ] |
⟨ | 152 | 241 | 353 | 427 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 1 | 0 | 2 | ] |
⟨ | 0 | 3 | 0 | 5 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9938, 433.8840, 2786.3137]
TE Step Tunings (cents)
⟨3.75386, 3.15369, 3.41928]
TE Tuning Map (cents)
⟨1199.988, 1901.646, 2786.314, 3369.408]
TE Mistunings (cents)
⟨-0.012, -0.309, 0.000, 0.582]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.280092 |
Adjusted Error |
0.399850 cents |
TE Error |
0.142430 cents/octave |
Hades (72 & 152 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | 0 | 2 | 3 | ] |
⟨ | 0 | 3 | 0 | 5 | -1 | ] |
⟨ | 0 | 0 | 1 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9487, 433.9084, 2786.0238]
TE Step Tunings (cents)
⟨3.59483, 4.54972, 1.91932]
TE Tuning Map (cents)
⟨1199.897, 1901.674, 2786.024, 3369.440, 4151.961]
TE Mistunings (cents)
⟨-0.103, -0.281, -0.290, 0.614, 0.644]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.261229 |
Adjusted Error |
0.578737 cents |
TE Error |
0.167293 cents/octave |
Hades (72 & 130 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 1 | 0 | 2 | 3 | -2 | ] |
⟨ | 0 | 3 | 0 | 5 | -1 | 13 | ] |
⟨ | 0 | 0 | 1 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9598, 433.8891, 2786.0074]
TE Step Tunings (cents)
⟨-0.23023, 2.08443, 4.22107]
TE Tuning Map (cents)
⟨1199.920, 1901.627, 2786.007, 3369.365, 4151.998, 4440.639]
TE Mistunings (cents)
⟨-0.080, -0.328, -0.306, 0.540, 0.680, 0.112]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.369031 |
Adjusted Error |
0.571410 cents |
TE Error |
0.154417 cents/octave |
Hagrid (72 & 58 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | -4 | -1 | ] |
⟨ | 0 | 2 | 0 | 9 | 5 | ] |
⟨ | 0 | 0 | 1 | -1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0303, 950.5813, 2786.3017]
TE Step Tunings (cents)
⟨11.70677, 5.81690, 0.58215]
TE Tuning Map (cents)
⟨1200.061, 1901.163, 2786.302, 3368.808, 4152.876]
TE Mistunings (cents)
⟨0.061, -0.792, -0.012, -0.018, 1.558]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.323777 |
Adjusted Error |
1.045389 cents |
TE Error |
0.302185 cents/octave |
Hagrid (58 & 72 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 0 | -4 | -1 | -2 | ] |
⟨ | 0 | 2 | 0 | 9 | 5 | 3 | ] |
⟨ | 0 | 0 | 1 | -1 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9899, 950.6472, 2786.9793]
TE Step Tunings (cents)
⟨7.76253, 10.32106, 0.19519]
TE Tuning Map (cents)
⟨1199.980, 1901.294, 2786.979, 3368.886, 4153.246, 4438.941]
TE Mistunings (cents)
⟨-0.020, -0.661, 0.666, 0.060, 1.928, -1.587]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.311801 |
Adjusted Error |
1.309375 cents |
TE Error |
0.353843 cents/octave |
Hamity (14c & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -2 | -7 | -4 | -3 | ] |
⟨ | 0 | 10 | 26 | 19 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2284, 430.2738]
TE Step Tunings (cents)
⟨-0.17221, 22.69131]
TE Tuning Map (cents)
⟨1200.228, 1902.281, 2785.520, 3374.289, 4144.243]
TE Mistunings (cents)
⟨0.228, 0.326, -0.794, 5.463, -7.075]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.584859 |
Adjusted Error |
4.424822 cents |
TE Error |
1.279060 cents/octave |
Hamity (53 & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -2 | -7 | -4 | -3 | -11 | ] |
⟨ | 0 | 10 | 26 | 19 | 18 | 41 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1448, 430.2683]
TE Step Tunings (cents)
⟨23.03192, -1.46764]
TE Tuning Map (cents)
⟨1200.145, 1902.393, 2785.962, 3374.518, 4144.395, 4439.407]
TE Mistunings (cents)
⟨0.145, 0.438, -0.352, 5.692, -6.923, -1.121]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.800347 |
Adjusted Error |
4.359741 cents |
TE Error |
1.178168 cents/octave |
Hanson (53 & 34)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 34 | 54 | 79 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.1661, 317.0504]
TE Step Tunings (cents)
⟨21.77955, 1.34853]
TE Tuning Map (cents)
⟨1200.166, 1902.303, 2785.418]
TE Mistunings (cents)
⟨0.166, 0.348, -0.895]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.550116 |
Adjusted Error |
0.635053 cents |
TE Error |
0.273502 cents/octave |
Hanuman (72 & 152 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 0 | -8 | 1 | ] |
⟨ | 0 | 3 | 0 | -11 | -1 | ] |
⟨ | 0 | 0 | 1 | 4 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9540, -165.9317, 2785.8301]
TE Step Tunings (cents)
⟨3.75581, 4.69214, 2.48655]
TE Tuning Map (cents)
⟨1199.954, 1902.113, 2785.830, 3368.937, 4151.716]
TE Mistunings (cents)
⟨-0.046, 0.158, -0.484, 0.111, 0.398]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.341341 |
Adjusted Error |
0.409960 cents |
TE Error |
0.118505 cents/octave |
Hanuman (72 & 224 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 0 | -8 | 1 | -6 | ] |
⟨ | 0 | 3 | 0 | -11 | -1 | -3 | ] |
⟨ | 0 | 0 | 1 | 4 | 1 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0189, -166.0060, 2785.7243]
TE Step Tunings (cents)
⟨0.84882, 4.13390, 2.44725]
TE Tuning Map (cents)
⟨1200.019, 1902.020, 2785.724, 3368.812, 4151.749, 4440.802]
TE Mistunings (cents)
⟨0.019, 0.065, -0.589, -0.013, 0.431, 0.274]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.460787 |
Adjusted Error |
0.446922 cents |
TE Error |
0.120775 cents/octave |
Harry (72 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 130 | 206 | 302 | 365 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 4 | 7 | 7 | ] |
⟨ | 0 | -6 | -17 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0857, 83.1679]
TE Step Tunings (cents)
⟨5.14378, 6.38322]
TE Tuning Map (cents)
⟨1200.171, 1901.335, 2786.745, 3368.921]
TE Mistunings (cents)
⟨0.171, -0.620, 0.431, 0.095]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.178772 |
Adjusted Error |
0.655297 cents |
TE Error |
0.233421 cents/octave |
Harry (72 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 7 | 7 | 9 | ] |
⟨ | 0 | -6 | -17 | -10 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0506, 83.1740]
TE Step Tunings (cents)
⟨11.84457, 5.98780]
TE Tuning Map (cents)
⟨1200.101, 1901.158, 2786.396, 3368.614, 4152.845]
TE Mistunings (cents)
⟨0.101, -0.797, 0.082, -0.212, 1.527]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.663086 |
Adjusted Error |
1.054700 cents |
TE Error |
0.304877 cents/octave |
Harry (72 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 7 | 7 | 9 | 11 | ] |
⟨ | 0 | -6 | -17 | -10 | -15 | -26 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9970, 83.1160]
TE Step Tunings (cents)
⟨10.37651, 7.80837]
TE Tuning Map (cents)
⟨1199.994, 1901.292, 2787.007, 3368.819, 4153.233, 4438.951]
TE Mistunings (cents)
⟨-0.006, -0.663, 0.693, -0.007, 1.915, -1.577]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.889000 |
Adjusted Error |
1.310185 cents |
TE Error |
0.354062 cents/octave |
Harry (72 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | 294 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | 237 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 2 | 4 | 7 | 7 | 9 | 11 | 9 | ] |
⟨ | 0 | -6 | -17 | -10 | -15 | -26 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.1626, 83.1905]
TE Step Tunings (cents)
⟨11.87468, 5.95428]
TE Tuning Map (cents)
⟨1200.325, 1901.507, 2786.899, 3369.233, 4153.605, 4438.835, 4902.320]
TE Mistunings (cents)
⟨0.325, -0.448, 0.586, 0.407, 2.288, -1.693, -2.635]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.950802 |
Adjusted Error |
1.783239 cents |
TE Error |
0.436270 cents/octave |
Haumea (29 & 140)
Equal Temperament Mappings
| 2 | 3 | 7/5 | 11/5 | 13/5 | |
[ ⟨ | 29 | 46 | 14 | 33 | 40 | ] |
⟨ | 140 | 222 | 68 | 159 | 193 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7/5 | 11/5 | 13/5 | |
[ ⟨ | 1 | 2 | -2 | 3 | 2 | ] |
⟨ | 0 | -2 | 12 | -9 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2483, 248.5714]
TE Step Tunings (cents)
⟨7.20479, 7.08078]
TE Tuning Map (cents)
⟨1200.248, 1903.354, 582.360, 1363.602, 1654.782]
TE Mistunings (cents)
⟨0.248, 1.399, -0.152, -1.402, 0.569]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
11.349123 |
Adjusted Error |
1.148979 cents |
TE Error |
0.724925 cents/octave |
Hecate (72 & 41 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | 2 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | 4 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5798, 1901.8964, 2784.5069]
TE Step Tunings (cents)
⟨9.01861, 5.91915, 5.82178]
TE Tuning Map (cents)
⟨1200.580, 1901.896, 2784.507, 3369.908, 4151.540, 4439.731]
TE Mistunings (cents)
⟨0.580, -0.059, -1.807, 1.082, 0.222, -0.796]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.254823 |
Adjusted Error |
1.614370 cents |
TE Error |
0.436264 cents/octave |
Hedgehog (22 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 14 | 22 | 32 | 39 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 4 | 6 | 7 | ] |
⟨ | 0 | -3 | -5 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.6190, 164.2476]
TE Step Tunings (cents)
⟨49.50466, 7.86683]
TE Tuning Map (cents)
⟨1199.238, 1905.733, 2776.476, 3376.095]
TE Mistunings (cents)
⟨-0.762, 3.778, -9.838, 7.269]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.704799 |
Adjusted Error |
7.805081 cents |
TE Error |
2.780226 cents/octave |
Hedgehog (22 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 6 | 7 | 8 | ] |
⟨ | 0 | -3 | -5 | -5 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.1297, 164.6498]
TE Step Tunings (cents)
⟨47.71110, 10.75822]
TE Tuning Map (cents)
⟨1200.259, 1906.569, 2777.529, 3377.659, 4142.438]
TE Mistunings (cents)
⟨0.259, 4.614, -8.784, 8.833, -8.879]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.542366 |
Adjusted Error |
9.704246 cents |
TE Error |
2.805156 cents/octave |
Hedgehog (8d & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 6 | 7 | 8 | 9 | ] |
⟨ | 0 | -3 | -5 | -5 | -4 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.4001, 164.2488]
TE Step Tunings (cents)
⟨51.05857, 56.59511]
TE Tuning Map (cents)
⟨1200.800, 1908.854, 2781.156, 3381.557, 4146.205, 4418.108]
TE Mistunings (cents)
⟨0.800, 6.899, -5.157, 12.731, -5.113, -22.420]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.417248 |
Adjusted Error |
13.843741 cents |
TE Error |
3.741107 cents/octave |
Heimdall (72 & 270 & 251e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 251 | 398 | 583 | 705 | 869 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 1 | 2 | ] |
⟨ | 0 | 2 | 0 | 14 | 37 | ] |
⟨ | 0 | 0 | 1 | -4 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0031, 950.9942, 2786.2875]
TE Step Tunings (cents)
⟨2.24219, 3.37499, 0.50724]
TE Tuning Map (cents)
⟨1200.003, 1901.988, 2786.287, 3368.772, 4151.341]
TE Mistunings (cents)
⟨0.003, 0.033, -0.026, -0.054, 0.023]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.653139 |
Adjusted Error |
0.048871 cents |
TE Error |
0.014127 cents/octave |
Heinz (46 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -8 | -10 | 6 | 3 | ] |
⟨ | 0 | 21 | 27 | -7 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6103, 547.9099]
TE Step Tunings (cents)
⟨6.03401, 8.96161]
TE Tuning Map (cents)
⟨1200.610, 1901.225, 2787.464, 3368.292, 4149.741]
TE Mistunings (cents)
⟨0.610, -0.730, 1.150, -0.533, -1.577]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.542674 |
Adjusted Error |
1.603178 cents |
TE Error |
0.463422 cents/octave |
Heinz (46 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -8 | -10 | 6 | 3 | 11 | ] |
⟨ | 0 | 21 | 27 | -7 | 1 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6352, 547.9186]
TE Step Tunings (cents)
⟨5.76030, 9.08409]
TE Tuning Map (cents)
⟨1200.635, 1901.209, 2787.450, 3368.381, 4149.824, 4440.290]
TE Mistunings (cents)
⟨0.635, -0.746, 1.136, -0.445, -1.494, -0.238]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.823353 |
Adjusted Error |
1.570165 cents |
TE Error |
0.424319 cents/octave |
Helenus (12 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -1 | -3 | -9 | ] |
⟨ | 0 | -1 | 8 | 14 | 30 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7153, 498.1566]
TE Step Tunings (cents)
⟨8.56452, 20.69700]
TE Tuning Map (cents)
⟨1199.715, 1901.274, 2785.538, 3375.047, 4147.261]
TE Mistunings (cents)
⟨-0.285, -0.681, -0.776, 6.221, -4.057]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.408639 |
Adjusted Error |
3.993516 cents |
TE Error |
1.154385 cents/octave |
Helenus (12f & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -1 | -3 | -9 | -10 | ] |
⟨ | 0 | -1 | 8 | 14 | 30 | 33 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7427, 498.1457]
TE Step Tunings (cents)
⟨7.38201, 20.96526]
TE Tuning Map (cents)
⟨1199.743, 1901.340, 2785.423, 3374.811, 4146.686, 4441.381]
TE Mistunings (cents)
⟨-0.257, -0.615, -0.891, 5.986, -4.632, 0.853]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.751732 |
Adjusted Error |
3.926563 cents |
TE Error |
1.061107 cents/octave |
Helmholtz (118 & 171)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 118 | 187 | 274 | ] |
⟨ | 171 | 271 | 397 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0749, 498.2952]
TE Step Tunings (cents)
⟨3.16220, 4.83588]
TE Tuning Map (cents)
⟨1200.075, 1901.855, 2786.287]
TE Mistunings (cents)
⟨0.075, -0.100, -0.027]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.791396 |
Adjusted Error |
0.132425 cents |
TE Error |
0.057032 cents/octave |
Hemiamity (152 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | -1 | 13 | 13 | ] |
⟨ | 0 | 5 | 13 | -17 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8219, 260.4833]
TE Step Tunings (cents)
⟨7.10313, 2.60802]
TE Tuning Map (cents)
⟨1199.644, 1902.238, 2786.461, 3369.469, 4150.919]
TE Mistunings (cents)
⟨-0.356, 0.283, 0.147, 0.643, -0.399]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.673499 |
Adjusted Error |
0.739729 cents |
TE Error |
0.213830 cents/octave |
Hemiaug (27e & 3de)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 3 | 5 | 7 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 0 | -2 | 0 | -5 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.9029, 45.6629]
TE Step Tunings (cents)
⟨45.66290, -12.06319]
TE Tuning Map (cents)
⟨1196.709, 1903.189, 2792.320, 3361.812, 4159.618]
TE Mistunings (cents)
⟨-3.291, 1.234, 6.007, -7.014, 8.300]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.260992 |
Adjusted Error |
8.492025 cents |
TE Error |
2.454746 cents/octave |
Hemiaug (27e & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] |
⟨ | 0 | -2 | 0 | -5 | -5 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.1142, 46.1473]
TE Step Tunings (cents)
⟨29.93562, 16.21170]
TE Tuning Map (cents)
⟨1197.343, 1903.277, 2793.800, 3361.291, 4159.520, 4436.404]
TE Mistunings (cents)
⟨-2.657, 1.322, 7.486, -7.534, 8.202, -4.124]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.442964 |
Adjusted Error |
8.574681 cents |
TE Error |
2.317206 cents/octave |
Hemidim (12 & 4bcdee)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 4 | 7 | 10 | 12 | 15 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 7 | 10 | 12 | 15 | ] |
⟨ | 0 | -2 | -2 | -2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨298.8163, 101.2776]
TE Step Tunings (cents)
⟨101.27763, -5.01659]
TE Tuning Map (cents)
⟨1195.265, 1889.159, 2785.608, 3383.240, 4178.411]
TE Mistunings (cents)
⟨-4.735, -12.796, -0.706, 14.414, 27.094]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.657250 |
Adjusted Error |
20.489223 cents |
TE Error |
5.922714 cents/octave |
Hemidim (4e & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |
⟨ | 0 | 2 | 2 | 1 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨300.4441, 48.4138]
TE Step Tunings (cents)
⟨9.96138, 48.41379]
TE Tuning Map (cents)
⟨1201.776, 1899.492, 2800.824, 3353.299, 4147.842]
TE Mistunings (cents)
⟨1.776, -2.463, 14.511, -15.527, -3.476]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.165144 |
Adjusted Error |
13.507319 cents |
TE Error |
3.904491 cents/octave |
Hemidim (4ef & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] |
⟨ | 0 | 2 | 2 | 1 | 5 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨300.4817, 47.8513]
TE Step Tunings (cents)
⟨13.37364, 47.85133]
TE Tuning Map (cents)
⟨1201.927, 1898.593, 2800.038, 3353.150, 4145.518, 4446.000]
TE Mistunings (cents)
⟨1.927, -3.362, 13.724, -15.676, -5.800, 5.472]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.148433 |
Adjusted Error |
13.455038 cents |
TE Error |
3.636065 cents/octave |
Hemienneadecal (342 & 494)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 494 | 783 | 1147 | 1387 | 1709 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 38 | 60 | 88 | 106 | 131 | ] |
⟨ | 0 | 1 | 1 | 3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨31.5800, 7.1448]
TE Step Tunings (cents)
⟨1.85803, 1.14290]
TE Tuning Map (cents)
⟨1200.041, 1901.946, 2786.187, 3368.917, 4151.273]
TE Mistunings (cents)
⟨0.041, -0.009, -0.127, 0.091, -0.045]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.082822 |
Adjusted Error |
0.118925 cents |
TE Error |
0.034377 cents/octave |
Hemiennealimmal (342 & 270)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 18 | 28 | 41 | 50 | 62 | ] |
⟨ | 0 | 2 | 3 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨66.6697, 17.6227]
TE Step Tunings (cents)
⟨2.33774, 1.48350]
TE Tuning Map (cents)
⟨1200.054, 1901.996, 2786.325, 3368.729, 4151.143]
TE Mistunings (cents)
⟨0.054, 0.041, 0.011, -0.097, -0.175]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.264229 |
Adjusted Error |
0.133017 cents |
TE Error |
0.038450 cents/octave |
Hemiennealimmal (270 & 72)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 18 | 28 | 41 | 50 | 62 | 65 | ] |
⟨ | 0 | 2 | 3 | 2 | 1 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨66.6667, 17.7504]
TE Step Tunings (cents)
⟨4.33482, 0.41108]
TE Tuning Map (cents)
⟨1200.000, 1902.168, 2786.585, 3368.835, 4151.084, 4439.836]
TE Mistunings (cents)
⟨0.000, 0.213, 0.271, 0.009, -0.234, -0.691]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.431761 |
Adjusted Error |
0.402904 cents |
TE Error |
0.108880 cents/octave |
Hemif (31 & 24)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 31 | 49 | 87 | 107 | ] |
⟨ | 24 | 38 | 67 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 1 | 6 | 2 | ] |
⟨ | 0 | 2 | -11 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.7305, 349.3433]
TE Step Tunings (cents)
⟨27.87525, 14.06657]
TE Tuning Map (cents)
⟨1201.731, 1900.417, 3367.607, 4150.177]
TE Mistunings (cents)
⟨1.731, -1.538, -1.219, -1.140]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.157182 |
Adjusted Error |
3.558935 cents |
TE Error |
1.028763 cents/octave |
Hemif (17 & 41)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 48 | 59 | 63 | ] |
⟨ | 41 | 65 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | -1 | 2 | 4 | ] |
⟨ | 0 | 2 | 13 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.7629, 351.3282]
TE Step Tunings (cents)
⟨19.30374, 21.23413]
TE Tuning Map (cents)
⟨1198.763, 1901.419, 3368.504, 4154.167, 4443.723]
TE Mistunings (cents)
⟨-1.237, -0.536, -0.322, 2.849, 3.196]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.745777 |
Adjusted Error |
2.905167 cents |
TE Error |
0.785087 cents/octave |
Hemif (17 & 24)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 17 | 27 | 63 | ] |
⟨ | 24 | 38 | 89 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.8943, 351.6847]
TE Step Tunings (cents)
⟨48.17267, 15.83162]
TE Tuning Map (cents)
⟨1198.894, 1902.264, 4443.892]
TE Mistunings (cents)
⟨-1.106, 0.309, 3.365]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.668335 |
Adjusted Error |
3.086669 cents |
TE Error |
0.834136 cents/octave |
Hemifamity (99 & 41 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 53 | 84 | 123 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 10 | ] |
⟨ | 0 | 1 | 0 | -6 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7174, 1902.3810, 2786.1613]
TE Step Tunings (cents)
⟨9.44929, 2.69056, 2.90424]
TE Tuning Map (cents)
⟨1199.717, 1902.381, 2786.161, 3369.049]
TE Mistunings (cents)
⟨-0.283, 0.426, -0.152, 0.223]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.172683 |
Adjusted Error |
0.566265 cents |
TE Error |
0.201708 cents/octave |
Hemififths (99 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 41 | 65 | 95 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | -5 | -1 | ] |
⟨ | 0 | 2 | 25 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7414, 351.4017]
TE Step Tunings (cents)
⟨10.57251, 3.73324]
TE Tuning Map (cents)
⟨1199.741, 1902.545, 2786.335, 3368.481]
TE Mistunings (cents)
⟨-0.259, 0.590, 0.022, -0.345]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.171558 |
Adjusted Error |
0.659216 cents |
TE Error |
0.234818 cents/octave |
Hemififths (41 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | -5 | -1 | 2 | ] |
⟨ | 0 | 2 | 25 | 13 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2860, 351.3115]
TE Step Tunings (cents)
⟨11.79788, 12.33747]
TE Tuning Map (cents)
⟨1199.286, 1901.909, 2786.356, 3367.763, 4155.129]
TE Mistunings (cents)
⟨-0.714, -0.046, 0.043, -1.063, 3.811]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.888038 |
Adjusted Error |
2.114583 cents |
TE Error |
0.611252 cents/octave |
Hemififths (58 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | -5 | -1 | 2 | 4 | ] |
⟨ | 0 | 2 | 25 | 13 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8903, 351.2483]
TE Step Tunings (cents)
⟨14.49750, 8.73257]
TE Tuning Map (cents)
⟨1198.890, 1901.387, 2786.757, 3367.338, 4154.022, 4444.313]
TE Mistunings (cents)
⟨-1.110, -0.568, 0.443, -1.488, 2.704, 3.785]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.835694 |
Adjusted Error |
2.758677 cents |
TE Error |
0.745500 cents/octave |
Hemififths (41 & 58)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 41 | 65 | 115 | ] |
⟨ | 58 | 92 | 163 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.7305, 351.4056]
TE Step Tunings (cents)
⟨13.89184, 10.86491]
TE Tuning Map (cents)
⟨1199.730, 1902.542, 3368.543]
TE Mistunings (cents)
⟨-0.270, 0.587, -0.283]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.955053 |
Adjusted Error |
0.759991 cents |
TE Error |
0.270714 cents/octave |
Hemififths (17 & 41)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 17 | 27 | 48 | 59 | ] |
⟨ | 41 | 65 | 115 | 142 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 1 | -1 | 2 | ] |
⟨ | 0 | 2 | 13 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2648, 351.3193]
TE Step Tunings (cents)
⟨12.91356, 23.89596]
TE Tuning Map (cents)
⟨1199.265, 1901.903, 3367.886, 4155.126]
TE Mistunings (cents)
⟨-0.735, -0.052, -0.940, 3.808]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.708637 |
Adjusted Error |
2.362451 cents |
TE Error |
0.682901 cents/octave |
Hemigamera (224 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 224 | 355 | 520 | 629 | ] |
⟨ | 198 | 314 | 460 | 556 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 12 | 20 | 6 | ] |
⟨ | 0 | -23 | -40 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9242, 230.3068]
TE Step Tunings (cents)
⟨3.25743, 2.37467]
TE Tuning Map (cents)
⟨1199.848, 1902.033, 2786.210, 3369.238]
TE Mistunings (cents)
⟨-0.152, 0.078, -0.103, 0.412]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
15.812189 |
Adjusted Error |
0.310636 cents |
TE Error |
0.110651 cents/octave |
Hemigamera (224 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 12 | 20 | 6 | 5 | ] |
⟨ | 0 | -23 | -40 | -1 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9323, 230.3111]
TE Step Tunings (cents)
⟨3.36724, 2.25052]
TE Tuning Map (cents)
⟨1199.865, 1902.033, 2786.204, 3369.283, 4151.217]
TE Mistunings (cents)
⟨-0.135, 0.078, -0.110, 0.457, -0.101]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
16.044043 |
Adjusted Error |
0.347161 cents |
TE Error |
0.100352 cents/octave |
Hemigamera (224 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | 733 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 12 | 20 | 6 | 5 | 17 | ] |
⟨ | 0 | -23 | -40 | -1 | 5 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9208, 230.3069]
TE Step Tunings (cents)
⟨3.39077, 2.22378]
TE Tuning Map (cents)
⟨1199.842, 1901.991, 2786.141, 3369.218, 4151.138, 4440.981]
TE Mistunings (cents)
⟨-0.158, 0.036, -0.173, 0.392, -0.180, 0.454]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.653856 |
Adjusted Error |
0.395108 cents |
TE Error |
0.106773 cents/octave |
Hemigari (53 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -1 | -3 | 2 | ] |
⟨ | 0 | -2 | 16 | 28 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7357, 249.0709]
TE Step Tunings (cents)
⟨18.64254, 7.33384]
TE Tuning Map (cents)
⟨1200.736, 1903.330, 2784.399, 3371.779, 4144.968]
TE Mistunings (cents)
⟨0.736, 1.375, -1.915, 2.953, -6.350]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.252037 |
Adjusted Error |
3.928863 cents |
TE Error |
1.135696 cents/octave |
Hemigari (53 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -1 | -3 | 2 | 1 | ] |
⟨ | 0 | -2 | 16 | 28 | 7 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8201, 249.0884]
TE Step Tunings (cents)
⟨18.64241, 7.33698]
TE Tuning Map (cents)
⟨1200.820, 1903.463, 2784.594, 3372.014, 4145.259, 4438.969]
TE Mistunings (cents)
⟨0.820, 1.508, -1.720, 3.189, -6.059, -1.558]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.881291 |
Adjusted Error |
3.899198 cents |
TE Error |
1.053712 cents/octave |
Hemikleismic (53 & 68)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 68 | 108 | 158 | 191 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 1 | 4 | ] |
⟨ | 0 | 12 | 10 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3960, 158.5687]
TE Step Tunings (cents)
⟨11.89078, 8.37036]
TE Tuning Map (cents)
⟨1199.396, 1902.825, 2785.083, 3370.466]
TE Mistunings (cents)
⟨-0.604, 0.870, -1.230, 1.640]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.105329 |
Adjusted Error |
1.592925 cents |
TE Error |
0.567411 cents/octave |
Hemikleismic (15 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 4 | 2 | ] |
⟨ | 0 | 12 | 10 | -9 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8057, 158.6514]
TE Step Tunings (cents)
⟨9.88501, 19.84020]
TE Tuning Map (cents)
⟨1199.806, 1903.817, 2786.320, 3371.360, 4144.777]
TE Mistunings (cents)
⟨-0.194, 1.862, 0.006, 2.534, -6.541]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.692909 |
Adjusted Error |
3.728395 cents |
TE Error |
1.077748 cents/octave |
Hemikleismic (15 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 4 | 2 | 0 | ] |
⟨ | 0 | 12 | 10 | -9 | 11 | 28 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8001, 158.6286]
TE Step Tunings (cents)
⟨8.71408, 20.17149]
TE Tuning Map (cents)
⟨1199.800, 1903.543, 2786.086, 3371.543, 4144.515, 4441.600]
TE Mistunings (cents)
⟨-0.200, 1.588, -0.228, 2.717, -6.803, 1.073]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.887960 |
Adjusted Error |
3.682450 cents |
TE Error |
0.995139 cents/octave |
Hemimaquila (130 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -6 | 5 | -5 | -1 | ] |
⟨ | 0 | 34 | -12 | 35 | 20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5849, 267.6249]
TE Step Tunings (cents)
⟨6.18063, 3.27357]
TE Tuning Map (cents)
⟨1199.585, 1901.737, 2786.426, 3368.947, 4152.913]
TE Mistunings (cents)
⟨-0.415, -0.218, 0.112, 0.121, 1.595]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.354647 |
Adjusted Error |
0.988205 cents |
TE Error |
0.285655 cents/octave |
Hemimaquila (130 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -6 | 5 | -5 | -1 | -5 | ] |
⟨ | 0 | 34 | -12 | 35 | 20 | 39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6188, 267.6344]
TE Step Tunings (cents)
⟨5.94186, 3.53039]
TE Tuning Map (cents)
⟨1199.619, 1901.858, 2786.481, 3369.111, 4153.070, 4439.649]
TE Mistunings (cents)
⟨-0.381, -0.097, 0.167, 0.285, 1.752, -0.879]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.646074 |
Adjusted Error |
1.043829 cents |
TE Error |
0.282082 cents/octave |
Hemimeantone (19e & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 43 | 68 | 100 | 121 | 149 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 7 | 11 | 6 | ] |
⟨ | 0 | -2 | -8 | -20 | -36 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0483, 251.7545]
TE Step Tunings (cents)
⟨16.00774, 20.85817]
TE Tuning Map (cents)
⟨1201.048, 1898.588, 2790.157, 3372.249, 4148.370, 4436.991]
TE Mistunings (cents)
⟨1.048, -3.367, 3.844, 3.423, -2.948, -3.537]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.542266 |
Adjusted Error |
5.118377 cents |
TE Error |
1.383181 cents/octave |
Hemimiracle (41 & 21p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 21 | 33 | 49 | 59 | 73 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 3 | 3 | 4 | ] |
⟨ | 0 | 12 | -14 | -4 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2961, 58.4220]
TE Step Tunings (cents)
⟨26.56607, 5.28987]
TE Tuning Map (cents)
⟨1200.296, 1901.360, 2782.980, 3367.200, 4158.542]
TE Mistunings (cents)
⟨0.296, -0.595, -3.334, -1.626, 7.224]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.558291 |
Adjusted Error |
4.089166 cents |
TE Error |
1.182034 cents/octave |
Hemimiracle (41 & 21p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 21 | 33 | 49 | 59 | 73 | 78 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 4 | 4 | ] |
⟨ | 0 | 12 | -14 | -4 | -11 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8564, 58.4225]
TE Step Tunings (cents)
⟨27.01633, 4.38985]
TE Tuning Map (cents)
⟨1199.856, 1900.926, 2781.654, 3365.879, 4156.778, 4448.890]
TE Mistunings (cents)
⟨-0.144, -1.029, -4.660, -2.947, 5.460, 8.363]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.179604 |
Adjusted Error |
5.482239 cents |
TE Error |
1.481510 cents/octave |
Hemimist (87 & 111)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 111 | 176 | 258 | 312 | 384 | 411 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 4 | 10 | 16 | 10 | 13 | ] |
⟨ | 0 | 2 | -8 | -20 | 1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.8819, 151.4807]
TE Step Tunings (cents)
⟨6.43793, 5.76168]
TE Tuning Map (cents)
⟨1199.646, 1902.489, 2786.974, 3368.497, 4150.300, 4441.061]
TE Mistunings (cents)
⟨-0.354, 0.534, 0.660, -0.329, -1.018, 0.534]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.505774 |
Adjusted Error |
1.003176 cents |
TE Error |
0.271096 cents/octave |
Hemipaj (22 & 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 6 | 7 | ] |
⟨ | 0 | 2 | -4 | -4 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.2460, 53.5496]
TE Step Tunings (cents)
⟨53.54965, 10.19991]
TE Tuning Map (cents)
⟨1198.492, 1904.837, 2782.031, 3381.277, 4141.172]
TE Mistunings (cents)
⟨-1.508, 2.882, -4.282, 12.452, -10.145]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.143304 |
Adjusted Error |
9.443100 cents |
TE Error |
2.729668 cents/octave |
Hemischis (53 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 130 | 206 | 302 | 365 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | -1 | 8 | ] |
⟨ | 0 | -2 | 16 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8582, 249.1733]
TE Step Tunings (cents)
⟨3.64841, 7.74225]
TE Tuning Map (cents)
⟨1199.858, 1901.370, 2786.914, 3369.534]
TE Mistunings (cents)
⟨-0.142, -0.585, 0.600, 0.708]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.606342 |
Adjusted Error |
0.751799 cents |
TE Error |
0.267796 cents/octave |
Hemischis (130 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -1 | 8 | -9 | ] |
⟨ | 0 | -2 | 16 | -25 | 60 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8485, 249.1674]
TE Step Tunings (cents)
⟨7.54025, 4.14370]
TE Tuning Map (cents)
⟨1199.848, 1901.362, 2786.830, 3369.602, 4151.409]
TE Mistunings (cents)
⟨-0.152, -0.593, 0.517, 0.776, 0.091]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.828443 |
Adjusted Error |
0.832499 cents |
TE Error |
0.240646 cents/octave |
Hemischis (130 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -1 | 8 | -9 | 1 | ] |
⟨ | 0 | -2 | 16 | -25 | 60 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9143, 249.1817]
TE Step Tunings (cents)
⟨7.57288, 4.06490]
TE Tuning Map (cents)
⟨1199.914, 1901.465, 2786.993, 3369.772, 4151.674, 4439.277]
TE Mistunings (cents)
⟨-0.086, -0.490, 0.679, 0.946, 0.356, -1.251]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.063003 |
Adjusted Error |
0.986989 cents |
TE Error |
0.266722 cents/octave |
Hemisecordite (41 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | 2 | ] |
⟨ | 0 | 12 | -14 | -4 | 30 | 35 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6984, 58.3218]
TE Step Tunings (cents)
⟨3.65188, 10.20361]
TE Tuning Map (cents)
⟨1200.698, 1900.560, 2785.590, 3368.808, 4151.050, 4442.659]
TE Mistunings (cents)
⟨0.698, -1.395, -0.724, -0.018, -0.268, 2.131]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.840070 |
Adjusted Error |
1.968298 cents |
TE Error |
0.531909 cents/octave |
Hemisecordite (41p & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | 168 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | 421 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | 2 | 2 | ] |
⟨ | 0 | 12 | -14 | -4 | 30 | 35 | 43 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6577, 58.2933]
TE Step Tunings (cents)
⟨0.91956, 11.29083]
TE Tuning Map (cents)
⟨1200.658, 1900.177, 2785.867, 3368.800, 4150.114, 4441.580, 4907.927]
TE Mistunings (cents)
⟨0.658, -1.778, -0.446, -0.026, -1.204, 1.053, 2.971]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.006445 |
Adjusted Error |
2.422301 cents |
TE Error |
0.592617 cents/octave |
Hemisensi (27e & 38d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | -1 | -2 | -3 | ] |
⟨ | 0 | 14 | 18 | 26 | 35 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9333, 221.5931]
TE Step Tunings (cents)
⟨21.00402, 16.65328]
TE Tuning Map (cents)
⟨1199.933, 1902.370, 2788.742, 3361.554, 4155.958]
TE Mistunings (cents)
⟨-0.067, 0.415, 2.429, -7.272, 4.640]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.676363 |
Adjusted Error |
4.812559 cents |
TE Error |
1.391141 cents/octave |
Hemiseven (72 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 77 | 122 | 179 | 216 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 4 | 14 | 2 | ] |
⟨ | 0 | -6 | -29 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5617, 483.4927]
TE Step Tunings (cents)
⟨11.52668, 4.81352]
TE Tuning Map (cents)
⟨1200.562, 1901.290, 2786.575, 3368.109]
TE Mistunings (cents)
⟨0.562, -0.665, 0.261, -0.717]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.248226 |
Adjusted Error |
1.058998 cents |
TE Error |
0.377223 cents/octave |
Hemiseven (72 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 77 | 122 | 179 | 216 | 266 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | 14 | 2 | -5 | ] |
⟨ | 0 | -6 | -29 | 2 | 21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6248, 483.5276]
TE Step Tunings (cents)
⟨12.25615, 4.13223]
TE Tuning Map (cents)
⟨1200.625, 1901.334, 2786.447, 3368.305, 4150.955]
TE Mistunings (cents)
⟨0.625, -0.621, 0.133, -0.521, -0.363]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.155639 |
Adjusted Error |
1.191168 cents |
TE Error |
0.344325 cents/octave |
Hemiseven (72 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 77 | 122 | 179 | 216 | 266 | 285 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 14 | 2 | -5 | 19 | ] |
⟨ | 0 | -6 | -29 | 2 | 21 | -38 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6789, 483.5288]
TE Step Tunings (cents)
⟨10.67329, 5.61301]
TE Tuning Map (cents)
⟨1200.679, 1901.543, 2787.169, 3368.415, 4150.711, 4438.804]
TE Mistunings (cents)
⟨0.679, -0.412, 0.855, -0.411, -0.607, -1.724]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.426054 |
Adjusted Error |
1.459508 cents |
TE Error |
0.394415 cents/octave |
Hemiskidoo (29 & 34d)
Equal Temperament Mappings
| 2 | 5 | 7 | 11 | 13 | 23 | |
[ ⟨ | 29 | 67 | 81 | 100 | 107 | 131 | ] |
⟨ | 34 | 79 | 96 | 118 | 126 | 154 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7 | 11 | 13 | 23 | |
[ ⟨ | 1 | 5 | 9 | 8 | 7 | 7 | ] |
⟨ | 0 | -13 | -30 | -22 | -16 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6140, 247.8140]
TE Step Tunings (cents)
⟨21.37809, 17.07793]
TE Tuning Map (cents)
⟨1200.614, 2781.488, 3371.106, 4153.004, 4439.274, 5430.530]
TE Mistunings (cents)
⟨0.614, -4.826, 2.280, 1.686, -1.254, 2.256]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.301901 |
Adjusted Error |
4.507333 cents |
TE Error |
0.996412 cents/octave |
Hemitert (342 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 2 | 3 | 6 | ] |
⟨ | 0 | -44 | 10 | -6 | -79 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1008, 38.5988]
TE Step Tunings (cents)
⟨3.53739, -0.31242]
TE Tuning Map (cents)
⟨1200.101, 1901.954, 2786.190, 3368.710, 4151.298]
TE Mistunings (cents)
⟨0.101, -0.001, -0.124, -0.116, -0.020]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.008348 |
Adjusted Error |
0.187971 cents |
TE Error |
0.054336 cents/octave |
Hemithir (31 & 68e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 68 | 108 | 158 | 191 | 236 | 252 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | 2 | 2 | -3 | 5 | ] |
⟨ | 0 | 16 | 2 | 5 | 40 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1425, 193.7793]
TE Step Tunings (cents)
⟨13.57382, 11.44638]
TE Tuning Map (cents)
⟨1199.142, 1901.327, 2785.844, 3367.181, 4153.745, 4445.478]
TE Mistunings (cents)
⟨-0.858, -0.628, -0.470, -1.644, 2.427, 4.950]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.207988 |
Adjusted Error |
2.849761 cents |
TE Error |
0.770114 cents/octave |
Hemithirds (31 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 118 | 187 | 274 | 331 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.3109, 193.2945]
TE Step Tunings (cents)
⟨2.83915, 9.42625]
TE Tuning Map (cents)
⟨1200.311, 1901.827, 2787.211, 3367.094]
TE Mistunings (cents)
⟨0.311, -0.128, 0.897, -1.732]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.522291 |
Adjusted Error |
1.116782 cents |
TE Error |
0.397806 cents/octave |
Hemithirds (31 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | 2 | 2 | 7 | ] |
⟨ | 0 | -15 | 2 | 5 | -22 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3582, 193.2845]
TE Step Tunings (cents)
⟨0.76472, 9.97163]
TE Tuning Map (cents)
⟨1200.358, 1902.165, 2787.285, 3367.139, 4150.249]
TE Mistunings (cents)
⟨0.358, 0.210, 0.972, -1.687, -1.069]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.452319 |
Adjusted Error |
1.364379 cents |
TE Error |
0.394394 cents/octave |
Hemithirds (31 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 2 | 2 | 7 | 0 | ] |
⟨ | 0 | -15 | 2 | 5 | -22 | 23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0616, 193.1759]
TE Step Tunings (cents)
⟨5.44564, 11.85341]
TE Tuning Map (cents)
⟨1200.062, 1902.607, 2786.475, 3366.003, 4150.560, 4443.047]
TE Mistunings (cents)
⟨0.062, 0.652, 0.161, -2.823, -0.758, 2.519]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.235320 |
Adjusted Error |
1.969998 cents |
TE Error |
0.532369 cents/octave |
Hemiwar (31 & 6f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 6 | 10 | 14 | 17 | 21 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | 2 | 2 | 2 | 0 | ] |
⟨ | 0 | 16 | 2 | 5 | 9 | 23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9666, 193.6921]
TE Step Tunings (cents)
⟨37.81389, 4.62265]
TE Tuning Map (cents)
⟨1199.967, 1899.107, 2787.317, 3368.394, 4143.162, 4454.919]
TE Mistunings (cents)
⟨-0.033, -2.848, 1.004, -0.432, -8.156, 14.391]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.506972 |
Adjusted Error |
7.419688 cents |
TE Error |
2.005083 cents/octave |
Hemiwur (31 & 68p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 68 | 108 | 158 | 191 | 235 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | 2 | 2 | 2 | ] |
⟨ | 0 | 16 | 2 | 5 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1773, 193.9122]
TE Step Tunings (cents)
⟨15.92317, 10.39057]
TE Tuning Map (cents)
⟨1200.177, 1902.417, 2788.179, 3369.915, 4145.564]
TE Mistunings (cents)
⟨0.177, 0.462, 1.865, 1.089, -5.754]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.619760 |
Adjusted Error |
2.967379 cents |
TE Error |
0.857765 cents/octave |
Hemiwur (31 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | 137 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | 2 | 2 | 2 | 5 | ] |
⟨ | 0 | 16 | 2 | 5 | 9 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5034, 193.9241]
TE Step Tunings (cents)
⟨21.82813, 14.13058]
TE Tuning Map (cents)
⟨1199.503, 1903.282, 2786.855, 3368.627, 4144.324, 4446.124]
TE Mistunings (cents)
⟨-0.497, 1.327, 0.541, -0.199, -6.994, 5.596]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.838338 |
Adjusted Error |
4.104578 cents |
TE Error |
1.109214 cents/octave |
Hemiwürschmidt (99 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 31 | 49 | 72 | 87 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.7154, 193.8522]
TE Step Tunings (cents)
⟨10.84243, 4.07466]
TE Tuning Map (cents)
⟨1199.715, 1901.920, 2787.135, 3368.692]
TE Mistunings (cents)
⟨-0.285, -0.035, 0.822, -0.134]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.040174 |
Adjusted Error |
0.641625 cents |
TE Error |
0.228551 cents/octave |
Hemiwürschmidt (31 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | 2 | 2 | -3 | ] |
⟨ | 0 | 16 | 2 | 5 | 40 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7868, 193.8059]
TE Step Tunings (cents)
⟨0.75121, 9.04999]
TE Tuning Map (cents)
⟨1199.787, 1901.108, 2787.186, 3368.603, 4152.877]
TE Mistunings (cents)
⟨-0.213, -0.847, 0.872, -0.223, 1.559]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.928704 |
Adjusted Error |
1.276973 cents |
TE Error |
0.369128 cents/octave |
Hemiwürschmidt (31 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | 2 | 2 | -3 | 10 | ] |
⟨ | 0 | 16 | 2 | 5 | 40 | -39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8631, 193.8064]
TE Step Tunings (cents)
⟨2.29311, 8.68290]
TE Tuning Map (cents)
⟨1199.863, 1901.039, 2787.339, 3368.758, 4152.667, 4440.182]
TE Mistunings (cents)
⟨-0.137, -0.916, 1.025, -0.068, 1.349, -0.346]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.292742 |
Adjusted Error |
1.271908 cents |
TE Error |
0.343718 cents/octave |
Hendec (72 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 5 | 8 | 5 | 6 | 8 | ] |
⟨ | 0 | -6 | -11 | 2 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.3833, 183.3149]
TE Step Tunings (cents)
⟨13.56092, 4.87783]
TE Tuning Map (cents)
⟨1200.767, 1902.027, 2786.602, 3368.546, 4152.244, 4436.436]
TE Mistunings (cents)
⟨0.767, 0.072, 0.288, -0.280, 0.927, -4.091]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.393470 |
Adjusted Error |
2.087353 cents |
TE Error |
0.564082 cents/octave |
Hendecatonic (99 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 22 | 35 | 51 | 62 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 11 | 17 | 26 | 30 | ] |
⟨ | 0 | 1 | -1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨109.0526, 48.4912]
TE Step Tunings (cents)
⟨12.07021, 0.21039]
TE Tuning Map (cents)
⟨1199.579, 1902.386, 2786.877, 3368.562]
TE Mistunings (cents)
⟨-0.421, 0.431, 0.564, -0.264]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.169614 |
Adjusted Error |
0.792784 cents |
TE Error |
0.282395 cents/octave |
Hendecatonic (22 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 77 | 122 | 179 | 216 | 266 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 11 | 18 | 25 | 32 | 38 | ] |
⟨ | 0 | -1 | 1 | -2 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨109.0980, 61.0038]
TE Step Tunings (cents)
⟨9.36497, 12.90972]
TE Tuning Map (cents)
⟨1200.078, 1902.760, 2788.453, 3369.127, 4145.723]
TE Mistunings (cents)
⟨0.078, 0.805, 2.139, 0.302, -5.595]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.729683 |
Adjusted Error |
2.991964 cents |
TE Error |
0.864871 cents/octave |
Hestia (72 & 34d & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -5 | -2 | ] |
⟨ | 0 | 2 | 1 | 6 | 4 | ] |
⟨ | 0 | 0 | 2 | 4 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5414, 950.6437, 917.0449]
TE Step Tunings (cents)
⟨15.34847, 2.25961, 0.64222]
TE Tuning Map (cents)
⟨1200.541, 1901.287, 2784.733, 3369.335, 4152.627]
TE Mistunings (cents)
⟨0.541, -0.668, -1.580, 0.509, 1.309]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.318449 |
Adjusted Error |
1.629739 cents |
TE Error |
0.471100 cents/octave |
Hestia (72 & 34d & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | -2 | -1 | ] |
⟨ | 0 | 2 | 1 | 6 | 4 | 4 | ] |
⟨ | 0 | 0 | 2 | 4 | 3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7278, 950.8852, 917.0524]
TE Step Tunings (cents)
⟨14.65264, 2.88828, 1.63918]
TE Tuning Map (cents)
⟨1200.728, 1901.770, 2784.990, 3369.882, 4153.242, 4436.918]
TE Mistunings (cents)
⟨0.728, -0.185, -1.324, 1.056, 1.924, -3.610]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.267592 |
Adjusted Error |
2.276514 cents |
TE Error |
0.615201 cents/octave |
Hestia (72 & 29g & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | 294 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | 139 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 0 | -5 | -2 | -1 | 1 | ] |
⟨ | 0 | 2 | 1 | 6 | 4 | 4 | 1 | ] |
⟨ | 0 | 0 | 2 | 4 | 3 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8531, 950.8143, 917.3134]
TE Step Tunings (cents)
⟨15.84028, 0.30754, 1.51278]
TE Tuning Map (cents)
⟨1200.853, 1901.629, 2785.441, 3369.874, 4153.491, 4437.031, 4903.608]
TE Mistunings (cents)
⟨0.853, -0.326, -0.873, 1.048, 2.173, -3.497, -1.348]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.270380 |
Adjusted Error |
2.416748 cents |
TE Error |
0.591259 cents/octave |
Hestia (29g & 72 & 34dh)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | 294 | 306 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | 139 | 145 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 1 | 0 | 0 | -5 | -2 | -1 | 1 | -2 | ] |
⟨ | 0 | 2 | 1 | 6 | 4 | 4 | 1 | 5 | ] |
⟨ | 0 | 0 | 2 | 4 | 3 | 2 | 3 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7518, 950.6044, 917.2711]
TE Step Tunings (cents)
⟨-0.16205, 16.65161, 0.19222]
TE Tuning Map (cents)
⟨1200.752, 1901.209, 2785.147, 3368.952, 4152.727, 4436.208, 4903.169, 5103.332]
TE Mistunings (cents)
⟨0.752, -0.746, -1.167, 0.126, 1.409, -4.320, -1.786, 5.819]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.239101 |
Adjusted Error |
3.234199 cents |
TE Error |
0.761359 cents/octave |
Hewuermity (99 & 31 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 53 | 84 | 123 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 1 | 4 | ] |
⟨ | 0 | 1 | 1 | -1 | ] |
⟨ | 0 | 0 | 2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7102, 1901.8888, -157.4297]
TE Step Tunings (cents)
⟨9.46485, 3.26812, 3.04488]
TE Tuning Map (cents)
⟨1199.710, 1901.889, 2786.740, 3369.241]
TE Mistunings (cents)
⟨-0.290, -0.066, 0.426, 0.415]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.172620 |
Adjusted Error |
0.527536 cents |
TE Error |
0.187912 cents/octave |
Hexe (12 & 18)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 18 | 29 | 42 | 51 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨199.0572, 110.4398]
TE Step Tunings (cents)
⟨66.79504, 21.82239]
TE Tuning Map (cents)
⟨1194.343, 1901.955, 2786.801, 3383.973]
TE Mistunings (cents)
⟨-5.657, 0.000, 0.488, 15.147]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.646955 |
Adjusted Error |
10.976771 cents |
TE Error |
3.910005 cents/octave |
Hexe (12 & 6)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 6 | 10 | 14 | 17 | 21 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 6 | 9 | 14 | 17 | 21 | ] |
⟨ | 0 | 1 | 0 | 0 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨198.7098, 113.5669]
TE Step Tunings (cents)
⟨85.14291, 28.42397]
TE Tuning Map (cents)
⟨1192.259, 1901.955, 2781.937, 3378.066, 4172.906]
TE Mistunings (cents)
⟨-7.741, 0.000, -4.377, 9.241, 21.588]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.524048 |
Adjusted Error |
16.464477 cents |
TE Error |
4.759301 cents/octave |
Hexe (12f & 6f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 6 | 10 | 14 | 17 | 21 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 6 | 9 | 14 | 17 | 21 | 22 | ] |
⟨ | 0 | 1 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨198.4806, 109.1692]
TE Step Tunings (cents)
⟨89.31142, 19.85776]
TE Tuning Map (cents)
⟨1190.884, 1895.495, 2778.728, 3374.170, 4168.093, 4475.743]
TE Mistunings (cents)
⟨-9.116, -6.460, -7.585, 5.344, 16.775, 35.215]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.430170 |
Adjusted Error |
22.815682 cents |
TE Error |
6.165668 cents/octave |
History (72 & 130 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 130 | 206 | 302 | 365 | ] |
⟨ | 87 | 138 | 202 | 244 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 0 | 0 | ] |
⟨ | 0 | 6 | 0 | -7 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1539, -83.0910, 2786.6692]
TE Step Tunings (cents)
⟨4.18946, 5.14174, 2.64468]
TE Tuning Map (cents)
⟨1200.154, 1901.762, 2786.669, 3368.306]
TE Mistunings (cents)
⟨0.154, -0.193, 0.356, -0.520]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.341546 |
Adjusted Error |
0.435488 cents |
TE Error |
0.155124 cents/octave |
History (72 & 58 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 0 | 0 | 1 | ] |
⟨ | 0 | 6 | 0 | -7 | -2 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0908, -83.0793, 2786.3576]
TE Step Tunings (cents)
⟨9.11877, 4.53622, 3.22343]
TE Tuning Map (cents)
⟨1200.091, 1901.706, 2786.358, 3367.913, 4152.607]
TE Mistunings (cents)
⟨0.091, -0.249, 0.044, -0.913, 1.289]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.279588 |
Adjusted Error |
0.815697 cents |
TE Error |
0.235789 cents/octave |
History (72 & 58 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 0 | 0 | 1 | 2 | ] |
⟨ | 0 | 6 | 0 | -7 | -2 | 9 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0246, -83.0177, 2786.7074]
TE Step Tunings (cents)
⟨7.46506, 5.19161, 4.15433]
TE Tuning Map (cents)
⟨1200.025, 1901.943, 2786.707, 3367.832, 4152.767, 4439.597]
TE Mistunings (cents)
⟨0.025, -0.012, 0.394, -0.994, 1.449, -0.931]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.287653 |
Adjusted Error |
0.947884 cents |
TE Error |
0.256154 cents/octave |
Hitchcock (46 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 6 | -2 | 6 | ] |
⟨ | 0 | -5 | -13 | 17 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0012, 339.3899]
TE Step Tunings (cents)
⟨12.35142, 11.92143]
TE Tuning Map (cents)
⟨1200.001, 1903.054, 2787.938, 3369.626, 4145.498]
TE Mistunings (cents)
⟨0.001, 1.099, 1.624, 0.801, -5.820]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.977908 |
Adjusted Error |
3.048196 cents |
TE Error |
0.881126 cents/octave |
Hitchcock (46 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 6 | -2 | 6 | 2 | ] |
⟨ | 0 | -5 | -13 | 17 | -9 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2078, 339.4781]
TE Step Tunings (cents)
⟨10.77967, 13.28949]
TE Tuning Map (cents)
⟨1200.208, 1903.233, 2788.032, 3370.711, 4145.944, 4437.284]
TE Mistunings (cents)
⟨0.208, 1.278, 1.718, 1.886, -5.374, -3.244]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.765650 |
Adjusted Error |
3.334998 cents |
TE Error |
0.901244 cents/octave |
Hocus (41 & 3)
Contorted
Magic (order 2)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.2480, 410.3971]
TE Step Tunings (cents)
⟨29.94343, -8.81088]
TE Tuning Map (cents)
⟨1201.248, 1902.269, 2782.950]
TE Mistunings (cents)
⟨1.248, 0.314, -3.364]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.790526 |
Adjusted Error |
2.577115 cents |
TE Error |
1.109903 cents/octave |
Hocus (41 & 3d)
Contorted
Magic (order 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 3 | 5 | 7 | 9 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 5 | 3 | 11 | ] |
⟨ | 0 | -10 | -2 | -24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0824, 410.1936]
TE Step Tunings (cents)
⟨29.49854, -2.78584]
TE Tuning Map (cents)
⟨1201.082, 1903.476, 2782.860, 3367.259]
TE Mistunings (cents)
⟨1.082, 1.521, -3.454, -1.567]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.597358 |
Adjusted Error |
3.015814 cents |
TE Error |
1.074254 cents/octave |
Hocus (41 & 3de)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 3 | 5 | 7 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 3 | 11 | 12 | ] |
⟨ | 0 | -10 | -2 | -24 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0810, 410.2790]
TE Step Tunings (cents)
⟨29.75596, -6.30447]
TE Tuning Map (cents)
⟨1201.081, 1902.615, 2782.685, 3365.195, 4155.997]
TE Mistunings (cents)
⟨1.081, 0.660, -3.629, -3.631, 4.679]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.476867 |
Adjusted Error |
4.176172 cents |
TE Error |
1.207185 cents/octave |
Hocus (41 & 38df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 3 | 11 | 12 | 16 | ] |
⟨ | 0 | -10 | -2 | -24 | -25 | -36 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2908, 410.4448]
TE Step Tunings (cents)
⟨19.87703, 10.16664]
TE Tuning Map (cents)
⟨1201.291, 1902.006, 2782.983, 3363.523, 4154.369, 4444.639]
TE Mistunings (cents)
⟨1.291, 0.051, -3.331, -5.303, 3.051, 4.111]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.705515 |
Adjusted Error |
4.608383 cents |
TE Error |
1.245361 cents/octave |
Homalic (65 & 87 & 72)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 65 | 103 | 151 | 225 | ] |
⟨ | 87 | 138 | 202 | 301 | ] |
⟨ | 72 | 114 | 167 | 249 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 2 | 0 | 1 | ] |
⟨ | 0 | 3 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9175, -165.9462, 2786.0468]
TE Step Tunings (cents)
⟨6.79356, 6.24391, 2.98772]
TE Tuning Map (cents)
⟨1199.917, 1901.996, 2786.047, 4151.910]
TE Mistunings (cents)
⟨-0.083, 0.041, -0.267, 0.593]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.133089 |
Adjusted Error |
0.386940 cents |
TE Error |
0.111851 cents/octave |
Horcrux (19p & 60e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 60 | 95 | 139 | 168 | 207 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | -1 | 12 | ] |
⟨ | 0 | 5 | 1 | 12 | -27 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.0769, 380.5775]
TE Step Tunings (cents)
⟨4.80960, 18.51157]
TE Tuning Map (cents)
⟨1202.077, 1902.888, 2784.731, 3364.853, 4149.329]
TE Mistunings (cents)
⟨2.077, 0.933, -1.583, -3.973, -1.988]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.219326 |
Adjusted Error |
4.224717 cents |
TE Error |
1.221217 cents/octave |
Hornbostel (7p & 23d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 20 | ] |
⟨ | 23 | 36 | 53 | 64 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 1 | 8 | ] |
⟨ | 0 | -1 | 3 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1208.0636, 524.5538]
TE Step Tunings (cents)
⟨15.89852, 47.68582]
TE Tuning Map (cents)
⟨1208.064, 1891.573, 2781.725, 3369.863]
TE Mistunings (cents)
⟨8.064, -10.382, -4.589, 1.037]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.052251 |
Adjusted Error |
14.852940 cents |
TE Error |
5.290724 cents/octave |
Horoscope (22f & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 82 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 5 | 5 | 6 | 8 | 10 | ] |
⟨ | 0 | -5 | -1 | -1 | -3 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9187, 220.1334]
TE Step Tunings (cents)
⟨38.68883, 21.79269]
TE Tuning Map (cents)
⟨1199.837, 1898.926, 2779.460, 3379.379, 4138.949, 4458.253]
TE Mistunings (cents)
⟨-0.163, -3.029, -6.854, 10.553, -12.369, 17.725]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.177748 |
Adjusted Error |
11.919039 cents |
TE Error |
3.220979 cents/octave |
Hours (72 & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 24 | 38 | 56 | 67 | 83 | ] |
⟨ | 0 | 0 | -1 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨50.0301, 15.9559]
TE Step Tunings (cents)
⟨15.95587, 2.16252]
TE Tuning Map (cents)
⟨1200.723, 1901.145, 2785.731, 3367.974, 4152.500]
TE Mistunings (cents)
⟨0.723, -0.810, -0.583, -0.852, 1.182]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.984447 |
Adjusted Error |
1.589742 cents |
TE Error |
0.459539 cents/octave |
Hours (72 & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] |
⟨ | 0 | 0 | -1 | 1 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨50.0358, 15.3594]
TE Step Tunings (cents)
⟨15.35943, 3.95755]
TE Tuning Map (cents)
⟨1200.860, 1901.361, 2786.647, 3367.760, 4152.974, 4437.829]
TE Mistunings (cents)
⟨0.860, -0.594, 0.333, -1.066, 1.656, -2.698]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.920004 |
Adjusted Error |
2.029756 cents |
TE Error |
0.548518 cents/octave |
Huntington (37 & 47)
Equal Temperament Mappings
| 2 | 5 | 7 | 13 | |
[ ⟨ | 37 | 86 | 104 | 137 | ] |
⟨ | 47 | 109 | 132 | 174 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7 | 13 | |
[ ⟨ | 1 | 5 | 4 | 4 | ] |
⟨ | 0 | -9 | -4 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4794, 356.8472]
TE Step Tunings (cents)
⟨20.89370, 9.07260]
TE Tuning Map (cents)
⟨1199.479, 2785.772, 3370.529, 4441.070]
TE Mistunings (cents)
⟨-0.521, -0.541, 1.703, 0.543]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.531006 |
Adjusted Error |
1.564360 cents |
TE Error |
0.422750 cents/octave |
Hystrix (7p & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 20 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | -3 | -5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1188.1421, 157.2979]
TE Step Tunings (cents)
⟨70.24094, 87.05695]
TE Tuning Map (cents)
⟨1188.142, 1904.391, 2777.937, 3407.129]
TE Mistunings (cents)
⟨-11.858, 2.436, -8.377, 38.303]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.944866 |
Adjusted Error |
25.963680 cents |
TE Error |
9.248450 cents/octave |
Hystrix (7p & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -3 | -5 | -1 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1189.6067, 157.3753]
TE Step Tunings (cents)
⟨69.39562, 87.97968]
TE Tuning Map (cents)
⟨1189.607, 1907.088, 2781.944, 3411.445, 4128.926]
TE Mistunings (cents)
⟨-10.393, 5.133, -4.370, 42.619, -22.392]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.844368 |
Adjusted Error |
30.725299 cents |
TE Error |
8.881603 cents/octave |
Icosidillic (22 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 0 | -1 | 1 | -2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨54.5305, 6.1754]
TE Step Tunings (cents)
⟨-1.04825, 6.17542]
TE Tuning Map (cents)
⟨1199.671, 1902.391, 2787.230, 3368.539, 4150.492]
TE Mistunings (cents)
⟨-0.329, 0.436, 0.916, -0.287, -0.826]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.307058 |
Adjusted Error |
0.987598 cents |
TE Error |
0.285480 cents/octave |
Ilo (7 & 2)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1206.7469, 514.9285]
TE Step Tunings (cents)
⟨176.88987, -15.74111]
TE Tuning Map (cents)
⟨1206.747, 1898.565, 4135.169]
TE Mistunings (cents)
⟨6.747, -3.390, -16.149]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.381981 |
Adjusted Error |
16.934153 cents |
TE Error |
4.895068 cents/octave |
Immunity (34 & 5)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.9241, 246.8486]
TE Step Tunings (cents)
⟨35.31892, -0.38386]
TE Tuning Map (cents)
⟨1198.924, 1904.151, 2785.589]
TE Mistunings (cents)
⟨-1.076, 2.196, -0.725]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.400015 |
Adjusted Error |
2.388589 cents |
TE Error |
1.028709 cents/octave |
Immunity (5 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 29 | 46 | 67 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 5 | 3 | ] |
⟨ | 0 | -2 | -13 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.4780, 247.8597]
TE Step Tunings (cents)
⟨20.93811, 37.82026]
TE Tuning Map (cents)
⟨1201.478, 1907.237, 2785.215, 3356.574]
TE Mistunings (cents)
⟨1.478, 5.282, -1.099, -12.252]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.235813 |
Adjusted Error |
8.009409 cents |
TE Error |
2.853009 cents/octave |
Immunity (5p & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 5 | 3 | 2 | ] |
⟨ | 0 | -2 | -13 | -1 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.6368, 248.4707]
TE Step Tunings (cents)
⟨10.17037, 39.71672]
TE Tuning Map (cents)
⟨1202.637, 1908.332, 2783.065, 3359.440, 4144.568]
TE Mistunings (cents)
⟨2.637, 6.377, -3.249, -9.386, -6.749]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.515011 |
Adjusted Error |
9.795088 cents |
TE Error |
2.831416 cents/octave |
Immunity (5p & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 5 | 3 | 2 | 7 | ] |
⟨ | 0 | -2 | -13 | -1 | 7 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.5977, 248.5061]
TE Step Tunings (cents)
⟨8.90779, 39.93306]
TE Tuning Map (cents)
⟨1202.598, 1908.183, 2782.408, 3359.287, 4144.738, 4442.085]
TE Mistunings (cents)
⟨2.598, 6.228, -3.905, -9.539, -6.580, 1.558]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.600737 |
Adjusted Error |
9.597087 cents |
TE Error |
2.593499 cents/octave |
Impunity (5e & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 5 | 3 | 8 | ] |
⟨ | 0 | -2 | -13 | -1 | -22 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.6312, 248.1094]
TE Step Tunings (cents)
⟨14.61332, 38.91602]
TE Tuning Map (cents)
⟨1201.631, 1907.044, 2782.733, 3356.784, 4154.642]
TE Mistunings (cents)
⟨1.631, 5.089, -3.580, -12.042, 3.324]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.703519 |
Adjusted Error |
9.109243 cents |
TE Error |
2.633162 cents/octave |
Impunity (5e & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 5 | 3 | 8 | 7 | ] |
⟨ | 0 | -2 | -13 | -1 | -22 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.6116, 248.1160]
TE Step Tunings (cents)
⟨14.30469, 38.96856]
TE Tuning Map (cents)
⟨1201.612, 1906.991, 2782.549, 3356.719, 4154.340, 4441.425]
TE Mistunings (cents)
⟨1.612, 5.036, -3.764, -12.107, 3.022, 0.897]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.539576 |
Adjusted Error |
8.904454 cents |
TE Error |
2.406323 cents/octave |
Inanna (31 & 15 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 3 | 2 | 1 | ] |
⟨ | 0 | 1 | 1 | 0 | 1 | 2 | ] |
⟨ | 0 | 0 | 4 | 3 | 2 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.7967, 1901.6184, -79.7288]
TE Step Tunings (cents)
⟨23.60214, -2.95097, 17.73775]
TE Tuning Map (cents)
⟨1201.797, 1901.618, 2784.500, 3366.204, 4145.754, 4446.932]
TE Mistunings (cents)
⟨1.797, -0.337, -1.814, -2.622, -5.564, 6.404]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.179498 |
Adjusted Error |
4.857239 cents |
TE Error |
1.312611 cents/octave |
Indium (8 & 49)
Equal Temperament Mappings
| 2 | 5/3 | 7/3 | 11/3 | |
[ ⟨ | 8 | 6 | 10 | 15 | ] |
⟨ | 49 | 36 | 60 | 92 | ] ⟩ |
Reduced Mapping
| 2 | 5/3 | 7/3 | 11/3 | |
[ ⟨ | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 6 | 10 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0431, 147.0420]
TE Step Tunings (cents)
⟨10.79973, 22.70705]
TE Tuning Map (cents)
⟨1199.043, 882.252, 1470.420, 2251.044]
TE Mistunings (cents)
⟨-0.957, -2.107, 3.549, 1.681]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
4.221510 |
Adjusted Error |
4.011718 cents |
TE Error |
2.140189 cents/octave |
Indra (72 & 31 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 3 | 3 | 0 | ] |
⟨ | 0 | 0 | 5 | 4 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9694, 1901.7138, -583.8541]
TE Step Tunings (cents)
⟨4.31365, 1.24324, 5.59767]
TE Tuning Map (cents)
⟨1199.969, 1901.714, 2785.871, 3369.725, 4151.501]
TE Mistunings (cents)
⟨-0.031, -0.241, -0.443, 0.899, 0.183]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.223378 |
Adjusted Error |
0.630030 cents |
TE Error |
0.182119 cents/octave |
Inflated (3d & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | 5 | 7 | 9 | ] |
⟨ | 15 | 24 | 35 | 42 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨398.4348, 76.9782]
TE Step Tunings (cents)
⟨13.54382, 76.97820]
TE Tuning Map (cents)
⟨1195.305, 1915.196, 2789.044, 3354.979]
TE Mistunings (cents)
⟨-4.695, 13.241, 2.730, -13.847]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.361875 |
Adjusted Error |
15.218747 cents |
TE Error |
5.421027 cents/octave |
Inflated (3de & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 0 | -1 | 0 | -3 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.4341, 77.0338]
TE Step Tunings (cents)
⟨13.26533, 77.03376]
TE Tuning Map (cents)
⟨1195.302, 1915.137, 2789.039, 3354.806, 4151.674]
TE Mistunings (cents)
⟨-4.698, 13.182, 2.725, -14.020, 0.356]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.329545 |
Adjusted Error |
16.774921 cents |
TE Error |
4.849040 cents/octave |
Infraorwell (58 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -2 | 3 | -1 | 1 | ] |
⟨ | 0 | 16 | -3 | 17 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.2966, 268.6540]
TE Step Tunings (cents)
⟨21.29301, -4.07754]
TE Tuning Map (cents)
⟨1198.297, 1901.871, 2788.928, 3368.822, 4153.491]
TE Mistunings (cents)
⟨-1.703, -0.084, 2.614, -0.004, 2.173]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.135791 |
Adjusted Error |
3.305998 cents |
TE Error |
0.955648 cents/octave |
Infraorwell (58 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -2 | 3 | -1 | 1 | -1 | ] |
⟨ | 0 | 16 | -3 | 17 | 11 | 21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.2258, 268.6229]
TE Step Tunings (cents)
⟨21.15466, -3.19386]
TE Tuning Map (cents)
⟨1198.226, 1901.515, 2788.809, 3368.364, 4153.078, 4442.855]
TE Mistunings (cents)
⟨-1.774, -0.440, 2.495, -0.462, 1.760, 2.328]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.853705 |
Adjusted Error |
3.398576 cents |
TE Error |
0.918425 cents/octave |
Injera (12 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 14 | 22 | 32 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.6984, 96.3507]
TE Step Tunings (cents)
⟨73.75637, 22.59432]
TE Tuning Map (cents)
⟨1201.397, 1898.446, 2788.196]
TE Mistunings (cents)
⟨1.397, -3.509, 1.883]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.421604 |
Adjusted Error |
3.673804 cents |
TE Error |
1.582221 cents/octave |
Injera (12 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 14 | 22 | 32 | 39 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.6826, 94.4827]
TE Step Tunings (cents)
⟨60.69609, 33.78658]
TE Tuning Map (cents)
⟨1201.365, 1896.530, 2780.661, 3381.344]
TE Mistunings (cents)
⟨1.365, -5.425, -5.653, 12.518]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.350015 |
Adjusted Error |
8.809216 cents |
TE Error |
3.137906 cents/octave |
Injera (12 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 4 | 5 | 6 | ] |
⟨ | 0 | 1 | 4 | 4 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.9599, 92.9887]
TE Step Tunings (cents)
⟨49.96064, 43.02802]
TE Tuning Map (cents)
⟨1201.920, 1895.868, 2775.794, 3376.754, 4163.692]
TE Mistunings (cents)
⟨1.920, -6.087, -10.519, 7.928, 12.374]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.361830 |
Adjusted Error |
11.956516 cents |
TE Error |
3.456208 cents/octave |
Injera (12f & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 4 | 5 | 6 | 6 | ] |
⟨ | 0 | 1 | 4 | 4 | 6 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨601.0232, 92.8306]
TE Step Tunings (cents)
⟨48.79100, 44.03960]
TE Tuning Map (cents)
⟨1202.046, 1895.900, 2775.415, 3376.438, 4163.123, 4441.615]
TE Mistunings (cents)
⟨2.046, -6.055, -10.899, 7.612, 11.805, 1.087]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.588675 |
Adjusted Error |
11.691664 cents |
TE Error |
3.159534 cents/octave |
Injera (26 & 26ccc)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] |
⟨ | 26 | 41 | 62 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] |
⟨ | 0 | 0 | 2 | 0 | 0 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨46.2141, 6.7341]
TE Step Tunings (cents)
⟨39.48004, 6.73405]
TE Tuning Map (cents)
⟨1201.566, 1894.778, 2786.314, 3373.629, 4159.268, 4436.553]
TE Mistunings (cents)
⟨1.566, -7.177, -0.000, 4.803, 7.950, -3.975]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.335292 |
Adjusted Error |
8.588622 cents |
TE Error |
2.320973 cents/octave |
Injerous (14c & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 4 | 5 | 7 | ] |
⟨ | 0 | 1 | 4 | 4 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨603.2132, 91.0332]
TE Step Tunings (cents)
⟨57.01428, 34.01887]
TE Tuning Map (cents)
⟨1206.426, 1900.673, 2776.985, 3380.199, 4131.459]
TE Mistunings (cents)
⟨6.426, -1.282, -9.328, 11.373, -19.859]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.552256 |
Adjusted Error |
16.037513 cents |
TE Error |
4.635881 cents/octave |
Ino (2 & 5)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.2173, 714.9023]
TE Step Tunings (cents)
⟨35.14076, 226.58716]
TE Tuning Map (cents)
⟨1203.217, 1918.120, 5039.457]
TE Mistunings (cents)
⟨3.217, 16.165, -58.057]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.267042 |
Adjusted Error |
42.560794 cents |
TE Error |
10.019190 cents/octave |
Interpental (53 & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 43 | 68 | 100 | 121 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | -1 | 1 | -5 | ] |
⟨ | 0 | -8 | 11 | 6 | 28 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9429, 362.4006]
TE Step Tunings (cents)
⟨16.03296, 8.14410]
TE Tuning Map (cents)
⟨1199.943, 1900.567, 2786.464, 3374.346, 4147.502]
TE Mistunings (cents)
⟨-0.057, -1.388, 0.150, 5.521, -3.816]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.434442 |
Adjusted Error |
3.744544 cents |
TE Error |
1.082416 cents/octave |
Interpental (53 & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 43 | 68 | 100 | 121 | 149 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | -1 | 1 | -5 | 4 | ] |
⟨ | 0 | -8 | 11 | 6 | 28 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1102, 362.4355]
TE Step Tunings (cents)
⟨16.70693, 7.31727]
TE Tuning Map (cents)
⟨1200.110, 1900.957, 2786.680, 3374.723, 4147.642, 4438.005]
TE Mistunings (cents)
⟨0.110, -0.998, 0.366, 5.897, -3.676, -2.522]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.133777 |
Adjusted Error |
3.833598 cents |
TE Error |
1.035984 cents/octave |
Intuition (19e & 22f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 82 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | -1 | -2 | ] |
⟨ | 0 | 5 | 1 | 12 | 14 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3604, 380.9141]
TE Step Tunings (cents)
⟨29.41345, 29.20477]
TE Tuning Map (cents)
⟨1201.360, 1904.570, 2783.635, 3369.608, 4131.436, 4453.732]
TE Mistunings (cents)
⟨1.360, 2.615, -2.679, 0.782, -19.881, 13.205]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.893861 |
Adjusted Error |
10.866960 cents |
TE Error |
2.936667 cents/octave |
Ishtar (15 & 29 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 3 | 2 | -1 | ] |
⟨ | 0 | 1 | 1 | 0 | 1 | 3 | ] |
⟨ | 0 | 0 | 4 | 3 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7963, 1904.6583, -79.0102]
TE Step Tunings (cents)
⟨-4.06891, 7.22953, 22.87334]
TE Tuning Map (cents)
⟨1200.796, 1904.658, 2789.414, 3365.359, 4148.231, 4434.168]
TE Mistunings (cents)
⟨0.796, 2.703, 3.100, -3.467, -3.087, -6.359]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.184473 |
Adjusted Error |
4.918757 cents |
TE Error |
1.329236 cents/octave |
Isis (31 & 41 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | 17 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | -4 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1848, 1902.2085, 2783.6731]
TE Step Tunings (cents)
⟨1.43083, 11.54333, 12.87835]
TE Tuning Map (cents)
⟨1200.185, 1902.208, 2783.673, 3370.839, 4148.990, 4443.288]
TE Mistunings (cents)
⟨0.185, 0.253, -2.641, 2.013, -2.328, 2.760]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.221631 |
Adjusted Error |
2.562334 cents |
TE Error |
0.692440 cents/octave |
Isis (31 & 22p & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | 90 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | 41 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | 17 | 8 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | -4 | -1 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | -3 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8159, 1901.9194, 2782.7474]
TE Step Tunings (cents)
⟨24.80243, 14.52281, 11.14387]
TE Tuning Map (cents)
⟨1199.816, 1901.919, 2782.747, 3370.254, 4147.629, 4440.950, 4913.860]
TE Mistunings (cents)
⟨-0.184, -0.036, -3.566, 1.428, -3.689, 0.423, 8.905]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.192261 |
Adjusted Error |
4.517035 cents |
TE Error |
1.105095 cents/octave |
Jamesbond (7d & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 19 | ] |
⟨ | 7 | 11 | 16 | 20 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 19 | ] |
⟨ | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨172.8118, 85.4021]
TE Step Tunings (cents)
⟨87.40971, 85.40207]
TE Tuning Map (cents)
⟨1209.682, 1900.930, 2764.988, 3368.826]
TE Mistunings (cents)
⟨9.682, -1.025, -21.325, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.071031 |
Adjusted Error |
18.754705 cents |
TE Error |
6.680561 cents/octave |
Jamesbond (7d & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 19 | 24 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 19 | 24 | ] |
⟨ | 0 | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨172.8517, 84.6440]
TE Step Tunings (cents)
⟨88.20763, 84.64405]
TE Tuning Map (cents)
⟨1209.962, 1901.368, 2765.627, 3368.826, 4148.440]
TE Mistunings (cents)
⟨9.962, -0.587, -20.687, -0.000, -2.878]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.989153 |
Adjusted Error |
20.724378 cents |
TE Error |
5.990689 cents/octave |
Jamesbond (7p & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 0 | 0 | 0 | -1 | 0 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨172.4313, 79.7993]
TE Step Tunings (cents)
⟨92.63198, 79.79928]
TE Tuning Map (cents)
⟨1207.019, 1896.744, 2758.900, 3368.826, 4138.350, 4483.213]
TE Mistunings (cents)
⟨7.019, -5.211, -27.414, -0.000, -12.968, 42.685]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.923828 |
Adjusted Error |
28.123958 cents |
TE Error |
7.600166 cents/octave |
Jerome (17c & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 2 | 3 | 3 | ] |
⟨ | 0 | 5 | 20 | 7 | 4 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9035, 139.3757]
TE Step Tunings (cents)
⟨24.05805, 30.41987]
TE Tuning Map (cents)
⟨1199.903, 1896.782, 2787.514, 3375.437, 4157.213, 4435.965]
TE Mistunings (cents)
⟨-0.097, -5.173, 1.200, 6.611, 5.895, -4.563]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.767232 |
Adjusted Error |
6.906221 cents |
TE Error |
1.866324 cents/octave |
Joan (11 & 31)
Equal Temperament Mappings
| 2 | 9 | 7 | 11 | |
[ ⟨ | 11 | 35 | 31 | 38 | ] |
⟨ | 31 | 98 | 87 | 107 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8693, 543.0647]
TE Step Tunings (cents)
⟨22.83517, 30.63492]
TE Tuning Map (cents)
⟨1200.869, 3801.453, 3373.128, 4145.673]
TE Mistunings (cents)
⟨0.869, -2.457, 4.302, -5.645]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.885962 |
Adjusted Error |
4.364913 cents |
TE Error |
1.261743 cents/octave |
Jofur (31 & 58 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 2 | 2 | 4 | ] |
⟨ | 0 | 2 | 1 | 1 | 5 | -1 | ] |
⟨ | 0 | 0 | 2 | 1 | 0 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.9562, 351.1420, 618.3508]
TE Step Tunings (cents)
⟨1.51548, 13.89373, 8.44243]
TE Tuning Map (cents)
⟨1198.956, 1901.240, 2786.800, 3367.405, 4153.622, 4444.683]
TE Mistunings (cents)
⟨-1.044, -0.715, 0.486, -1.421, 2.304, 4.155]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.199267 |
Adjusted Error |
2.743251 cents |
TE Error |
0.741331 cents/octave |
Jove (31 & 72 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | 2 | 2 | ] |
⟨ | 0 | 2 | 1 | 1 | 5 | ] |
⟨ | 0 | 0 | 2 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0989, 350.5323, 617.8784]
TE Step Tunings (cents)
⟨-0.08269, 11.87013, 6.00023]
TE Tuning Map (cents)
⟨1200.099, 1901.163, 2786.388, 3368.609, 4152.859]
TE Mistunings (cents)
⟨0.099, -0.792, 0.074, -0.217, 1.541]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.174753 |
Adjusted Error |
1.054645 cents |
TE Error |
0.304861 cents/octave |
Jovial (72 & 58 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 2 | 2 | 1 | ] |
⟨ | 0 | 2 | 1 | 1 | 5 | 11 | ] |
⟨ | 0 | 0 | 2 | 1 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9779, 350.7115, 617.8173]
TE Step Tunings (cents)
⟨9.21362, 7.07528, 3.07880]
TE Tuning Map (cents)
⟨1199.978, 1901.401, 2786.324, 3368.485, 4153.513, 4439.987]
TE Mistunings (cents)
⟨-0.022, -0.554, 0.010, -0.341, 2.195, -0.541]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.283020 |
Adjusted Error |
1.132082 cents |
TE Error |
0.305932 cents/octave |
Jovis (72 & 58 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 2 | 2 | 2 | ] |
⟨ | 0 | 2 | 1 | 1 | 5 | -3 | ] |
⟨ | 0 | 0 | 2 | 1 | 0 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1440, 350.4355, 618.1778]
TE Step Tunings (cents)
⟨10.27031, 6.27880, 3.11327]
TE Tuning Map (cents)
⟨1200.144, 1901.015, 2786.935, 3368.901, 4152.466, 4439.870]
TE Mistunings (cents)
⟨0.144, -0.940, 0.621, 0.075, 1.148, -0.657]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.261024 |
Adjusted Error |
1.156832 cents |
TE Error |
0.312620 cents/octave |
Jubilee (12 & 22 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | 1 | 4 | ] |
⟨ | 0 | 1 | 0 | 0 | -2 | ] |
⟨ | 0 | 0 | 1 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.6314, 1902.2461, 2778.9889]
TE Step Tunings (cents)
⟨24.99924, 32.94429, 12.46410]
TE Tuning Map (cents)
⟨1199.263, 1902.246, 2778.989, 3378.620, 4152.011]
TE Mistunings (cents)
⟨-0.737, 0.291, -7.325, 9.794, 0.693]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.112428 |
Adjusted Error |
7.377756 cents |
TE Error |
2.132650 cents/octave |
Jupiter (31 & 152 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 4 | -5 | ] |
⟨ | 0 | 1 | 1 | -1 | 6 | ] |
⟨ | 0 | 0 | 2 | -3 | 8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7234, 1901.6731, -157.4667]
TE Step Tunings (cents)
⟨1.26982, 5.26677, 2.76777]
TE Tuning Map (cents)
⟨1199.723, 1901.673, 2786.463, 3369.621, 4151.688]
TE Mistunings (cents)
⟨-0.277, -0.282, 0.149, 0.795, 0.370]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.289171 |
Adjusted Error |
0.698523 cents |
TE Error |
0.201918 cents/octave |
Kangaroo (15 & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 7 | 7 | 10 | ] |
⟨ | 0 | -3 | -10 | -9 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.0740, 558.7890]
TE Step Tunings (cents)
⟨79.49594, 2.31743]
TE Tuning Map (cents)
⟨1197.074, 1914.855, 2791.628, 3350.417, 4147.694]
TE Mistunings (cents)
⟨-2.926, 12.900, 5.314, -18.409, -3.624]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.590829 |
Adjusted Error |
17.237531 cents |
TE Error |
4.982764 cents/octave |
Kangaroo (15 & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 7 | 7 | 10 | 7 | ] |
⟨ | 0 | -3 | -10 | -9 | -14 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1194.8592, 557.3722]
TE Step Tunings (cents)
⟨80.11474, -3.43093]
TE Tuning Map (cents)
⟨1194.859, 1912.461, 2790.292, 3347.664, 4145.381, 4462.409]
TE Mistunings (cents)
⟨-5.141, 10.506, 3.978, -21.162, -5.937, 21.881]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.485304 |
Adjusted Error |
19.582683 cents |
TE Error |
5.291988 cents/octave |
Karadeniz (41 & 65d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 65 | 103 | 151 | 183 | 225 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 7 | 11 | 2 | ] |
⟨ | 0 | 2 | -16 | -28 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7376, 350.9174]
TE Step Tunings (cents)
⟨14.61746, 9.23726]
TE Tuning Map (cents)
⟨1199.738, 1901.572, 2783.485, 3371.426, 4154.062]
TE Mistunings (cents)
⟨-0.262, -0.383, -2.829, 2.600, 2.744]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.703256 |
Adjusted Error |
2.723444 cents |
TE Error |
0.787252 cents/octave |
Kastro (118 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 1 | 6 | 5 | ] |
⟨ | 0 | -31 | 12 | -29 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2432, 132.2132]
TE Step Tunings (cents)
⟨10.32464, -2.00720]
TE Tuning Map (cents)
⟨1200.243, 1902.608, 2786.801, 3367.277, 4150.232]
TE Mistunings (cents)
⟨0.243, 0.653, 0.488, -1.549, -1.086]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.563640 |
Adjusted Error |
1.271774 cents |
TE Error |
0.367625 cents/octave |
Kastro (9 & 118f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | 436 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 1 | 6 | 5 | 7 | ] |
⟨ | 0 | -31 | 12 | -29 | -14 | -30 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4323, 132.2265]
TE Step Tunings (cents)
⟨-2.88931, 10.39353]
TE Tuning Map (cents)
⟨1200.432, 1903.139, 2787.151, 3368.024, 4150.990, 4436.230]
TE Mistunings (cents)
⟨0.432, 1.184, 0.837, -0.802, -0.328, -4.298]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.865293 |
Adjusted Error |
2.298104 cents |
TE Error |
0.621035 cents/octave |
Keemun (19 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 15 | 24 | 35 | 42 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.6458, 317.1705]
TE Step Tunings (cents)
⟨53.02605, 13.01006]
TE Tuning Map (cents)
⟨1202.646, 1903.023, 2788.498, 3356.803]
TE Mistunings (cents)
⟨2.646, 1.068, 2.185, -12.023]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.396293 |
Adjusted Error |
7.250406 cents |
TE Error |
2.582647 cents/octave |
Keemun (15 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 2 | 4 | ] |
⟨ | 0 | 6 | 5 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7796, 317.5173]
TE Step Tunings (cents)
⟨33.92970, 36.35969]
TE Tuning Map (cents)
⟨1199.780, 1905.104, 2787.366, 3352.111, 4164.084]
TE Mistunings (cents)
⟨-0.220, 3.149, 1.052, -16.715, 12.766]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.560807 |
Adjusted Error |
11.291479 cents |
TE Error |
3.263969 cents/octave |
Keemun (19p & 4p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 4 | 6 | 9 | 11 | 14 | 15 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 2 | 4 | 5 | ] |
⟨ | 0 | 6 | 5 | 3 | -2 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.9100, 317.1153]
TE Step Tunings (cents)
⟨66.55113, -15.64038]
TE Tuning Map (cents)
⟨1201.910, 1902.692, 2787.486, 3355.166, 4173.409, 4423.973]
TE Mistunings (cents)
⟨1.910, 0.737, 1.173, -13.660, 22.091, -16.554]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.727915 |
Adjusted Error |
14.218816 cents |
TE Error |
3.842467 cents/octave |
Keen (22 & 34p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 34 | 54 | 79 | 95 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.6649, 107.5113]
TE Step Tunings (cents)
⟨28.69675, 16.70592]
TE Tuning Map (cents)
⟨1199.330, 1906.506, 2783.302, 3366.261]
TE Mistunings (cents)
⟨-0.670, 4.551, -3.012, -2.565]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.035543 |
Adjusted Error |
4.699896 cents |
TE Error |
1.674137 cents/octave |
Keen (22 & 34p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 34 | 54 | 79 | 95 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 4 | 8 | ] |
⟨ | 0 | 1 | -2 | 9 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.6332, 107.5435]
TE Step Tunings (cents)
⟨29.33971, 16.28803]
TE Tuning Map (cents)
⟨1199.266, 1906.443, 2783.079, 3366.424, 4151.805]
TE Mistunings (cents)
⟨-0.734, 4.488, -3.234, -2.401, 0.487]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.362723 |
Adjusted Error |
5.188903 cents |
TE Error |
1.499929 cents/octave |
Kema (15 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 2 | 4 | 0 | ] |
⟨ | 0 | 6 | 5 | 3 | -2 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8268, 317.3772]
TE Step Tunings (cents)
⟨31.03303, 38.64902]
TE Tuning Map (cents)
⟨1199.827, 1904.263, 2786.713, 3351.785, 4164.553, 4443.281]
TE Mistunings (cents)
⟨-0.173, 2.308, 0.399, -17.041, 13.235, 2.753]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.701899 |
Adjusted Error |
11.123429 cents |
TE Error |
3.005975 cents/octave |
Ketchup (46 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 4 | 6 | 7 | ] |
⟨ | 0 | 4 | 15 | -9 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0681, 25.6963]
TE Step Tunings (cents)
⟨7.59012, 9.05309]
TE Tuning Map (cents)
⟨1200.136, 1902.990, 2785.717, 3369.142, 4149.084]
TE Mistunings (cents)
⟨0.136, 1.035, -0.597, 0.316, -2.234]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.529602 |
Adjusted Error |
1.500181 cents |
TE Error |
0.433650 cents/octave |
Ketchup (46 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 4 | 6 | 7 | 8 | ] |
⟨ | 0 | 4 | 15 | -9 | -2 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0616, 25.7000]
TE Step Tunings (cents)
⟨7.77912, 8.96047]
TE Tuning Map (cents)
⟨1200.123, 1902.985, 2785.747, 3369.069, 4149.031, 4440.692]
TE Mistunings (cents)
⟨0.123, 1.030, -0.567, 0.243, -2.287, 0.165]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.960782 |
Adjusted Error |
1.467396 cents |
TE Error |
0.396547 cents/octave |
Kiribati (14 & 27)
Equal Temperament Mappings
| 2 | 9/5 | 7/3 | 11/9 | |
[ ⟨ | 14 | 12 | 17 | 4 | ] |
⟨ | 27 | 23 | 33 | 8 | ] ⟩ |
Reduced Mapping
| 2 | 9/5 | 7/3 | 11/9 | |
[ ⟨ | 1 | 1 | 1 | 0 | ] |
⟨ | 0 | -2 | 3 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.4710, 87.0244]
TE Step Tunings (cents)
⟨45.28216, 20.87114]
TE Tuning Map (cents)
⟨1197.471, 1023.422, 1458.544, 348.098]
TE Mistunings (cents)
⟨-2.529, 5.826, -8.327, 0.690]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
6.219809 |
Adjusted Error |
6.282881 cents |
TE Error |
5.139823 cents/octave |
Kleiboh (53 & 49)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 49 | 78 | 114 | 138 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 6 | 6 | 6 | 14 | ] |
⟨ | 0 | -18 | -15 | -13 | -43 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1436, 293.9713]
TE Step Tunings (cents)
⟨14.86928, 8.38922]
TE Tuning Map (cents)
⟨1199.144, 1903.379, 2785.292, 3373.235, 4147.246]
TE Mistunings (cents)
⟨-0.856, 1.424, -1.021, 4.409, -4.072]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.550016 |
Adjusted Error |
3.656564 cents |
TE Error |
1.056984 cents/octave |
Kleiboh (53 & 49f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 49 | 78 | 114 | 138 | 170 | 182 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 6 | 6 | 6 | 14 | 14 | ] |
⟨ | 0 | -18 | -15 | -13 | -43 | -42 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1564, 293.9801]
TE Step Tunings (cents)
⟨15.14820, 8.08780]
TE Tuning Map (cents)
⟨1199.156, 1903.297, 2785.237, 3373.197, 4147.045, 4441.025]
TE Mistunings (cents)
⟨-0.844, 1.342, -1.077, 4.371, -4.273, 0.498]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.462445 |
Adjusted Error |
3.578511 cents |
TE Error |
0.967050 cents/octave |
Kleischismic (118 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 6 | 4 | 7 | ] |
⟨ | 0 | 2 | -16 | 19 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.1646, 50.9319]
TE Step Tunings (cents)
⟨6.85999, 4.15798]
TE Tuning Map (cents)
⟨1200.329, 1902.358, 2786.078, 3368.364, 4150.220]
TE Mistunings (cents)
⟨0.329, 0.403, -0.236, -0.462, -1.098]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.707138 |
Adjusted Error |
0.862719 cents |
TE Error |
0.249382 cents/octave |
Kleischismic (94 & 118p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | 437 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 6 | 4 | 7 | 8 | ] |
⟨ | 0 | 2 | -16 | 19 | -1 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0702, 50.9440]
TE Step Tunings (cents)
⟨5.34507, 5.91274]
TE Tuning Map (cents)
⟨1200.140, 1902.099, 2785.317, 3368.217, 4149.547, 4443.954]
TE Mistunings (cents)
⟨0.140, 0.144, -0.997, -0.609, -1.771, 3.426]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.096863 |
Adjusted Error |
1.773555 cents |
TE Error |
0.479282 cents/octave |
Krypton (9 & 8d & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | 1 | 2 | 2 | ] |
⟨ | 0 | 1 | 0 | 1 | 1 | 1 | ] |
⟨ | 0 | 0 | 3 | 2 | -1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.6808, 1902.3448, 132.1722]
TE Step Tunings (cents)
⟨52.69706, 35.67216, 43.80299]
TE Tuning Map (cents)
⟨1197.681, 1902.345, 2791.878, 3364.370, 4165.534, 4429.879]
TE Mistunings (cents)
⟨-2.319, 0.390, 5.564, -4.456, 14.216, -10.649]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.105907 |
Adjusted Error |
9.418644 cents |
TE Error |
2.545277 cents/octave |
Kryptonite (9 & 8)
Equal Temperament Mappings
| 2 | 5 | 7/3 | 11/3 | 13/3 | |
[ ⟨ | 9 | 21 | 11 | 17 | 19 | ] |
⟨ | 8 | 19 | 10 | 15 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7/3 | 11/3 | 13/3 | |
[ ⟨ | 1 | 2 | 1 | 2 | 2 | ] |
⟨ | 0 | 3 | 2 | -1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.4370, 134.7860]
TE Step Tunings (cents)
⟨118.14941, 16.63655]
TE Tuning Map (cents)
⟨1196.437, 2797.232, 1466.009, 2258.088, 2527.660]
TE Mistunings (cents)
⟨-3.563, 10.918, -0.862, 8.725, -10.913]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
0.803623 |
Adjusted Error |
9.493213 cents |
TE Error |
4.088504 cents/octave |
Kumbaya (15 & 4p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 4 | 6 | 9 | 11 | 14 | 15 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 2 | 4 | 4 | ] |
⟨ | 0 | 6 | 5 | 3 | -2 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.8786, 317.7664]
TE Step Tunings (cents)
⟨74.18702, 21.01834]
TE Tuning Map (cents)
⟨1196.879, 1906.598, 2785.711, 3347.057, 4151.982, 4469.748]
TE Mistunings (cents)
⟨-3.121, 4.643, -0.603, -21.769, 0.664, 29.220]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.542077 |
Adjusted Error |
17.933190 cents |
TE Error |
4.846232 cents/octave |
Kumhar (31 & 62e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 62 | 98 | 144 | 174 | 215 | 229 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨38.7249, 10.1238]
TE Step Tunings (cents)
⟨18.47740, 10.12377]
TE Tuning Map (cents)
⟨1200.473, 1897.521, 2788.195, 3369.069, 4153.691, 4443.243]
TE Mistunings (cents)
⟨0.473, -4.434, 1.881, 0.243, 2.373, 2.715]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.005078 |
Adjusted Error |
4.710112 cents |
TE Error |
1.272852 cents/octave |
Kumonga (27 & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 27 | 43 | 63 | 76 | ] |
⟨ | 43 | 68 | 100 | 121 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 4 | 4 | 3 | ] |
⟨ | 0 | -13 | -9 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.0724, 222.4389]
TE Step Tunings (cents)
⟨19.70670, 15.48817]
TE Tuning Map (cents)
⟨1198.072, 1900.584, 2790.340, 3371.778]
TE Mistunings (cents)
⟨-1.928, -1.371, 4.026, 2.952]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.313327 |
Adjusted Error |
4.110663 cents |
TE Error |
1.464248 cents/octave |
Kumonga (27e & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 43 | 68 | 100 | 121 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | 4 | 3 | 7 | ] |
⟨ | 0 | -13 | -9 | -1 | -19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.9212, 222.5115]
TE Step Tunings (cents)
⟨15.37599, 18.20394]
TE Tuning Map (cents)
⟨1197.921, 1899.036, 2789.081, 3371.252, 4157.730]
TE Mistunings (cents)
⟨-2.079, -2.919, 2.768, 2.426, 6.412]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.113992 |
Adjusted Error |
5.645935 cents |
TE Error |
1.632041 cents/octave |
Kumonga (27e & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 4 | 3 | 7 | 5 | ] |
⟨ | 0 | -13 | -9 | -1 | -19 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5133, 222.6852]
TE Step Tunings (cents)
⟨32.57644, 19.93433]
TE Tuning Map (cents)
⟨1198.513, 1899.145, 2789.886, 3372.855, 4158.574, 4433.770]
TE Mistunings (cents)
⟨-1.487, -2.810, 3.572, 4.029, 7.256, -6.758]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.910702 |
Adjusted Error |
6.322180 cents |
TE Error |
1.708494 cents/octave |
Kwai (41 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 152 | 241 | 353 | 427 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 16 | 14 | ] |
⟨ | 0 | -1 | -33 | -27 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7340, 497.2738]
TE Step Tunings (cents)
⟨2.38245, 7.25035]
TE Tuning Map (cents)
⟨1199.734, 1902.194, 2785.707, 3369.882]
TE Mistunings (cents)
⟨-0.266, 0.239, -0.607, 1.056]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.028423 |
Adjusted Error |
0.773095 cents |
TE Error |
0.275382 cents/octave |
Kwai (41 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 16 | 14 | -4 | ] |
⟨ | 0 | -1 | -33 | -27 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6675, 497.2391]
TE Step Tunings (cents)
⟨1.29835, 7.54234]
TE Tuning Map (cents)
⟨1199.667, 1902.096, 2785.788, 3369.888, 4151.635]
TE Mistunings (cents)
⟨-0.333, 0.141, -0.526, 1.062, 0.317]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.041662 |
Adjusted Error |
0.876823 cents |
TE Error |
0.253459 cents/octave |
Kwai (41 & 111)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 111 | 176 | 258 | 312 | 384 | 411 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 16 | 14 | -4 | -5 | ] |
⟨ | 0 | -1 | -33 | -27 | 18 | 21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4779, 497.1396]
TE Step Tunings (cents)
⟨6.51488, 8.39971]
TE Tuning Map (cents)
⟨1199.478, 1901.816, 2786.039, 3369.921, 4150.602, 4442.543]
TE Mistunings (cents)
⟨-0.522, -0.139, -0.275, 1.095, -0.716, 2.015]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.345048 |
Adjusted Error |
1.339114 cents |
TE Error |
0.361880 cents/octave |
Kwazy (612 & 730)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 612 | 970 | 1421 | ] |
⟨ | 730 | 1157 | 1695 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.0034, 162.7435]
TE Step Tunings (cents)
⟨1.05845, 0.75649]
TE Tuning Map (cents)
⟨1200.007, 1901.952, 2786.303]
TE Mistunings (cents)
⟨0.007, -0.003, -0.011]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.035623 |
Adjusted Error |
0.011456 cents |
TE Error |
0.004934 cents/octave |
Labizoyo (31 & 41 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 7 | 11 | 16 | 20 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 0 | 6 | ] |
⟨ | 0 | 2 | 0 | -3 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8053, 350.3725, 2785.7348]
TE Step Tunings (cents)
⟨16.50621, 17.24539, -2.56406]
TE Tuning Map (cents)
⟨1200.805, 1901.550, 2785.735, 3367.980]
TE Mistunings (cents)
⟨0.805, -0.405, -0.579, -0.846]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.209803 |
Adjusted Error |
1.306829 cents |
TE Error |
0.465502 cents/octave |
Laconic (5 & 16)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.2992, 228.0507]
TE Step Tunings (cents)
⟨38.91342, 63.04575]
TE Tuning Map (cents)
⟨1203.299, 1887.451, 2799.654]
TE Mistunings (cents)
⟨3.299, -14.504, 13.340]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.240638 |
Adjusted Error |
15.144934 cents |
TE Error |
6.522568 cents/octave |
Lafa (441 & 65)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 441 | 699 | 1024 | ] |
⟨ | 65 | 103 | 151 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9693, 258.4963]
TE Step Tunings (cents)
⟨2.68729, 0.22886]
TE Tuning Map (cents)
⟨1199.969, 1901.986, 2786.339]
TE Mistunings (cents)
⟨-0.031, 0.031, 0.026]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.649604 |
Adjusted Error |
0.050963 cents |
TE Error |
0.021949 cents/octave |
Lafayette (8 & 9)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1194.0886, 140.3004]
TE Step Tunings (cents)
⟨68.61518, 71.68524]
TE Tuning Map (cents)
⟨1194.089, 1895.591, 2809.078]
TE Mistunings (cents)
⟨-5.911, -6.364, 22.765]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.301242 |
Adjusted Error |
16.264079 cents |
TE Error |
7.004557 cents/octave |
Lagaca (118 & 482)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 118 | 187 | 274 | ] |
⟨ | 482 | 764 | 1119 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.0180, 122.0181]
TE Step Tunings (cents)
⟨5.48885, 1.14596]
TE Tuning Map (cents)
⟨1200.036, 1901.927, 2786.272]
TE Mistunings (cents)
⟨0.036, -0.028, -0.042]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.207566 |
Adjusted Error |
0.059038 cents |
TE Error |
0.025426 cents/octave |
Lagaca (118 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 118 | 187 | 274 | 331 | ] |
⟨ | 10 | 16 | 23 | 28 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.1358, 122.0543]
TE Step Tunings (cents)
⟨10.13551, 0.42811]
TE Tuning Map (cents)
⟨1200.272, 1902.191, 2786.977, 3366.842]
TE Mistunings (cents)
⟨0.272, 0.236, 0.663, -1.984]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.028609 |
Adjusted Error |
1.154930 cents |
TE Error |
0.411394 cents/octave |
Lagu (7 & 12cc)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.7950, 512.6261]
TE Step Tunings (cents)
⟨132.53834, 23.00222]
TE Tuning Map (cents)
⟨1203.795, 1894.964, 2787.678]
TE Mistunings (cents)
⟨3.795, -6.991, 1.364]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.093758 |
Adjusted Error |
7.840097 cents |
TE Error |
3.376546 cents/octave |
Lagugubi (2c & 16)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨603.4488, 75.8560]
TE Step Tunings (cents)
⟨-3.39876, 75.85595]
TE Tuning Map (cents)
⟨1206.898, 1886.202, 2793.075]
TE Mistunings (cents)
⟨6.898, -15.753, 6.761]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.797362 |
Adjusted Error |
16.681086 cents |
TE Error |
7.184153 cents/octave |
Lahoh (12 & 2cd)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 2 | 3 | 4 | 5 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 4 | 5 | 7 | ] |
⟨ | 0 | 1 | 4 | 4 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨597.3906, 98.5700]
TE Step Tunings (cents)
⟨98.57005, 5.97029]
TE Tuning Map (cents)
⟨1194.781, 1890.742, 2783.843, 3381.233, 4181.734]
TE Mistunings (cents)
⟨-5.219, -11.213, -2.471, 12.407, 30.416]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.431832 |
Adjusted Error |
20.481274 cents |
TE Error |
5.920416 cents/octave |
Laka (152 & 41 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 10 | -18 | ] |
⟨ | 0 | 1 | 0 | -6 | 15 | ] |
⟨ | 0 | 0 | 1 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6204, 1902.0621, 2785.9190]
TE Step Tunings (cents)
⟨6.99931, 1.73948, 1.11047]
TE Tuning Map (cents)
⟨1199.620, 1902.062, 2785.919, 3369.750, 4151.845]
TE Mistunings (cents)
⟨-0.380, 0.107, -0.395, 0.924, 0.527]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.310170 |
Adjusted Error |
0.860341 cents |
TE Error |
0.248694 cents/octave |
Laka (58 & 41 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 10 | -18 | -13 | ] |
⟨ | 0 | 1 | 0 | -6 | 15 | 12 | ] |
⟨ | 0 | 0 | 1 | 1 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4749, 1901.8139, 2786.0466]
TE Step Tunings (cents)
⟨8.43335, 6.50583, 8.36984]
TE Tuning Map (cents)
⟨1199.475, 1901.814, 2786.047, 3369.913, 4150.612, 4442.545]
TE Mistunings (cents)
⟨-0.525, -0.141, -0.267, 1.087, -0.706, 2.018]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.298696 |
Adjusted Error |
1.339079 cents |
TE Error |
0.361870 cents/octave |
Lala-Gugu (7 & 17ccc)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.1413, 346.2919]
TE Step Tunings (cents)
⟨128.74351, 17.76098]
TE Tuning Map (cents)
⟨1203.141, 1895.725, 2788.096]
TE Mistunings (cents)
⟨3.141, -6.230, 1.783]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.788476 |
Adjusted Error |
6.823301 cents |
TE Error |
2.938636 cents/octave |
Lala-Quadbizo (24 & 16)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 24 | 38 | 67 | ] |
⟨ | 16 | 25 | 45 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨150.3848, 54.8149]
TE Step Tunings (cents)
⟨40.75493, 14.06001]
TE Tuning Map (cents)
⟨1203.078, 1900.187, 3363.280]
TE Mistunings (cents)
⟨3.078, -1.768, -5.545]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.256967 |
Adjusted Error |
6.197839 cents |
TE Error |
2.207715 cents/octave |
Lala-Quadyo (26 & 2p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨602.1404, 45.6162]
TE Step Tunings (cents)
⟨45.61617, 9.13012]
TE Tuning Map (cents)
⟨1204.281, 1897.654, 2782.621]
TE Mistunings (cents)
⟨4.281, -4.301, -3.693]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.809992 |
Adjusted Error |
7.121378 cents |
TE Error |
3.067011 cents/octave |
Lala-Quadzo (24 & 26)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 24 | 38 | 67 | ] |
⟨ | 26 | 41 | 73 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨601.1575, 48.1644]
TE Step Tunings (cents)
⟨24.97931, 23.18506]
TE Tuning Map (cents)
⟨1202.315, 1899.801, 3366.123]
TE Mistunings (cents)
⟨2.315, -2.154, -2.703]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.491730 |
Adjusted Error |
4.622236 cents |
TE Error |
1.646474 cents/octave |
Lala-Quintho (53 & 60)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 53 | 84 | 196 | ] |
⟨ | 60 | 95 | 222 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.3306, 339.8430]
TE Step Tunings (cents)
⟨15.04200, 6.71841]
TE Tuning Map (cents)
⟨1200.331, 1901.777, 4439.719]
TE Mistunings (cents)
⟨0.331, -0.178, -0.808]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.982486 |
Adjusted Error |
0.880025 cents |
TE Error |
0.237816 cents/octave |
Lala-Quinyo (31 & 60)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 31 | 49 | 72 | ] |
⟨ | 60 | 95 | 139 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.2027, 580.8003]
TE Step Tunings (cents)
⟨13.14299, 13.22950]
TE Tuning Map (cents)
⟨1201.203, 1900.809, 2785.196]
TE Mistunings (cents)
⟨1.203, -1.146, -1.118]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.240211 |
Adjusted Error |
1.988860 cents |
TE Error |
0.856555 cents/octave |
Lala-Tribilo (24 & 27p)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 24 | 38 | 83 | ] |
⟨ | 27 | 43 | 93 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨400.1600, 49.5776]
TE Step Tunings (cents)
⟨46.03845, 3.53916]
TE Tuning Map (cents)
⟨1200.480, 1901.645, 4150.333]
TE Mistunings (cents)
⟨0.480, -0.310, -0.985]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.621390 |
Adjusted Error |
1.181280 cents |
TE Error |
0.341467 cents/octave |
Lala-Trigu (7 & 15cccc)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.7612, 169.7658]
TE Step Tunings (cents)
⟨140.96487, 14.40047]
TE Tuning Map (cents)
⟨1202.761, 1896.225, 2788.255]
TE Mistunings (cents)
⟨2.761, -5.730, 1.942]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.489678 |
Adjusted Error |
6.200560 cents |
TE Error |
2.670436 cents/octave |
Lala-Triyo (26 & 21p)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 26 | 41 | 60 | ] |
⟨ | 21 | 33 | 49 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.9099, 231.1012]
TE Step Tunings (cents)
⟨37.48491, 10.91915]
TE Tuning Map (cents)
⟨1203.910, 1897.213, 2784.133]
TE Mistunings (cents)
⟨3.910, -4.742, -2.181]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.367042 |
Adjusted Error |
6.718765 cents |
TE Error |
2.893615 cents/octave |
Lala-Trizo (36 & 7)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 36 | 57 | 101 | ] |
⟨ | 7 | 11 | 20 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.6920, 166.7361]
TE Step Tunings (cents)
⟨33.53914, -0.95959]
TE Tuning Map (cents)
⟨1200.692, 1901.176, 3368.262]
TE Mistunings (cents)
⟨0.692, -0.779, -0.564]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.738692 |
Adjusted Error |
1.413994 cents |
TE Error |
0.503675 cents/octave |
Lala-Yoyo (19 & 5c)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.5582, 253.1873]
TE Step Tunings (cents)
⟨63.37815, -0.32534]
TE Tuning Map (cents)
⟨1202.558, 1898.742, 2785.060]
TE Mistunings (cents)
⟨2.558, -3.213, -1.254]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.577078 |
Adjusted Error |
4.435176 cents |
TE Error |
1.910127 cents/octave |
Lala-Yoyo & Zozo (19 & 5c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 5 | 8 | 11 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 0 | 3 | ] |
⟨ | 0 | -2 | 11 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1204.0441, 253.2333]
TE Step Tunings (cents)
⟨62.12239, 4.74375]
TE Tuning Map (cents)
⟨1204.044, 1901.622, 2785.566, 3358.899]
TE Mistunings (cents)
⟨4.044, -0.333, -0.747, -9.927]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.322932 |
Adjusted Error |
7.559837 cents |
TE Error |
2.692868 cents/octave |
Lala-Zozo (31 & 24)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 31 | 49 | 87 | ] |
⟨ | 24 | 38 | 67 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.5739, 349.2451]
TE Step Tunings (cents)
⟨29.13496, 12.43292]
TE Tuning Map (cents)
⟨1201.574, 1900.064, 3367.747]
TE Mistunings (cents)
⟨1.574, -1.891, -1.079]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.202634 |
Adjusted Error |
3.261081 cents |
TE Error |
1.161621 cents/octave |
Lalagu (12 & 55c)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 55 | 87 | 127 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8783, 501.3366]
TE Step Tunings (cents)
⟨46.68938, 11.64738]
TE Tuning Map (cents)
⟨1200.878, 1900.420, 2786.520]
TE Mistunings (cents)
⟨0.878, -1.535, 0.206]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.108062 |
Adjusted Error |
1.756696 cents |
TE Error |
0.756568 cents/octave |
Lalayo (19 & 7c)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.4118, 506.3641]
TE Step Tunings (cents)
⟨62.68704, 1.62257]
TE Tuning Map (cents)
⟨1202.412, 1898.460, 2785.814]
TE Mistunings (cents)
⟨2.412, -3.495, -0.500]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.197991 |
Adjusted Error |
4.390614 cents |
TE Error |
1.890934 cents/octave |
Lalolo (24 & 29)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 24 | 38 | 83 | ] |
⟨ | 29 | 46 | 100 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.5935, 249.9059]
TE Step Tunings (cents)
⟨43.71133, 5.22488]
TE Tuning Map (cents)
⟨1200.594, 1901.375, 4150.529]
TE Mistunings (cents)
⟨0.594, -0.580, -0.789]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.352514 |
Adjusted Error |
1.465215 cents |
TE Error |
0.423542 cents/octave |
Lalotriyo (72 & 31 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 72 | 114 | 167 | 249 | ] |
⟨ | 31 | 49 | 72 | 107 | ] |
⟨ | 53 | 84 | 123 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | 0 | 12 | ] |
⟨ | 0 | 1 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7081, 1901.8068, 2785.3594]
TE Step Tunings (cents)
⟨11.93327, -1.12600, 7.10223]
TE Tuning Map (cents)
⟨1200.708, 1901.807, 2785.359, 4150.612]
TE Mistunings (cents)
⟨0.708, -0.148, -0.954, -0.706]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.141262 |
Adjusted Error |
1.468414 cents |
TE Error |
0.424467 cents/octave |
Lalu (7 & 5e)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.6190, 509.8620]
TE Step Tunings (cents)
⟨144.07208, 38.82288]
TE Tuning Map (cents)
⟨1202.619, 1895.376, 4156.542]
TE Mistunings (cents)
⟨2.619, -6.579, 5.224]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.715202 |
Adjusted Error |
10.256384 cents |
TE Error |
2.964760 cents/octave |
Lambda (b13 & b17)
Equal Temperament Mappings
| 3 | 5 | 7 | |
[ ⟨ | 13 | 19 | 23 | ] |
⟨ | 17 | 25 | 30 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1903.7424, 440.9020]
TE Step Tunings (cents)
⟨119.63514, 20.49916]
TE Tuning Map (cents)
⟨1903.742, 2785.546, 3366.583]
TE Mistunings (cents)
⟨1.787, -0.767, -2.243]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.322183 |
Adjusted Error |
2.303277 cents |
TE Error |
0.820444 cents/octave |
Landscape (171 & 270 & 183)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 183 | 290 | 425 | 514 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | 0 | 0 | 4 | ] |
⟨ | 0 | 1 | 0 | -2 | ] |
⟨ | 0 | 0 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0012, 1901.9418, 2786.3421]
TE Step Tunings (cents)
⟨3.51995, 1.82385, 0.57734]
TE Tuning Map (cents)
⟨1200.004, 1901.942, 2786.342, 3368.805]
TE Mistunings (cents)
⟨0.004, -0.013, 0.028, -0.021]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.233184 |
Adjusted Error |
0.023702 cents |
TE Error |
0.008443 cents/octave |
Lano (12 & 65)
Equal Temperament Mappings
| 2 | 3 | 19 | |
[ ⟨ | 12 | 19 | 51 | ] |
⟨ | 65 | 103 | 276 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.2499, 498.7541]
TE Step Tunings (cents)
⟨12.26757, 16.20060]
TE Tuning Map (cents)
⟨1200.250, 1901.746, 5097.012]
TE Mistunings (cents)
⟨0.250, -0.209, -0.501]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.546067 |
Adjusted Error |
0.751131 cents |
TE Error |
0.176823 cents/octave |
Lanu (12 & 7h)
Equal Temperament Mappings
| 2 | 3 | 19 | |
[ ⟨ | 12 | 19 | 51 | ] |
⟨ | 7 | 11 | 29 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.6246, 500.7063]
TE Step Tunings (cents)
⟨96.92973, 5.35255]
TE Tuning Map (cents)
⟨1200.625, 1900.543, 5098.640]
TE Mistunings (cents)
⟨0.625, -1.412, 1.127]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.887749 |
Adjusted Error |
2.746727 cents |
TE Error |
0.646604 cents/octave |
Lanunu (12 & 2)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨600.0510, 100.2631]
TE Step Tunings (cents)
⟨100.26305, -1.52726]
TE Tuning Map (cents)
⟨1200.102, 1900.416, 5101.198]
TE Mistunings (cents)
⟨0.102, -1.539, 3.685]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.633278 |
Adjusted Error |
3.202759 cents |
TE Error |
0.753958 cents/octave |
Laquadgu (5 & 18bc)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.1042, 472.8082]
TE Step Tunings (cents)
⟨88.81791, 42.16748]
TE Tuning Map (cents)
⟨1203.104, 1891.233, 2794.682]
TE Mistunings (cents)
⟨3.104, -10.722, 8.368]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.930399 |
Adjusted Error |
11.086168 cents |
TE Error |
4.774552 cents/octave |
Laquadlo (24 & 46)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 24 | 38 | 83 | ] |
⟨ | 46 | 73 | 159 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.1591, 50.6918]
TE Step Tunings (cents)
⟨34.40625, 8.14279]
TE Tuning Map (cents)
⟨1200.318, 1901.861, 4150.422]
TE Mistunings (cents)
⟨0.318, -0.094, -0.896]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.346444 |
Adjusted Error |
0.828013 cents |
TE Error |
0.239350 cents/octave |
Laquadthu (24 & 2)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨600.0609, 49.3553]
TE Step Tunings (cents)
⟨49.35530, 7.79736]
TE Tuning Map (cents)
⟨1200.122, 1898.893, 4447.203]
TE Mistunings (cents)
⟨0.122, -3.062, 6.675]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.233833 |
Adjusted Error |
5.652653 cents |
TE Error |
1.527563 cents/octave |
Laquadzo-Atrigu (31 & 15 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 14 | 22 | 32 | 39 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 1 | 3 | ] |
⟨ | 0 | 1 | 1 | 0 | ] |
⟨ | 0 | 0 | 4 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7190, 1901.3529, -78.6165]
TE Step Tunings (cents)
⟨28.38592, 14.92991, 6.91478]
TE Tuning Map (cents)
⟨1200.719, 1901.353, 2787.606, 3366.307]
TE Mistunings (cents)
⟨0.719, -0.602, 1.292, -2.518]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.201812 |
Adjusted Error |
1.870488 cents |
TE Error |
0.666281 cents/octave |
Laquinbitho (130 & 200)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 130 | 206 | 481 | ] |
⟨ | 200 | 317 | 740 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨120.0071, 18.1591]
TE Step Tunings (cents)
⟨3.16010, 3.94629]
TE Tuning Map (cents)
⟨1200.071, 1901.955, 4440.264]
TE Mistunings (cents)
⟨0.071, 0.000, -0.264]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.974055 |
Adjusted Error |
0.215430 cents |
TE Error |
0.058217 cents/octave |
Laquinzo (5 & 25b)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨240.3144, 20.5601]
TE Step Tunings (cents)
⟨137.51403, 20.56007]
TE Tuning Map (cents)
⟨1201.572, 1901.955, 3364.401]
TE Mistunings (cents)
⟨1.572, 0.000, -4.425]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.485169 |
Adjusted Error |
3.607884 cents |
TE Error |
1.285154 cents/octave |
Laru (31 & 19)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 31 | 49 | 87 | ] |
⟨ | 19 | 30 | 53 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.5404, 504.1023]
TE Step Tunings (cents)
⟨34.37964, 7.14588]
TE Tuning Map (cents)
⟨1201.540, 1898.978, 3369.760]
TE Mistunings (cents)
⟨1.540, -2.977, 0.934]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.549997 |
Adjusted Error |
3.973586 cents |
TE Error |
1.415420 cents/octave |
Laru + Ya (12 & 7d & 12c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 7 | 11 | 16 | 19 | ] |
⟨ | 12 | 19 | 27 | 34 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -13 | ] |
⟨ | 0 | 1 | 0 | 10 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.5404, 1898.9784, 2786.3137]
TE Step Tunings (cents)
⟨72.46654, 41.52551, 3.43861]
TE Tuning Map (cents)
⟨1201.540, 1898.978, 2786.314, 3369.760]
TE Mistunings (cents)
⟨1.540, -2.977, 0.000, 0.934]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.250330 |
Adjusted Error |
3.441226 cents |
TE Error |
1.225789 cents/octave |
Larubi (2d & 7)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1207.3654, 676.0871]
TE Step Tunings (cents)
⟨96.85166, 144.80886]
TE Tuning Map (cents)
⟨1207.365, 1883.452, 3380.436]
TE Mistunings (cents)
⟨7.365, -18.503, 11.610]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.732794 |
Adjusted Error |
23.354984 cents |
TE Error |
8.319213 cents/octave |
Laruru (12 & 14)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 12 | 19 | 34 | ] |
⟨ | 14 | 22 | 39 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨601.1312, 92.0661]
TE Step Tunings (cents)
⟨43.33139, 48.73469]
TE Tuning Map (cents)
⟨1202.262, 1895.460, 3373.920]
TE Mistunings (cents)
⟨2.262, -6.495, 5.094]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.163700 |
Adjusted Error |
8.137427 cents |
TE Error |
2.898610 cents/octave |
Laruyo (12 & 19 & 5c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 5 | 8 | 11 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -9 | ] |
⟨ | 0 | 1 | 0 | 6 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.4237, 1899.5708, 2785.4609]
TE Step Tunings (cents)
⟨34.87981, 39.32780, 7.12754]
TE Tuning Map (cents)
⟨1201.424, 1899.571, 2785.461, 3370.073]
TE Mistunings (cents)
⟨1.424, -2.384, -0.853, 1.247]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.164433 |
Adjusted Error |
3.017670 cents |
TE Error |
1.074916 cents/octave |
Lasepru (26 & 3d)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.6101, 415.1760]
TE Step Tunings (cents)
⟨44.91804, 10.91363]
TE Tuning Map (cents)
⟨1200.610, 1896.208, 3377.240]
TE Mistunings (cents)
⟨0.610, -5.747, 8.414]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.330057 |
Adjusted Error |
7.688704 cents |
TE Error |
2.738772 cents/octave |
Lasepyobi (3 & 26)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.9414, 415.5249]
TE Step Tunings (cents)
⟨22.82684, 43.63311]
TE Tuning Map (cents)
⟨1202.941, 1903.092, 2777.775]
TE Mistunings (cents)
⟨2.941, 1.137, -8.539]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.906878 |
Adjusted Error |
6.385818 cents |
TE Error |
2.750222 cents/octave |
Laso (12 & 7p)
Equal Temperament Mappings
| 2 | 3 | 17 | |
[ ⟨ | 12 | 19 | 49 | ] |
⟨ | 7 | 11 | 29 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.7909, 500.4545]
TE Step Tunings (cents)
⟨99.19095, 1.49993]
TE Tuning Map (cents)
⟨1200.791, 1901.127, 4903.854]
TE Mistunings (cents)
⟨0.791, -0.828, -1.101]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.769227 |
Adjusted Error |
2.325196 cents |
TE Error |
0.568861 cents/octave |
Lasu (12 & 17g)
Equal Temperament Mappings
| 2 | 3 | 17 | |
[ ⟨ | 12 | 19 | 49 | ] |
⟨ | 17 | 27 | 70 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.3237, 499.5054]
TE Step Tunings (cents)
⟨89.32596, 7.55365]
TE Tuning Map (cents)
⟨1200.324, 1901.142, 4905.728]
TE Mistunings (cents)
⟨0.324, -0.813, 0.773]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.706981 |
Adjusted Error |
1.499290 cents |
TE Error |
0.366802 cents/octave |
Latho (7 & 19)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 7 | 11 | 26 | ] |
⟨ | 19 | 30 | 70 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.1418, 507.4855]
TE Step Tunings (cents)
⟨17.09054, 57.02674]
TE Tuning Map (cents)
⟨1203.142, 1898.798, 4436.226]
TE Mistunings (cents)
⟨3.142, -3.157, -4.302]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.705030 |
Adjusted Error |
8.326593 cents |
TE Error |
2.250163 cents/octave |
Lathuthu (24 & 19)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 24 | 38 | 89 | ] |
⟨ | 19 | 30 | 70 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8818, 251.1226]
TE Step Tunings (cents)
⟨32.19856, 22.53243]
TE Tuning Map (cents)
⟨1200.882, 1899.518, 4442.942]
TE Mistunings (cents)
⟨0.882, -2.437, 2.415]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.217275 |
Adjusted Error |
4.034833 cents |
TE Error |
1.090366 cents/octave |
Latribilo (2 & 36e)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨601.3019, 32.3601]
TE Step Tunings (cents)
⟨18.82043, 32.36008]
TE Tuning Map (cents)
⟨1202.604, 1900.986, 4144.393]
TE Mistunings (cents)
⟨2.604, -0.969, -6.925]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.105964 |
Adjusted Error |
6.672449 cents |
TE Error |
1.928770 cents/octave |
Latribiru (36 & 94)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 36 | 57 | 101 | ] |
⟨ | 94 | 149 | 264 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.9938, 166.1098]
TE Step Tunings (cents)
⟨7.24213, 9.99224]
TE Tuning Map (cents)
⟨1199.988, 1901.646, 3369.408]
TE Mistunings (cents)
⟨-0.012, -0.309, 0.582]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.734278 |
Adjusted Error |
0.461708 cents |
TE Error |
0.164464 cents/octave |
Latribitho (36 & 10)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 36 | 57 | 133 | ] |
⟨ | 10 | 16 | 37 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.4316, 233.7733]
TE Step Tunings (cents)
⟨31.99657, 4.89866]
TE Tuning Map (cents)
⟨1200.863, 1902.183, 4436.795]
TE Mistunings (cents)
⟨0.863, 0.228, -3.733]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.670570 |
Adjusted Error |
2.853252 cents |
TE Error |
0.771058 cents/octave |
Latribiyo (10 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 10 | 16 | 23 | ] |
⟨ | 26 | 41 | 60 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨602.0993, 232.1719]
TE Step Tunings (cents)
⟨7.73777, 43.33926]
TE Tuning Map (cents)
⟨1204.199, 1900.714, 2778.325]
TE Mistunings (cents)
⟨4.199, -1.241, -7.989]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.011383 |
Adjusted Error |
7.352315 cents |
TE Error |
3.166470 cents/octave |
Latrilu (7 & 22e)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 7 | 11 | 24 | ] |
⟨ | 22 | 35 | 77 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.0264, 168.0500]
TE Step Tunings (cents)
⟨94.01994, 24.67667]
TE Tuning Map (cents)
⟨1201.026, 1897.903, 4156.583]
TE Mistunings (cents)
⟨1.026, -4.052, 5.265]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.304824 |
Adjusted Error |
6.286086 cents |
TE Error |
1.817086 cents/octave |
Latriru + Ya (19 & 53 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 17 | 27 | 40 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -3 | ] |
⟨ | 0 | 3 | 0 | 11 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2967, 633.6814, 2786.3137]
TE Step Tunings (cents)
⟨13.41013, 16.67627, 3.62719]
TE Tuning Map (cents)
⟨1200.297, 1901.044, 2786.314, 3369.605]
TE Mistunings (cents)
⟨0.297, -0.911, 0.000, 0.779]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.258332 |
Adjusted Error |
0.987905 cents |
TE Error |
0.351899 cents/octave |
Latriso (12 & 3p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨400.2543, 99.6547]
TE Step Tunings (cents)
⟨99.65466, 1.63566]
TE Tuning Map (cents)
⟨1200.763, 1901.617, 4902.706]
TE Mistunings (cents)
⟨0.763, -0.338, -2.249]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.105898 |
Adjusted Error |
2.276192 cents |
TE Error |
0.556872 cents/octave |
Latrisu (12 & 87)
Equal Temperament Mappings
| 2 | 3 | 17 | |
[ ⟨ | 12 | 19 | 49 | ] |
⟨ | 87 | 138 | 356 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨400.0051, 98.2428]
TE Step Tunings (cents)
⟨49.00629, 7.03379]
TE Tuning Map (cents)
⟨1200.015, 1901.783, 4905.338]
TE Mistunings (cents)
⟨0.015, -0.172, 0.382]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.973317 |
Adjusted Error |
0.340418 cents |
TE Error |
0.083284 cents/octave |
Latritho (36 & 7)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 36 | 57 | 133 | ] |
⟨ | 7 | 11 | 26 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.0891, 166.9811]
TE Step Tunings (cents)
⟨32.22150, 5.87359]
TE Tuning Map (cents)
⟨1201.089, 1901.235, 4438.173]
TE Mistunings (cents)
⟨1.089, -0.720, -2.355]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.329281 |
Adjusted Error |
2.864380 cents |
TE Error |
0.774065 cents/octave |
Latriyo (19 & 2p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.6377, 569.5116]
TE Step Tunings (cents)
⟨63.61445, -3.01842]
TE Tuning Map (cents)
⟨1202.638, 1899.378, 2783.944]
TE Mistunings (cents)
⟨2.638, -2.577, -2.370]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.016431 |
Adjusted Error |
4.373295 cents |
TE Error |
1.883476 cents/octave |
Lawa + Za (14 & 7)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨172.1605, 97.7773]
TE Step Tunings (cents)
⟨74.38320, 23.39406]
TE Tuning Map (cents)
⟨1205.123, 1893.765, 3368.826]
TE Mistunings (cents)
⟨5.123, -8.190, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.170416 |
Adjusted Error |
11.794025 cents |
TE Error |
4.201116 cents/octave |
Layo & Biruyo (12 & 22ccd)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 22 | 35 | 50 | 61 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.7660, 102.4162]
TE Step Tunings (cents)
⟨72.95410, 14.73104]
TE Tuning Map (cents)
⟨1199.532, 1901.714, 2779.267, 3379.033]
TE Mistunings (cents)
⟨-0.468, -0.241, -7.047, 10.207]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.518300 |
Adjusted Error |
6.683597 cents |
TE Error |
2.380745 cents/octave |
Layo & Zozo (29 & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 29 | 46 | 67 | 81 | ] |
⟨ | 24 | 38 | 56 | 67 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | -1 | 3 | ] |
⟨ | 0 | -2 | 16 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.9822, 249.2934]
TE Step Tunings (cents)
⟨26.87060, 17.61395]
TE Tuning Map (cents)
⟨1201.982, 1905.378, 2786.712, 3356.653]
TE Mistunings (cents)
⟨1.982, 3.423, 0.398, -12.173]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.244714 |
Adjusted Error |
7.350581 cents |
TE Error |
2.618330 cents/octave |
Layo + Za (171 & 130 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 130 | 206 | 302 | 365 | ] |
⟨ | 53 | 84 | 123 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 15 | 0 | ] |
⟨ | 0 | 1 | -8 | 0 | ] |
⟨ | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0749, 1901.8546, 3368.8259]
TE Step Tunings (cents)
⟨6.16656, 0.91576, 0.50083]
TE Tuning Map (cents)
⟨1200.075, 1901.855, 2786.287, 3368.826]
TE Mistunings (cents)
⟨0.075, -0.100, -0.027, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.239291 |
Adjusted Error |
0.138659 cents |
TE Error |
0.049391 cents/octave |
Layoyobi (2p & 14ccc)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨607.0019, 64.3945]
TE Step Tunings (cents)
⟨156.24036, 64.39450]
TE Tuning Map (cents)
⟨1214.004, 1885.400, 2777.431]
TE Mistunings (cents)
⟨14.004, -16.555, -8.882]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.966429 |
Adjusted Error |
23.974627 cents |
TE Error |
10.325310 cents/octave |
Laz (9 & 40)
Equal Temperament Mappings
| 2 | 5 | 7/3 | 11/3 | 13/3 | |
[ ⟨ | 9 | 21 | 11 | 17 | 19 | ] |
⟨ | 40 | 93 | 49 | 75 | 85 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7/3 | 11/3 | 13/3 | |
[ ⟨ | 1 | 3 | 1 | 3 | 1 | ] |
⟨ | 0 | -3 | 1 | -5 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.8846, 268.6246]
TE Step Tunings (cents)
⟨35.97888, 21.85187]
TE Tuning Map (cents)
⟨1197.885, 2787.780, 1466.509, 2250.531, 2541.007]
TE Mistunings (cents)
⟨-2.115, 1.466, -0.362, 1.168, 2.435]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.730417 |
Adjusted Error |
2.682658 cents |
TE Error |
1.155358 cents/octave |
Lazo (19 & 7)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.9362, 507.8223]
TE Step Tunings (cents)
⟨54.05233, 25.13457]
TE Tuning Map (cents)
⟨1202.936, 1898.050, 3367.465]
TE Mistunings (cents)
⟨2.936, -3.905, -1.361]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.675732 |
Adjusted Error |
6.262006 cents |
TE Error |
2.230571 cents/octave |
Lazoyoyo (10 & 19 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 7 | 11 | 16 | 20 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 9 | ] |
⟨ | 0 | 1 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.4586, 1900.9896, 2782.1701]
TE Step Tunings (cents)
⟨7.95421, 52.97484, 16.77064]
TE Tuning Map (cents)
⟨1203.459, 1900.990, 2782.170, 3365.797]
TE Mistunings (cents)
⟨3.459, -0.965, -4.144, -3.029]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.128589 |
Adjusted Error |
5.732981 cents |
TE Error |
2.042129 cents/octave |
Lazozo (14 & 2p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨603.2291, 85.7783]
TE Step Tunings (cents)
⟨85.77833, 2.78073]
TE Tuning Map (cents)
⟨1206.458, 1895.466, 3362.039]
TE Mistunings (cents)
⟨6.458, -6.489, -6.786]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.395413 |
Adjusted Error |
12.998530 cents |
TE Error |
4.630170 cents/octave |
Leantone (6 & 7d)
Equal Temperament Mappings
| 2 | 9 | 5 | 7 | 11 | |
[ ⟨ | 6 | 19 | 14 | 17 | 21 | ] |
⟨ | 7 | 22 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 2 | 2 | 3 | ] |
⟨ | 0 | 1 | 2 | 5 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7573, 192.4613]
TE Step Tunings (cents)
⟨147.47212, 44.98923]
TE Tuning Map (cents)
⟨1199.757, 3791.733, 2784.437, 3361.821, 4176.656]
TE Mistunings (cents)
⟨-0.243, -12.177, -1.876, -7.004, 25.338]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.606640 |
Adjusted Error |
13.428567 cents |
TE Error |
3.881726 cents/octave |
Leapday (46 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 11 | 9 | 8 | ] |
⟨ | 0 | -1 | -21 | -15 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0803, 495.7828]
TE Step Tunings (cents)
⟨23.26272, 4.48259]
TE Tuning Map (cents)
⟨1200.080, 1904.378, 2789.445, 3363.981, 4147.032]
TE Mistunings (cents)
⟨0.080, 2.423, 3.131, -4.845, -4.286]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.304982 |
Adjusted Error |
4.556768 cents |
TE Error |
1.317201 cents/octave |
Leapday (29 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 11 | 9 | 8 | 7 | ] |
⟨ | 0 | -1 | -21 | -15 | -11 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4849, 495.9866]
TE Step Tunings (cents)
⟨6.16843, 22.20871]
TE Tuning Map (cents)
⟨1200.485, 1904.983, 2789.616, 3364.566, 4148.027, 4435.502]
TE Mistunings (cents)
⟨0.485, 3.028, 3.303, -4.260, -3.291, -5.026]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.065830 |
Adjusted Error |
5.001495 cents |
TE Error |
1.351595 cents/octave |
Leapfrog (17 & 46)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 48 | 59 | 63 | ] |
⟨ | 46 | 73 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 9 | 8 | 7 | ] |
⟨ | 0 | -1 | -15 | -11 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5683, 495.0768]
TE Step Tunings (cents)
⟨18.26282, 19.32827]
TE Tuning Map (cents)
⟨1199.568, 1904.060, 3369.962, 4150.701, 4436.363]
TE Mistunings (cents)
⟨-0.432, 2.105, 1.136, -0.617, -4.164]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.904494 |
Adjusted Error |
3.056762 cents |
TE Error |
0.826054 cents/octave |
Leapweek (46 & 63)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 63 | 100 | 146 | 177 | 218 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -8 | 9 | 8 | ] |
⟨ | 0 | -1 | 25 | -15 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7932, 495.3608]
TE Step Tunings (cents)
⟨13.10408, 9.47628]
TE Tuning Map (cents)
⟨1199.793, 1904.226, 2785.673, 3367.728, 4149.377]
TE Mistunings (cents)
⟨-0.207, 2.271, -0.641, -1.098, -1.941]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.559076 |
Adjusted Error |
2.513280 cents |
TE Error |
0.726501 cents/octave |
Leapweek (46 & 63)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 63 | 100 | 146 | 177 | 218 | 233 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -8 | 9 | 8 | 7 | ] |
⟨ | 0 | -1 | 25 | -15 | -11 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0104, 495.4334]
TE Step Tunings (cents)
⟨12.03261, 10.26207]
TE Tuning Map (cents)
⟨1200.010, 1904.587, 2785.751, 3368.593, 4150.316, 4436.606]
TE Mistunings (cents)
⟨0.010, 2.632, -0.562, -0.233, -1.002, -3.922]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.157595 |
Adjusted Error |
3.033201 cents |
TE Error |
0.819687 cents/octave |
Lemba (10 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 26 | 41 | 60 | 73 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨601.4794, 232.6610]
TE Step Tunings (cents)
⟨17.19607, 39.65378]
TE Tuning Map (cents)
⟨1202.959, 1900.942, 2774.736, 3376.216]
TE Mistunings (cents)
⟨2.959, -1.013, -11.577, 7.390]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.889867 |
Adjusted Error |
8.982907 cents |
TE Error |
3.199776 cents/octave |
Lemba (10p & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 2 | 5 | 6 | 5 | ] |
⟨ | 0 | 3 | -1 | -1 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨601.2020, 231.4369]
TE Step Tunings (cents)
⟨47.88946, 45.21934]
TE Tuning Map (cents)
⟨1202.404, 1896.715, 2774.573, 3375.775, 4163.195]
TE Mistunings (cents)
⟨2.404, -5.240, -11.741, 6.949, 11.877]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.931522 |
Adjusted Error |
12.002917 cents |
TE Error |
3.469621 cents/octave |
Lemba (10p & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 2 | 5 | 6 | 5 | 7 | ] |
⟨ | 0 | 3 | -1 | -1 | 5 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨601.2191, 231.4358]
TE Step Tunings (cents)
⟨47.82898, 45.25928]
TE Tuning Map (cents)
⟨1202.438, 1896.746, 2774.660, 3375.879, 4163.274, 4439.969]
TE Mistunings (cents)
⟨2.438, -5.209, -11.654, 7.053, 11.956, -0.558]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.772197 |
Adjusted Error |
11.723148 cents |
TE Error |
3.168042 cents/octave |
Leonhard (31 & 24de)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 24 | 38 | 56 | 68 | 84 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | -3 | -7 | 4 | ] |
⟨ | 0 | 2 | 8 | 20 | 36 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5616, 348.5169]
TE Step Tunings (cents)
⟨32.52597, 7.96902]
TE Tuning Map (cents)
⟨1199.562, 1896.595, 2788.135, 3371.653, 4149.677, 4449.729]
TE Mistunings (cents)
⟨-0.438, -5.360, 1.821, 2.827, -1.641, 9.202]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.920454 |
Adjusted Error |
6.699254 cents |
TE Error |
1.810394 cents/octave |
Lezo (41 & 9)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 41 | 65 | 115 | ] |
⟨ | 9 | 14 | 25 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.3938, 263.5419]
TE Step Tunings (cents)
⟨28.91067, 1.67292]
TE Tuning Map (cents)
⟨1200.394, 1902.614, 3366.550]
TE Mistunings (cents)
⟨0.394, 0.659, -2.276]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.832737 |
Adjusted Error |
1.608899 cents |
TE Error |
0.573101 cents/octave |
Liese (19 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 17 | 27 | 40 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 8 | 8 | ] |
⟨ | 0 | -3 | -12 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.5712, 568.3375]
TE Step Tunings (cents)
⟨49.16772, 15.72850]
TE Tuning Map (cents)
⟨1201.571, 1899.701, 2792.520, 3360.857]
TE Mistunings (cents)
⟨1.571, -2.254, 6.206, -7.969]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.966512 |
Adjusted Error |
6.228870 cents |
TE Error |
2.218768 cents/octave |
Liese (36 & 17)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 36 | 57 | 101 | ] |
⟨ | 17 | 27 | 48 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.2967, 566.6153]
TE Step Tunings (cents)
⟨30.08639, 6.89332]
TE Tuning Map (cents)
⟨1200.297, 1901.044, 3369.605]
TE Mistunings (cents)
⟨0.297, -0.911, 0.779]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.599541 |
Adjusted Error |
1.140734 cents |
TE Error |
0.406338 cents/octave |
Liesel (19p & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 8 | 8 | 3 | ] |
⟨ | 0 | -3 | -12 | -11 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8849, 566.4001]
TE Step Tunings (cents)
⟨37.72210, 28.36264]
TE Tuning Map (cents)
⟨1198.885, 1897.454, 2794.278, 3360.678, 4163.055]
TE Mistunings (cents)
⟨-1.115, -4.501, 7.964, -8.148, 11.737]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.140801 |
Adjusted Error |
9.906977 cents |
TE Error |
2.863759 cents/octave |
Liesel (19p & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 8 | 8 | 3 | 7 | ] |
⟨ | 0 | -3 | -12 | -11 | 1 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5397, 566.7404]
TE Step Tunings (cents)
⟨38.26982, 27.78900]
TE Tuning Map (cents)
⟨1199.540, 1898.398, 2795.432, 3362.173, 4165.360, 4429.595]
TE Mistunings (cents)
⟨-0.460, -3.557, 9.119, -6.653, 14.042, -10.933]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.955365 |
Adjusted Error |
10.840449 cents |
TE Error |
2.929503 cents/octave |
Lisa (19p & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 8 | 8 | 12 | ] |
⟨ | 0 | -3 | -12 | -11 | -18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.7536, 569.9351]
TE Step Tunings (cents)
⟨62.88334, 3.98505]
TE Tuning Map (cents)
⟨1202.754, 1898.455, 2782.807, 3352.742, 4174.211]
TE Mistunings (cents)
⟨2.754, -3.500, -3.506, -16.084, 22.893]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.012475 |
Adjusted Error |
14.786971 cents |
TE Error |
4.274393 cents/octave |
Lisa (19p & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 8 | 8 | 12 | 7 | ] |
⟨ | 0 | -3 | -12 | -11 | -18 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.6905, 570.5281]
TE Step Tunings (cents)
⟨62.63427, 6.81963]
TE Tuning Map (cents)
⟨1203.690, 1899.487, 2783.187, 3353.715, 4174.780, 4432.137]
TE Mistunings (cents)
⟨3.690, -2.468, -3.127, -15.111, 23.462, -8.391]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.902484 |
Adjusted Error |
14.952807 cents |
TE Error |
4.040819 cents/octave |
Lizard (72 & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 1 | 5 | 2 | 8 | 11 | ] |
⟨ | 0 | 6 | -1 | 10 | -3 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.4834, 216.7855]
TE Step Tunings (cents)
⟨17.29248, -2.00417]
TE Tuning Map (cents)
⟨1200.967, 1901.197, 2785.631, 3368.822, 4153.510, 4437.462]
TE Mistunings (cents)
⟨0.967, -0.758, -0.682, -0.004, 2.192, -3.066]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.714381 |
Adjusted Error |
2.309956 cents |
TE Error |
0.624238 cents/octave |
Loki (270 & 152 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | -21 | -18 | ] |
⟨ | 0 | 1 | 0 | 4 | 2 | ] |
⟨ | 0 | 0 | 1 | 3 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9481, 1902.0158, 2786.5561]
TE Step Tunings (cents)
⟨3.56536, 0.67273, 1.03842]
TE Tuning Map (cents)
⟨1199.896, 1902.016, 2786.556, 3368.821, 4151.190]
TE Mistunings (cents)
⟨-0.104, 0.061, 0.242, -0.005, -0.128]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.418915 |
Adjusted Error |
0.242205 cents |
TE Error |
0.070013 cents/octave |
Lologu (7 & 31 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 31 | 49 | 72 | 107 | ] |
⟨ | 22 | 35 | 51 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | 1 | 2 | ] |
⟨ | 0 | 1 | 1 | 1 | ] |
⟨ | 0 | 0 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6654, 1902.5122, -157.8340]
TE Step Tunings (cents)
⟨-3.06485, 25.31652, 19.87760]
TE Tuning Map (cents)
⟨1200.665, 1902.512, 2787.510, 4146.009]
TE Mistunings (cents)
⟨0.665, 0.557, 1.196, -5.309]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.079020 |
Adjusted Error |
3.087772 cents |
TE Error |
0.892566 cents/octave |
Loruru (17 & 31 & 5)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 17 | 27 | 48 | 59 | ] |
⟨ | 31 | 49 | 87 | 107 | ] |
⟨ | 5 | 8 | 14 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 1 | ] |
⟨ | 0 | 1 | 0 | -2 | ] |
⟨ | 0 | 0 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3223, 1900.3359, 3373.9054]
TE Step Tunings (cents)
⟨18.82971, 27.35624, 6.43476]
TE Tuning Map (cents)
⟨1200.322, 1900.336, 3373.905, 4147.461]
TE Mistunings (cents)
⟨0.322, -1.619, 5.080, -3.857]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.059972 |
Adjusted Error |
4.116577 cents |
TE Error |
1.189958 cents/octave |
Lovecraft (13 & 4)
Equal Temperament Mappings
| 2 | 11 | 13 | |
[ ⟨ | 13 | 45 | 48 | ] |
⟨ | 4 | 14 | 15 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.5259, 279.2073]
TE Step Tunings (cents)
⟨82.69680, 31.11688]
TE Tuning Map (cents)
⟨1199.526, 4156.992, 4436.199]
TE Mistunings (cents)
⟨-0.474, 5.674, -4.328]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.340981 |
Adjusted Error |
4.421572 cents |
TE Error |
1.194877 cents/octave |
Loyo (7 & 3e & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 3 | 5 | 7 | 11 | ] |
⟨ | 15 | 24 | 35 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | 0 | 1 | ] |
⟨ | 0 | 1 | 0 | 3 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7754, 1907.7987, 2782.1332]
TE Step Tunings (cents)
⟨59.02807, -8.18176, 54.14161]
TE Tuning Map (cents)
⟨1200.775, 1907.799, 2782.133, 4142.038]
TE Mistunings (cents)
⟨0.775, 5.844, -4.180, -9.280]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.062843 |
Adjusted Error |
8.584678 cents |
TE Error |
2.481528 cents/octave |
Lozogugu Noca (b4 & b7 & b13)
Equal Temperament Mappings
| 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 7 | 9 | ] |
⟨ | 7 | 10 | 12 | 15 | ] |
⟨ | 13 | 19 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 1 | ] |
⟨ | 0 | 1 | 0 | 2 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1904.5606, 2797.4978, 3360.6513]
TE Step Tunings (cents)
⟨96.41365, 4.00267, 114.68364]
TE Tuning Map (cents)
⟨1904.561, 2797.498, 3360.651, 4138.905]
TE Mistunings (cents)
⟨2.606, 11.184, -8.175, -12.413]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.023179 |
Adjusted Error |
11.890747 cents |
TE Error |
3.437197 cents/octave |
Lu (2 & 3e)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1183.6971, 697.7806]
TE Step Tunings (cents)
⟨274.05241, 211.86409]
TE Tuning Map (cents)
⟨1183.697, 1881.478, 4248.872]
TE Mistunings (cents)
⟨-16.303, -20.477, 97.554]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.261338 |
Adjusted Error |
69.988652 cents |
TE Error |
20.231258 cents/octave |
Lulu + Ya (7 & 65 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 65 | 103 | 151 | 225 | ] |
⟨ | 31 | 49 | 72 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 1 | 0 | 2 | ] |
⟨ | 0 | 2 | 0 | 5 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0639, 350.5440, 2786.3137]
TE Step Tunings (cents)
⟨5.86455, 18.03867, -0.43552]
TE Tuning Map (cents)
⟨1200.064, 1901.152, 2786.314, 4152.848]
TE Mistunings (cents)
⟨0.064, -0.803, 0.000, 1.530]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.103756 |
Adjusted Error |
1.168543 cents |
TE Error |
0.337785 cents/octave |
Luna (118 & 441)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 118 | 187 | 274 | ] |
⟨ | 441 | 699 | 1024 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9803, 193.1976]
TE Step Tunings (cents)
⟨1.52722, 2.31240]
TE Tuning Map (cents)
⟨1199.980, 1901.958, 2786.356]
TE Mistunings (cents)
⟨-0.020, 0.003, 0.042]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.677683 |
Adjusted Error |
0.035933 cents |
TE Error |
0.015476 cents/octave |
Lupercalia (15 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 2 | 3 | 3 | 3 | ] |
⟨ | 0 | 9 | 5 | -3 | 7 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9338, 77.7052]
TE Step Tunings (cents)
⟨8.99382, 34.35569]
TE Tuning Map (cents)
⟨1199.934, 1899.281, 2788.394, 3366.686, 4143.738, 4454.559]
TE Mistunings (cents)
⟨-0.066, -2.674, 2.080, -2.140, -7.580, 14.031]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.156779 |
Adjusted Error |
7.309840 cents |
TE Error |
1.975398 cents/octave |
Luquadzo (5 & 14 & 41)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 5 | 8 | 14 | 17 | ] |
⟨ | 14 | 22 | 39 | 48 | ] |
⟨ | 41 | 65 | 115 | 142 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -3 | ] |
⟨ | 0 | 1 | 0 | -3 | ] |
⟨ | 0 | 0 | 1 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3204, 1902.7598, 3365.4592]
TE Step Tunings (cents)
⟨8.28677, 4.06647, 26.87697]
TE Tuning Map (cents)
⟨1200.320, 1902.760, 3365.459, 4152.596]
TE Mistunings (cents)
⟨0.320, 0.805, -3.367, 1.278]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.105779 |
Adjusted Error |
2.406237 cents |
TE Error |
0.695559 cents/octave |
Luyo (7 & 3e & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 3 | 5 | 7 | 11 | ] |
⟨ | 5 | 8 | 12 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | 0 | -2 | ] |
⟨ | 0 | 1 | 0 | 2 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.4775, 1895.7313, 2779.6352]
TE Step Tunings (cents)
⟨134.54345, -6.62001, 56.10667]
TE Tuning Map (cents)
⟨1202.477, 1895.731, 2779.635, 4166.143]
TE Mistunings (cents)
⟨2.477, -6.224, -6.679, 14.825]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.055024 |
Adjusted Error |
12.008051 cents |
TE Error |
3.471105 cents/octave |
Luyoyo (7 & 22 & 34)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 22 | 35 | 51 | 76 | ] |
⟨ | 34 | 54 | 79 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 0 | -2 | ] |
⟨ | 0 | 0 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2686, 1903.7922, 2782.3707]
TE Step Tunings (cents)
⟨12.04468, 8.30407, 27.41960]
TE Tuning Map (cents)
⟨1199.269, 1903.792, 2782.371, 4155.694]
TE Mistunings (cents)
⟨-0.731, 1.837, -3.943, 4.376]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.067726 |
Adjusted Error |
4.363069 cents |
TE Error |
1.261210 cents/octave |
Mabila (34 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 34 | 54 | 79 | ] |
⟨ | 77 | 122 | 179 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.3550, 529.4002]
TE Step Tunings (cents)
⟨14.25857, 9.28005]
TE Tuning Map (cents)
⟨1199.355, 1902.129, 2787.556]
TE Mistunings (cents)
⟨-0.645, 0.174, 1.242]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.322708 |
Adjusted Error |
1.132762 cents |
TE Error |
0.487854 cents/octave |
Mabila (25 & 16)
Equal Temperament Mappings
| 2 | 5 | 7 | |
[ ⟨ | 25 | 58 | 70 | ] |
⟨ | 16 | 37 | 45 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.2562, 527.7881]
TE Step Tunings (cents)
⟨35.81566, 19.11654]
TE Tuning Map (cents)
⟨1201.256, 2784.621, 3367.341]
TE Mistunings (cents)
⟨1.256, -1.693, -1.485]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.258539 |
Adjusted Error |
2.505618 cents |
TE Error |
0.892519 cents/octave |
Machine (11 & 6)
Equal Temperament Mappings
| 2 | 9 | 7 | 11 | |
[ ⟨ | 11 | 35 | 31 | 38 | ] |
⟨ | 6 | 19 | 17 | 21 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 7 | 11 | |
[ ⟨ | 1 | 3 | 3 | 4 | ] |
⟨ | 0 | 1 | -1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.2813, 213.8986]
TE Step Tunings (cents)
⟨86.11004, 41.67848]
TE Tuning Map (cents)
⟨1197.281, 3805.742, 3377.945, 4147.429]
TE Mistunings (cents)
⟨-2.719, 1.832, 9.119, -3.888]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.440411 |
Adjusted Error |
7.646253 cents |
TE Error |
2.210263 cents/octave |
Machine (11 & 17)
Equal Temperament Mappings
| 2 | 9 | 7 | 11 | 13 | |
[ ⟨ | 11 | 35 | 31 | 38 | 41 | ] |
⟨ | 17 | 54 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 3 | 4 | 3 | ] |
⟨ | 0 | 1 | -1 | -3 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.9401, 212.9252]
TE Step Tunings (cents)
⟨28.90756, 51.70335]
TE Tuning Map (cents)
⟨1196.940, 3803.745, 3377.895, 4148.985, 4442.521]
TE Mistunings (cents)
⟨-3.060, -0.165, 9.069, -2.333, 1.993]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.656026 |
Adjusted Error |
7.501394 cents |
TE Error |
2.027163 cents/octave |
Madagascar (72 & 58 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -2 | 6 | -1 | ] |
⟨ | 0 | 2 | 0 | 9 | -12 | 3 | ] |
⟨ | 0 | 0 | 1 | -1 | 3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9449, 950.7335, 2786.9475]
TE Step Tunings (cents)
⟨7.83023, 7.34012, 3.97059]
TE Tuning Map (cents)
⟨1199.945, 1901.467, 2786.948, 3369.764, 4151.710, 4439.203]
TE Mistunings (cents)
⟨-0.055, -0.488, 0.634, 0.938, 0.392, -1.325]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.287515 |
Adjusted Error |
0.984868 cents |
TE Error |
0.266149 cents/octave |
Magic (19 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 22 | 35 | 51 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.2480, 380.4537]
TE Step Tunings (cents)
⟨38.75431, 21.13255]
TE Tuning Map (cents)
⟨1201.248, 1902.269, 2782.950]
TE Mistunings (cents)
⟨1.248, 0.314, -3.364]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.395263 |
Adjusted Error |
2.577115 cents |
TE Error |
1.109903 cents/octave |
Magic (19 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 41 | 65 | 95 | 115 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.0824, 380.6951]
TE Step Tunings (cents)
⟨5.57169, 26.71269]
TE Tuning Map (cents)
⟨1201.082, 1903.476, 2782.860, 3367.259]
TE Mistunings (cents)
⟨1.082, 1.521, -3.454, -1.567]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.798679 |
Adjusted Error |
3.015814 cents |
TE Error |
1.074254 cents/octave |
Magic (22 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | -1 | 6 | ] |
⟨ | 0 | 5 | 1 | 12 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1435, 380.7419]
TE Step Tunings (cents)
⟨8.55411, 24.68178]
TE Tuning Map (cents)
⟨1200.143, 1903.710, 2781.029, 3368.760, 4154.925]
TE Mistunings (cents)
⟨0.143, 1.755, -5.285, -0.066, 3.607]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.349261 |
Adjusted Error |
4.241032 cents |
TE Error |
1.225933 cents/octave |
Magic (19p & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | 6 | -2 | ] |
⟨ | 0 | 5 | 1 | 12 | -8 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0449, 380.4415]
TE Step Tunings (cents)
⟨2.48378, 28.11837]
TE Tuning Map (cents)
⟨1200.045, 1902.207, 2780.531, 3365.253, 4156.738, 4447.857]
TE Mistunings (cents)
⟨0.045, 0.252, -5.782, -3.573, 5.420, 7.329]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.560849 |
Adjusted Error |
5.698019 cents |
TE Error |
1.539822 cents/octave |
Magic (19 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 70 | ] |
⟨ | 41 | 65 | 95 | 115 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | -2 | ] |
⟨ | 0 | 5 | 1 | 12 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3459, 380.4663]
TE Step Tunings (cents)
⟨18.37617, 20.78533]
TE Tuning Map (cents)
⟨1201.346, 1902.332, 2783.158, 3364.250, 4445.702]
TE Mistunings (cents)
⟨1.346, 0.377, -3.156, -4.576, 5.175]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.982177 |
Adjusted Error |
4.775429 cents |
TE Error |
1.290503 cents/octave |
Magicaltet (15 & 4)
Equal Temperament Mappings
| 2 | 5/3 | 7 | 11 | |
[ ⟨ | 15 | 11 | 42 | 52 | ] |
⟨ | 4 | 3 | 11 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 5/3 | 7 | 11 | |
[ ⟨ | 1 | 1 | 2 | 4 | ] |
⟨ | 0 | -1 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.5060, 319.8246]
TE Step Tunings (cents)
⟨77.79251, 8.65457]
TE Tuning Map (cents)
⟨1201.506, 881.681, 3362.486, 4166.375]
TE Mistunings (cents)
⟨1.506, -2.677, -6.340, 15.057]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
0.883441 |
Adjusted Error |
10.872429 cents |
TE Error |
3.142837 cents/octave |
Magician (41 & 19p & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | 6 | 0 | ] |
⟨ | 0 | 5 | 1 | 12 | -8 | 0 | ] |
⟨ | 0 | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1435, 380.7419, 4440.5277]
TE Step Tunings (cents)
⟨20.69567, 3.98611, 12.54022]
TE Tuning Map (cents)
⟨1200.143, 1903.710, 2781.029, 3368.760, 4154.925, 4440.528]
TE Mistunings (cents)
⟨0.143, 1.755, -5.285, -0.066, 3.607, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.215984 |
Adjusted Error |
4.141232 cents |
TE Error |
1.119119 cents/octave |
Magus (46 & 49)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 49 | 78 | 114 | 138 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -2 | 2 | -6 | -6 | ] |
⟨ | 0 | 11 | 1 | 27 | 29 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.7193, 391.0852]
TE Step Tunings (cents)
⟨16.33374, 9.12994]
TE Tuning Map (cents)
⟨1198.719, 1904.499, 2788.524, 3366.985, 4149.155]
TE Mistunings (cents)
⟨-1.281, 2.544, 2.210, -1.841, -2.163]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.063437 |
Adjusted Error |
3.771499 cents |
TE Error |
1.090208 cents/octave |
Magus (46 & 3de)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -2 | 2 | -6 | -6 | 5 | ] |
⟨ | 0 | 11 | 1 | 27 | 29 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7804, 391.2943]
TE Step Tunings (cents)
⟨25.89743, 2.83287]
TE Tuning Map (cents)
⟨1199.780, 1904.677, 2790.855, 3366.264, 4148.853, 4433.725]
TE Mistunings (cents)
⟨-0.220, 2.722, 4.542, -2.561, -2.465, -6.803]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.358812 |
Adjusted Error |
5.132516 cents |
TE Error |
1.387002 cents/octave |
Maja (53 & 8)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 8 | 13 | 19 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0232, 452.8108]
TE Step Tunings (cents)
⟨22.41712, 1.48946]
TE Tuning Map (cents)
⟨1200.023, 1902.401, 2785.606]
TE Mistunings (cents)
⟨0.023, 0.446, -0.708]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.874281 |
Adjusted Error |
0.557209 cents |
TE Error |
0.239977 cents/octave |
Maja (8d & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 8 | 11 | 13 | 11 | ] |
⟨ | 0 | -17 | -23 | -27 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7482, 453.1820]
TE Step Tunings (cents)
⟨-3.68151, 23.21133]
TE Tuning Map (cents)
⟨1200.748, 1901.892, 2785.044, 3373.813, 4144.591]
TE Mistunings (cents)
⟨0.748, -0.063, -1.269, 4.987, -6.727]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.983700 |
Adjusted Error |
4.320173 cents |
TE Error |
1.248810 cents/octave |
Maja (8d & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 8 | 11 | 13 | 11 | 12 | ] |
⟨ | 0 | -17 | -23 | -27 | -20 | -22 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8564, 453.2283]
TE Step Tunings (cents)
⟨-3.97064, 23.25701]
TE Tuning Map (cents)
⟨1200.856, 1901.970, 2785.170, 3373.970, 4144.855, 4439.255]
TE Mistunings (cents)
⟨0.856, 0.015, -1.144, 5.144, -6.463, -1.273]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.666467 |
Adjusted Error |
4.257386 cents |
TE Error |
1.150508 cents/octave |
Maja (53 & 8)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 53 | 84 | 123 | 196 | ] |
⟨ | 8 | 13 | 19 | 30 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 8 | 11 | 12 | ] |
⟨ | 0 | -17 | -23 | -22 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2005, 452.8832]
TE Step Tunings (cents)
⟨22.46415, 1.20005]
TE Tuning Map (cents)
⟨1200.201, 1902.590, 2785.892, 4438.975]
TE Mistunings (cents)
⟨0.201, 0.635, -0.422, -1.552]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.239866 |
Adjusted Error |
1.183897 cents |
TE Error |
0.319934 cents/octave |
Majvam (34 & 183)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 34 | 54 | 79 | ] |
⟨ | 183 | 290 | 425 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.8635, 458.9427]
TE Step Tunings (cents)
⟨3.92573, 5.82726]
TE Tuning Map (cents)
⟨1199.864, 1901.895, 2786.718]
TE Mistunings (cents)
⟨-0.136, -0.060, 0.405]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.961844 |
Adjusted Error |
0.301086 cents |
TE Error |
0.129670 cents/octave |
Majvam (34 & 217)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 34 | 54 | 79 | 126 | ] |
⟨ | 217 | 344 | 504 | 803 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 10 | 5 | 19 | ] |
⟨ | 0 | -22 | -7 | -40 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8720, 458.9391]
TE Step Tunings (cents)
⟨-0.40913, 5.59347]
TE Tuning Map (cents)
⟨1199.872, 1902.060, 2786.786, 4440.004]
TE Mistunings (cents)
⟨-0.128, 0.105, 0.472, -0.524]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.628959 |
Adjusted Error |
0.530491 cents |
TE Error |
0.143359 cents/octave |
Malcolm (41 & 53 & 60e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 60 | 95 | 139 | 168 | 207 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -5 | -3 | ] |
⟨ | 0 | 1 | 0 | 2 | 7 | ] |
⟨ | 0 | 0 | 1 | 2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5278, 1902.7279, 2783.6322]
TE Step Tunings (cents)
⟨12.55125, 10.15448, 2.46232]
TE Tuning Map (cents)
⟨1200.528, 1902.728, 2783.632, 3370.081, 4150.247]
TE Mistunings (cents)
⟨0.528, 0.773, -2.682, 1.255, -1.071]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.248542 |
Adjusted Error |
2.266267 cents |
TE Error |
0.655098 cents/octave |
Malcolm (41 & 53 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | -3 | 2 | ] |
⟨ | 0 | 1 | 0 | 2 | 7 | 4 | ] |
⟨ | 0 | 0 | 1 | 2 | -2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2451, 1902.4040, 2783.5613]
TE Step Tunings (cents)
⟨12.12281, 12.95165, 0.88276]
TE Tuning Map (cents)
⟨1200.245, 1902.404, 2783.561, 3370.705, 4148.970, 4442.984]
TE Mistunings (cents)
⟨0.245, 0.449, -2.752, 1.879, -2.348, 2.456]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.246520 |
Adjusted Error |
2.570256 cents |
TE Error |
0.694581 cents/octave |
Mandos (31 & 27e & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 6 | 2 | ] |
⟨ | 0 | 2 | 0 | 5 | 5 | ] |
⟨ | 0 | 0 | 1 | -2 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1976, 350.6143, 2788.8049]
TE Step Tunings (cents)
⟨23.68642, 16.10914, 4.28168]
TE Tuning Map (cents)
⟨1199.198, 1900.426, 2788.805, 3370.647, 4151.466]
TE Mistunings (cents)
⟨-0.802, -1.529, 2.491, 1.821, 0.148]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.187792 |
Adjusted Error |
2.745019 cents |
TE Error |
0.793488 cents/octave |
Maneh (31 & 4ef)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | 0 | 1 | -3 | -3 | ] |
⟨ | 0 | 10 | 9 | 7 | 25 | 26 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9319, 309.7869]
TE Step Tunings (cents)
⟨39.21571, -3.93880]
TE Tuning Map (cents)
⟨1199.932, 1897.937, 2788.082, 3368.440, 4144.877, 4454.664]
TE Mistunings (cents)
⟨-0.068, -4.018, 1.768, -0.386, -6.441, 14.136]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.638139 |
Adjusted Error |
7.567027 cents |
TE Error |
2.044900 cents/octave |
Manna (72 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | 0 | ] |
⟨ | 0 | 6 | -7 | -2 | 15 | 38 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7580, 116.8130]
TE Step Tunings (cents)
⟨13.69780, 5.23211]
TE Tuning Map (cents)
⟨1200.758, 1901.636, 2784.583, 3368.648, 4153.711, 4438.895]
TE Mistunings (cents)
⟨0.758, -0.319, -1.731, -0.178, 2.393, -1.633]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.324405 |
Adjusted Error |
2.053714 cents |
TE Error |
0.554992 cents/octave |
Manwe (31 & 15 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 12 | 8 | ] |
⟨ | 0 | 1 | 0 | 3 | 3 | ] |
⟨ | 0 | 0 | 1 | -6 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3614, 1902.0569, 2788.0351]
TE Step Tunings (cents)
⟨21.75741, 13.07965, 9.66727]
TE Tuning Map (cents)
⟨1199.361, 1902.057, 2788.035, 3370.297, 4148.922]
TE Mistunings (cents)
⟨-0.639, 0.102, 1.721, 1.471, -2.396]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.203655 |
Adjusted Error |
2.026638 cents |
TE Error |
0.585830 cents/octave |
Maqamic (7p & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 4 | 2 | ] |
⟨ | 0 | 2 | 8 | -4 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.0363, 349.7748]
TE Step Tunings (cents)
⟨34.00914, 56.35131]
TE Tuning Map (cents)
⟨1196.036, 1895.586, 2798.199, 3385.046, 4140.947]
TE Mistunings (cents)
⟨-3.964, -6.369, 11.885, 16.220, -10.371]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.624728 |
Adjusted Error |
15.504076 cents |
TE Error |
4.481683 cents/octave |
Maqamic (7p & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 4 | 2 | 4 | ] |
⟨ | 0 | 2 | 8 | -4 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.3995, 349.7636]
TE Step Tunings (cents)
⟨36.01657, 55.54609]
TE Tuning Map (cents)
⟨1196.400, 1895.927, 2798.109, 3386.544, 4141.617, 4435.834]
TE Mistunings (cents)
⟨-3.600, -6.028, 11.795, 17.718, -9.701, -4.693]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.550803 |
Adjusted Error |
15.297470 cents |
TE Error |
4.133960 cents/octave |
Maquila (65 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 65 | 103 | 151 | ] |
⟨ | 121 | 192 | 281 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.7467, 535.3243]
TE Step Tunings (cents)
⟨12.08085, 3.42555]
TE Tuning Map (cents)
⟨1199.747, 1902.033, 2786.788]
TE Mistunings (cents)
⟨-0.253, 0.078, 0.474]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.763863 |
Adjusted Error |
0.441059 cents |
TE Error |
0.189954 cents/octave |
Maquila (9 & 65d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 65 | 103 | 151 | 183 | 225 | 241 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -6 | 5 | -7 | -1 | -7 | ] |
⟨ | 0 | 17 | -6 | 22 | 10 | 24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2242, 534.9519]
TE Step Tunings (cents)
⟨5.62574, 17.67065]
TE Tuning Map (cents)
⟨1199.224, 1898.838, 2786.409, 3374.373, 4150.295, 4444.277]
TE Mistunings (cents)
⟨-0.776, -3.117, 0.096, 5.547, -1.023, 3.749]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.592973 |
Adjusted Error |
4.653927 cents |
TE Error |
1.257669 cents/octave |
Maquila (65 & 56)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 65 | 103 | 151 | 225 | ] |
⟨ | 56 | 89 | 130 | 194 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | -6 | 5 | -1 | ] |
⟨ | 0 | 17 | -6 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5915, 535.2542]
TE Step Tunings (cents)
⟨15.55091, 3.37112]
TE Tuning Map (cents)
⟨1199.592, 1901.773, 2786.432, 4152.951]
TE Mistunings (cents)
⟨-0.408, -0.182, 0.119, 1.633]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.992884 |
Adjusted Error |
1.101406 cents |
TE Error |
0.318378 cents/octave |
Marrakesh (31 & 42e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 42 | 67 | 98 | 118 | 146 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -7 | -4 | 1 | -11 | ] |
⟨ | 0 | 19 | 14 | 4 | 32 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6343, 542.0441]
TE Step Tunings (cents)
⟨27.20165, 8.48531]
TE Tuning Map (cents)
⟨1199.634, 1901.397, 2790.080, 3367.811, 4149.432]
TE Mistunings (cents)
⟨-0.366, -0.558, 3.766, -1.015, -1.886]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.540236 |
Adjusted Error |
2.817272 cents |
TE Error |
0.814374 cents/octave |
Marrakesh (31 & 104c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 104 | 165 | 242 | 292 | 360 | 385 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -7 | -4 | 1 | -11 | 15 | ] |
⟨ | 0 | 19 | 14 | 4 | 32 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3771, 541.9627]
TE Step Tunings (cents)
⟨6.60669, 9.56317]
TE Tuning Map (cents)
⟨1199.377, 1901.651, 2789.969, 3367.228, 4149.657, 4441.590]
TE Mistunings (cents)
⟨-0.623, -0.304, 3.655, -1.598, -1.661, 1.062]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.236171 |
Adjusted Error |
2.842310 cents |
TE Error |
0.768100 cents/octave |
Marvel (31 & 19 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 41 | 65 | 95 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -5 | ] |
⟨ | 0 | 1 | 0 | 2 | ] |
⟨ | 0 | 0 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5978, 1901.3543, 2785.0245]
TE Step Tunings (cents)
⟨17.78961, -4.68063, 18.00127]
TE Tuning Map (cents)
⟨1200.598, 1901.354, 2785.024, 3369.768]
TE Mistunings (cents)
⟨0.598, -0.601, -1.289, 0.942]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.097165 |
Adjusted Error |
1.347858 cents |
TE Error |
0.480117 cents/octave |
Marvel (31 & 41 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6402, 1901.4026, 2785.0255]
TE Step Tunings (cents)
⟨17.32226, 14.05909, 3.96487]
TE Tuning Map (cents)
⟨1200.640, 1901.403, 2785.025, 3369.655, 4151.204]
TE Mistunings (cents)
⟨0.640, -0.552, -1.288, 0.829, -0.114]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.155664 |
Adjusted Error |
1.489962 cents |
TE Error |
0.430695 cents/octave |
Marvel (72 & 31 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | -4 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | -1 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8054, 1901.0117, 2785.9298]
TE Step Tunings (cents)
⟨12.36882, 5.68835, 2.52664]
TE Tuning Map (cents)
⟨1200.805, 1901.012, 2785.930, 3369.856, 4150.863, 4439.486]
TE Mistunings (cents)
⟨0.805, -0.943, -0.384, 1.030, -0.455, -1.042]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.243101 |
Adjusted Error |
1.696663 cents |
TE Error |
0.458503 cents/octave |
Marvel (72 & 31 & 53p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | 294 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | 217 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | -4 | -13 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | -1 | 2 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | 4 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7990, 1900.9393, 2785.7703]
TE Step Tunings (cents)
⟨13.56873, 5.13156, 1.22211]
TE Tuning Map (cents)
⟨1200.799, 1900.939, 2785.770, 3369.424, 4151.338, 4438.946, 4906.114]
TE Mistunings (cents)
⟨0.799, -1.016, -0.543, 0.598, 0.020, -1.582, 1.158]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.264503 |
Adjusted Error |
1.835963 cents |
TE Error |
0.449169 cents/octave |
Marvelcat (19p & 9 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | -1 | ] |
⟨ | 0 | 2 | 0 | 4 | -2 | 3 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7736, 950.8988, 2785.3761]
TE Step Tunings (cents)
⟨13.22034, -0.68681, 18.03337]
TE Tuning Map (cents)
⟨1200.774, 1901.798, 2785.376, 3370.479, 4151.357, 4437.299]
TE Mistunings (cents)
⟨0.774, -0.157, -0.938, 1.654, 0.040, -3.229]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.264878 |
Adjusted Error |
2.071217 cents |
TE Error |
0.559722 cents/octave |
Marvell (31 & 72 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | -29 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | 6 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6411, 1901.4091, 2785.0597]
TE Step Tunings (cents)
⟨7.85249, 13.81879, -4.19323]
TE Tuning Map (cents)
⟨1200.641, 1901.409, 2785.060, 3369.732, 4151.106, 4440.458]
TE Mistunings (cents)
⟨0.641, -0.546, -1.254, 0.906, -0.212, -0.069]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.293236 |
Adjusted Error |
1.456582 cents |
TE Error |
0.393624 cents/octave |
Marveltri (22 & 47)
Equal Temperament Mappings
| 2 | 5 | 9/7 | |
[ ⟨ | 22 | 51 | 8 | ] |
⟨ | 47 | 109 | 17 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8257, 382.8817]
TE Step Tunings (cents)
⟨16.94763, 17.61655]
TE Tuning Map (cents)
⟨1200.826, 2784.533, 435.062]
TE Mistunings (cents)
⟨0.826, -1.781, -0.022]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
2.705714 |
Adjusted Error |
1.512810 cents |
TE Error |
0.651532 cents/octave |
Marveltwintri (34 & 15)
Equal Temperament Mappings
| 2 | 5/3 | 13/9 | |
[ ⟨ | 34 | 25 | 18 | ] |
⟨ | 15 | 11 | 8 | ] ⟩ |
Reduced Mapping
| 2 | 5/3 | 13/9 | |
[ ⟨ | 1 | 1 | 0 | ] |
⟨ | 0 | -1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.6533, 318.1925]
TE Step Tunings (cents)
⟨33.72561, 3.66551]
TE Tuning Map (cents)
⟨1201.653, 883.461, 636.385]
TE Mistunings (cents)
⟨1.653, -0.898, -0.233]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
2.165937 |
Adjusted Error |
1.212465 cents |
TE Error |
1.212465 cents/octave |
Marvo (72 & 65d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 65 | 103 | 151 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | -5 | -17 | ] |
⟨ | 0 | 6 | 17 | 46 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6311, 516.9661]
TE Step Tunings (cents)
⟨14.87214, 1.99749]
TE Tuning Map (cents)
⟨1200.631, 1901.166, 2785.269, 3369.713]
TE Mistunings (cents)
⟨0.631, -0.789, -1.045, 0.888]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.068456 |
Adjusted Error |
1.367244 cents |
TE Error |
0.487022 cents/octave |
Marvo (72 & 65d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 65 | 103 | 151 | 183 | 225 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | -5 | -17 | -3 | ] |
⟨ | 0 | 6 | 17 | 46 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5256, 516.9256]
TE Step Tunings (cents)
⟨14.55056, 2.35208]
TE Tuning Map (cents)
⟨1200.526, 1901.028, 2785.108, 3369.644, 4152.308]
TE Mistunings (cents)
⟨0.526, -0.927, -1.206, 0.818, 0.990]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.522243 |
Adjusted Error |
1.588850 cents |
TE Error |
0.459281 cents/octave |
Marvolo (72 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 1 | 1 | 2 | ] |
⟨ | 0 | -6 | 19 | 26 | 21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7085, 83.3889]
TE Step Tunings (cents)
⟨16.86156, -0.45944]
TE Tuning Map (cents)
⟨1200.708, 1901.083, 2785.098, 3368.820, 4152.584]
TE Mistunings (cents)
⟨0.708, -0.872, -1.216, -0.006, 1.266]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.018299 |
Adjusted Error |
1.703558 cents |
TE Error |
0.492439 cents/octave |
Marvolo (72 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 1 | 1 | 2 | 3 | ] |
⟨ | 0 | -6 | 19 | 26 | 21 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.9488, 83.3957]
TE Step Tunings (cents)
⟨16.57798, 0.25291]
TE Tuning Map (cents)
⟨1200.949, 1901.523, 2785.467, 3369.237, 4153.207, 4436.803]
TE Mistunings (cents)
⟨0.949, -0.432, -0.847, 0.411, 1.889, -3.724]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.603488 |
Adjusted Error |
2.359765 cents |
TE Error |
0.637698 cents/octave |
Mavila (7 & 9)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1208.3799, 523.8266]
TE Step Tunings (cents)
⟨119.08011, 41.64656]
TE Tuning Map (cents)
⟨1208.380, 1892.933, 2779.860]
TE Mistunings (cents)
⟨8.380, -9.022, -6.454]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.794799 |
Adjusted Error |
14.082267 cents |
TE Error |
6.064902 cents/octave |
Mavila (7d & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 19 | ] |
⟨ | 16 | 25 | 37 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 1 | -2 | ] |
⟨ | 0 | -1 | 3 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1208.2869, 525.6927]
TE Step Tunings (cents)
⟨46.92526, 54.98813]
TE Tuning Map (cents)
⟨1208.287, 1890.881, 2785.365, 3366.046]
TE Mistunings (cents)
⟨8.287, -11.074, -0.949, -2.780]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.732832 |
Adjusted Error |
15.288902 cents |
TE Error |
5.446017 cents/octave |
Maviloid (99 & 472)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 472 | 748 | 1096 | 1325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -21 | -22 | -15 | ] |
⟨ | 0 | 52 | 56 | 41 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9863, 521.1837]
TE Step Tunings (cents)
⟨1.51138, 2.22534]
TE Tuning Map (cents)
⟨1199.986, 1901.840, 2786.588, 3368.737]
TE Mistunings (cents)
⟨-0.014, -0.115, 0.274, -0.089]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.167617 |
Adjusted Error |
0.200765 cents |
TE Error |
0.071514 cents/octave |
Meanenneadecal (12 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 7 | 6 | ] |
⟨ | 0 | -1 | -4 | -10 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7573, 503.6480]
TE Step Tunings (cents)
⟨73.73606, 44.98923]
TE Tuning Map (cents)
⟨1199.757, 1895.867, 2784.437, 3361.821, 4176.656]
TE Mistunings (cents)
⟨-0.243, -6.088, -1.876, -7.004, 25.338]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.213279 |
Adjusted Error |
13.428567 cents |
TE Error |
3.881726 cents/octave |
Meanenneadecal (12f & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 7 | 6 | 10 | ] |
⟨ | 0 | -1 | -4 | -10 | -6 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8561, 503.7938]
TE Step Tunings (cents)
⟨26.76651, 46.24516]
TE Tuning Map (cents)
⟨1199.856, 1895.918, 2784.249, 3361.055, 4176.374, 4441.654]
TE Mistunings (cents)
⟨-0.144, -6.037, -2.065, -7.771, 25.056, 1.126]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.452992 |
Adjusted Error |
13.129200 cents |
TE Error |
3.548011 cents/octave |
Meanertone (5p & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 4 | 3 | ] |
⟨ | 0 | -1 | -4 | -3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1209.0284, 507.1724]
TE Step Tunings (cents)
⟨76.87848, 117.80514]
TE Tuning Map (cents)
⟨1209.028, 1910.884, 2807.424, 3314.596, 4134.258]
TE Mistunings (cents)
⟨9.028, 8.929, 21.110, -54.229, -17.060]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.719506 |
Adjusted Error |
37.686388 cents |
TE Error |
10.893809 cents/octave |
Meanplop (19p & 31f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 114 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 7 | -2 | 2 | ] |
⟨ | 0 | -1 | -4 | -10 | 13 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.3518, 504.7853]
TE Step Tunings (cents)
⟨17.77022, 27.89412]
TE Tuning Map (cents)
⟨1202.352, 1899.918, 2790.266, 3368.610, 4157.505, 4423.845]
TE Mistunings (cents)
⟨2.352, -2.037, 3.952, -0.216, 6.187, -16.683]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.274087 |
Adjusted Error |
8.758088 cents |
TE Error |
2.366769 cents/octave |
Meanpop (31 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 7 | -2 | ] |
⟨ | 0 | -1 | -4 | -10 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3528, 504.1332]
TE Step Tunings (cents)
⟨32.29155, 10.54288]
TE Tuning Map (cents)
⟨1201.353, 1898.572, 2788.878, 3368.138, 4151.026]
TE Mistunings (cents)
⟨1.353, -3.383, 2.565, -0.688, -0.292]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.415715 |
Adjusted Error |
4.285250 cents |
TE Error |
1.238715 cents/octave |
Meanpop (31 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 7 | -2 | 10 | ] |
⟨ | 0 | -1 | -4 | -10 | 13 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0874, 504.2450]
TE Step Tunings (cents)
⟨28.04352, 17.45991]
TE Tuning Map (cents)
⟨1201.087, 1897.930, 2787.369, 3365.161, 4153.011, 4447.198]
TE Mistunings (cents)
⟨1.087, -4.025, 1.056, -3.664, 1.693, 6.671]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.585339 |
Adjusted Error |
5.453590 cents |
TE Error |
1.473768 cents/octave |
Meanpop (19 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 70 | ] |
⟨ | 31 | 49 | 72 | 87 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 1 | 2 | 4 | 7 | 10 | ] |
⟨ | 0 | -1 | -4 | -10 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.6315, 504.6969]
TE Step Tunings (cents)
⟨24.39434, 23.81093]
TE Tuning Map (cents)
⟨1201.631, 1898.566, 2787.738, 3364.451, 4445.861]
TE Mistunings (cents)
⟨1.631, -3.389, 1.425, -4.375, 5.334]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.585813 |
Adjusted Error |
5.760247 cents |
TE Error |
1.556639 cents/octave |
Meantone (12 & 19)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 19 | 30 | 44 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.3969, 504.3477]
TE Step Tunings (cents)
⟨28.56774, 45.18863]
TE Tuning Map (cents)
⟨1201.397, 1898.446, 2788.196]
TE Mistunings (cents)
⟨1.397, -3.509, 1.883]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.710802 |
Adjusted Error |
3.673804 cents |
TE Error |
1.582221 cents/octave |
Meantone (19 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 12 | 19 | 28 | 34 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 4 | 7 | ] |
⟨ | 0 | -1 | -4 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2422, 504.0263]
TE Step Tunings (cents)
⟨42.10479, 33.43759]
TE Tuning Map (cents)
⟨1201.242, 1898.458, 2788.863, 3368.432]
TE Mistunings (cents)
⟨1.242, -3.497, 2.550, -0.394]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.350011 |
Adjusted Error |
3.878941 cents |
TE Error |
1.381707 cents/octave |
Meantone (31 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 7 | 11 | ] |
⟨ | 0 | -1 | -4 | -10 | -18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7722, 503.3550]
TE Step Tunings (cents)
⟨36.39920, 6.03307]
TE Tuning Map (cents)
⟨1200.772, 1898.189, 2789.669, 3371.855, 4148.104]
TE Mistunings (cents)
⟨0.772, -3.766, 3.355, 3.029, -3.214]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.917159 |
Adjusted Error |
4.978765 cents |
TE Error |
1.439186 cents/octave |
Meantone (12f & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 7 | 11 | 10 | ] |
⟨ | 0 | -1 | -4 | -10 | -18 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8361, 503.7083]
TE Step Tunings (cents)
⟨36.23020, 40.31967]
TE Tuning Map (cents)
⟨1200.836, 1897.964, 2788.511, 3368.769, 4142.447, 4452.736]
TE Mistunings (cents)
⟨0.836, -3.991, 2.197, -0.057, -8.871, 12.208]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.878016 |
Adjusted Error |
7.613052 cents |
TE Error |
2.057337 cents/octave |
Meantone & Lozogugu (7d & 19e & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 19 | 24 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | -4 | 0 | -8 | ] |
⟨ | 0 | 1 | 4 | 0 | 9 | ] |
⟨ | 0 | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3477, 1901.1610, 3360.6957]
TE Step Tunings (cents)
⟨-14.83977, 59.90796, 33.39497]
TE Tuning Map (cents)
⟨1201.348, 1901.161, 2799.253, 3360.696, 4138.972]
TE Mistunings (cents)
⟨1.348, -0.794, 12.940, -8.130, -12.346]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.130146 |
Adjusted Error |
11.394765 cents |
TE Error |
3.293826 cents/octave |
Meantone + La (7 & 31 & 19)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 31 | 49 | 72 | 107 | ] |
⟨ | 19 | 30 | 44 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | -4 | 0 | ] |
⟨ | 0 | 1 | 4 | 0 | ] |
⟨ | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3969, 1898.4460, 4151.3179]
TE Step Tunings (cents)
⟨2.40898, 30.97672, 11.80293]
TE Tuning Map (cents)
⟨1201.397, 1898.446, 2788.196, 4151.318]
TE Mistunings (cents)
⟨1.397, -3.509, 1.883, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.077050 |
Adjusted Error |
4.740265 cents |
TE Error |
1.370244 cents/octave |
Meantone + Tha (19 & 7 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 19 | 30 | 44 | 70 | ] |
⟨ | 7 | 11 | 16 | 26 | ] |
⟨ | 24 | 38 | 56 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 0 | -4 | 0 | ] |
⟨ | 0 | 1 | 4 | 0 | ] |
⟨ | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3969, 1898.4460, 4440.5277]
TE Step Tunings (cents)
⟨33.07038, 12.11826, 20.34300]
TE Tuning Map (cents)
⟨1201.397, 1898.446, 2788.196, 4440.528]
TE Mistunings (cents)
⟨1.397, -3.509, 1.883, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.072032 |
Adjusted Error |
5.070505 cents |
TE Error |
1.370244 cents/octave |
Meantone + Za (12 & 19 & 5)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 5 | 8 | 12 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | -4 | 0 | ] |
⟨ | 0 | 1 | 4 | 0 | ] |
⟨ | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3969, 1898.4460, 3368.8259]
TE Step Tunings (cents)
⟨33.61845, 42.66328, -2.52535]
TE Tuning Map (cents)
⟨1201.397, 1898.446, 2788.196, 3368.826]
TE Mistunings (cents)
⟨1.397, -3.509, 1.883, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.094947 |
Adjusted Error |
3.846761 cents |
TE Error |
1.370244 cents/octave |
Mercury (9 & 10p & 12e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 12 | 19 | 28 | 34 | 41 | 44 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | 6 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | 0 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.7129, 1902.5532, 2786.7379]
TE Step Tunings (cents)
⟨35.15300, 51.77643, 30.63096]
TE Tuning Map (cents)
⟨1201.713, 1902.553, 2786.738, 3370.018, 4157.788, 4423.539]
TE Mistunings (cents)
⟨1.713, 0.598, 0.424, 1.192, 6.470, -16.988]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.133871 |
Adjusted Error |
7.974391 cents |
TE Error |
2.154985 cents/octave |
Meridetone (12f & 31f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 114 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 7 | 11 | 15 | ] |
⟨ | 0 | -1 | -4 | -10 | -18 | -27 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9297, 502.4416]
TE Step Tunings (cents)
⟨23.39594, 29.65092]
TE Tuning Map (cents)
⟨1199.930, 1897.418, 2789.952, 3375.092, 4155.278, 4433.022]
TE Mistunings (cents)
⟨-0.070, -4.537, 3.639, 6.266, 3.960, -7.506]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.577106 |
Adjusted Error |
6.932995 cents |
TE Error |
1.873560 cents/octave |
Merman (41 & 84)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 84 | 133 | 195 | 236 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 5 | -5 | -5 | ] |
⟨ | 0 | -7 | 15 | 16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3907, 585.7760]
TE Step Tunings (cents)
⟨10.83759, 9.00059]
TE Tuning Map (cents)
⟨1200.391, 1901.522, 2784.686, 3370.462]
TE Mistunings (cents)
⟨0.391, -0.433, -1.628, 1.636]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.435134 |
Adjusted Error |
1.444102 cents |
TE Error |
0.514400 cents/octave |
Merman (41 & 43)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 43 | 68 | 100 | 121 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | -5 | -5 | 2 | ] |
⟨ | 0 | -7 | 15 | 16 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9612, 585.5875]
TE Step Tunings (cents)
⟨18.92303, 9.86319]
TE Tuning Map (cents)
⟨1199.961, 1900.694, 2784.006, 3369.594, 4156.685]
TE Mistunings (cents)
⟨-0.039, -1.261, -2.307, 0.768, 5.367]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.991277 |
Adjusted Error |
3.134196 cents |
TE Error |
0.905986 cents/octave |
Metakleismic (87 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | -12 | -5 | ] |
⟨ | 0 | 6 | 5 | 56 | 32 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5434, 317.1903]
TE Step Tunings (cents)
⟨11.41992, 6.05912]
TE Tuning Map (cents)
⟨1199.543, 1903.142, 2785.495, 3368.137, 4152.373]
TE Mistunings (cents)
⟨-0.457, 1.187, -0.819, -0.689, 1.055]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.151450 |
Adjusted Error |
1.582937 cents |
TE Error |
0.457571 cents/octave |
Metakleismic (87 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | -12 | -5 | 0 | ] |
⟨ | 0 | 6 | 5 | 56 | 32 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5348, 317.1884]
TE Step Tunings (cents)
⟨11.40699, 6.09196]
TE Tuning Map (cents)
⟨1199.535, 1903.130, 2785.477, 3368.134, 4152.355, 4440.638]
TE Mistunings (cents)
⟨-0.465, 1.175, -0.837, -0.692, 1.037, 0.110]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.639481 |
Adjusted Error |
1.546499 cents |
TE Error |
0.417923 cents/octave |
Migration (31 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 7 | 11 | 16 | 19 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.2422, 348.6079]
TE Step Tunings (cents)
⟨37.77119, 4.33360]
TE Tuning Map (cents)
⟨1201.242, 1898.458, 2788.863, 3368.432]
TE Mistunings (cents)
⟨1.242, -3.497, 2.550, -0.394]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.700023 |
Adjusted Error |
3.878941 cents |
TE Error |
1.381707 cents/octave |
Migration (31 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | -3 | 2 | ] |
⟨ | 0 | 2 | 8 | 20 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.7504, 348.6903]
TE Step Tunings (cents)
⟨37.33117, 6.35488]
TE Tuning Map (cents)
⟨1201.750, 1899.131, 2789.522, 3368.554, 4146.952]
TE Mistunings (cents)
⟨1.750, -2.824, 3.209, -0.271, -4.366]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.488401 |
Adjusted Error |
4.830842 cents |
TE Error |
1.396427 cents/octave |
Migration (31 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | -3 | 2 | 4 | ] |
⟨ | 0 | 2 | 8 | 20 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2802, 348.5709]
TE Step Tunings (cents)
⟨39.43598, -3.17645]
TE Tuning Map (cents)
⟨1200.280, 1897.422, 2788.567, 3370.577, 4143.415, 4452.550]
TE Mistunings (cents)
⟨0.280, -4.533, 2.253, 1.752, -7.903, 12.022]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.522093 |
Adjusted Error |
7.608183 cents |
TE Error |
2.056021 cents/octave |
Minerva (31 & 22 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -5 | -9 | ] |
⟨ | 0 | 1 | 0 | 2 | 2 | ] |
⟨ | 0 | 0 | 1 | 2 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1134, 1900.4389, 2786.8215]
TE Step Tunings (cents)
⟨25.84909, 14.48034, 6.68533]
TE Tuning Map (cents)
⟨1200.113, 1900.439, 2786.821, 3373.954, 4147.143]
TE Mistunings (cents)
⟨0.113, -1.516, 0.508, 5.128, -4.175]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.126823 |
Adjusted Error |
3.715763 cents |
TE Error |
1.074096 cents/octave |
Minerva (12f & 9 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | -9 | -8 | ] |
⟨ | 0 | 1 | 0 | 2 | 2 | 3 | ] |
⟨ | 0 | 0 | 1 | 2 | 4 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6523, 1898.5910, 2787.6324]
TE Step Tunings (cents)
⟨37.17088, -4.12248, 41.66863]
TE Tuning Map (cents)
⟨1200.652, 1898.591, 2787.632, 3369.186, 4141.841, 4453.452]
TE Mistunings (cents)
⟨0.652, -3.364, 1.319, 0.360, -9.477, 12.924]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.121049 |
Adjusted Error |
7.549287 cents |
TE Error |
2.040105 cents/octave |
Minortone (730 & 559)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 730 | 1157 | 1695 | ] |
⟨ | 559 | 886 | 1298 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0036, 182.4670]
TE Step Tunings (cents)
⟨1.25237, 0.51122]
TE Tuning Map (cents)
⟨1200.004, 1901.935, 2786.334]
TE Mistunings (cents)
⟨0.004, -0.020, 0.020]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.334748 |
Adjusted Error |
0.020929 cents |
TE Error |
0.009014 cents/octave |
Minos (72 & 58 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | 1 | 2 | 1 | ] |
⟨ | 0 | 2 | 4 | 3 | 4 | 7 | ] |
⟨ | 0 | 0 | 5 | 1 | 3 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7673, 950.9363, -683.4019]
TE Step Tunings (cents)
⟨10.42864, 8.27473, -3.44764]
TE Tuning Map (cents)
⟨1199.767, 1901.873, 2786.270, 3369.174, 4153.074, 4439.312]
TE Mistunings (cents)
⟨-0.233, -0.082, -0.044, 0.348, 1.756, -1.216]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.324360 |
Adjusted Error |
1.000085 cents |
TE Error |
0.270261 cents/octave |
Mintone (58 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 9 | 7 | 12 | ] |
⟨ | 0 | -22 | -43 | -27 | -55 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1500, 186.3684]
TE Step Tunings (cents)
⟨6.45244, 8.01853]
TE Tuning Map (cents)
⟨1200.150, 1900.645, 2787.508, 3369.102, 4151.537]
TE Mistunings (cents)
⟨0.150, -1.310, 1.194, 0.277, 0.219]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.480554 |
Adjusted Error |
1.534786 cents |
TE Error |
0.443653 cents/octave |
Mintone (58 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 9 | 7 | 12 | 11 | ] |
⟨ | 0 | -22 | -43 | -27 | -55 | -47 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0938, 186.3618]
TE Step Tunings (cents)
⟨6.23117, 8.14258]
TE Tuning Map (cents)
⟨1200.094, 1900.509, 2787.285, 3368.887, 4151.224, 4442.025]
TE Mistunings (cents)
⟨0.094, -1.446, 0.971, 0.061, -0.094, 1.498]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.930838 |
Adjusted Error |
1.642224 cents |
TE Error |
0.443792 cents/octave |
Miracle (31 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 41 | 65 | 95 | 115 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8218, 116.7551]
TE Step Tunings (cents)
⟨16.32860, 16.94232]
TE Tuning Map (cents)
⟨1200.822, 1901.352, 2785.180, 3368.955]
TE Mistunings (cents)
⟨0.822, -0.603, -1.134, 0.129]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.444032 |
Adjusted Error |
1.445553 cents |
TE Error |
0.514916 cents/octave |
Miracle (31 & 72)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | ] |
⟨ | 0 | 6 | -7 | -2 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7635, 116.7070]
TE Step Tunings (cents)
⟨2.44407, 15.62496]
TE Tuning Map (cents)
⟨1200.764, 1901.005, 2785.342, 3368.877, 4152.131]
TE Mistunings (cents)
⟨0.764, -0.950, -0.972, 0.051, 0.813]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.786247 |
Adjusted Error |
1.675473 cents |
TE Error |
0.484320 cents/octave |
Miracle (41 & 72)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 41 | 65 | 115 | ] |
⟨ | 72 | 114 | 202 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.4862, 116.8911]
TE Step Tunings (cents)
⟨12.75666, 9.40921]
TE Tuning Map (cents)
⟨1200.486, 1901.833, 3367.676]
TE Mistunings (cents)
⟨0.486, -0.122, -1.150]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.973200 |
Adjusted Error |
1.037829 cents |
TE Error |
0.369682 cents/octave |
Miracle (41 & 72)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 41 | 65 | 115 | 142 | ] |
⟨ | 72 | 114 | 202 | 249 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 1 | 3 | 2 | ] |
⟨ | 0 | 6 | -2 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4695, 116.7806]
TE Step Tunings (cents)
⟨4.91672, 13.87339]
TE Tuning Map (cents)
⟨1200.469, 1901.153, 3367.847, 4152.648]
TE Mistunings (cents)
⟨0.469, -0.802, -0.979, 1.330]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.230437 |
Adjusted Error |
1.493718 cents |
TE Error |
0.431781 cents/octave |
Miraculous (31 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | 4 | ] |
⟨ | 0 | 6 | -7 | -2 | 15 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1351, 116.7604]
TE Step Tunings (cents)
⟨13.36536, 19.16607]
TE Tuning Map (cents)
⟨1200.135, 1900.697, 2783.083, 3366.884, 4151.676, 4450.259]
TE Mistunings (cents)
⟨0.135, -1.258, -3.231, -1.941, 0.358, 9.732]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.621542 |
Adjusted Error |
4.774685 cents |
TE Error |
1.290302 cents/octave |
Mirage (72 & 31 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 2 | 0 | ] |
⟨ | 0 | 6 | -7 | -2 | 15 | 0 | ] |
⟨ | 0 | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7635, 116.7070, 4440.5277]
TE Step Tunings (cents)
⟨12.40562, 5.66341, 3.21934]
TE Tuning Map (cents)
⟨1200.764, 1901.005, 2785.342, 3368.877, 4152.131, 4440.528]
TE Mistunings (cents)
⟨0.764, -0.950, -0.972, 0.051, 0.813, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.256159 |
Adjusted Error |
1.636046 cents |
TE Error |
0.442122 cents/octave |
Mirkat (72 & 111)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 111 | 176 | 258 | 312 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨400.0278, 183.5515]
TE Step Tunings (cents)
⟨9.06572, 4.93110]
TE Tuning Map (cents)
⟨1200.083, 1901.365, 2786.198, 3369.777]
TE Mistunings (cents)
⟨0.083, -0.590, -0.116, 0.951]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.522892 |
Adjusted Error |
0.719727 cents |
TE Error |
0.256372 cents/octave |
Mirkat (72 & 183)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 183 | 290 | 425 | 514 | 633 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 2 | 1 | 2 | 9 | ] |
⟨ | 0 | 6 | 13 | 14 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0464, 183.5496]
TE Step Tunings (cents)
⟨4.77405, 4.67982]
TE Tuning Map (cents)
⟨1200.139, 1901.390, 2786.191, 3369.787, 4151.066]
TE Mistunings (cents)
⟨0.139, -0.565, -0.123, 0.961, -0.252]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.688098 |
Adjusted Error |
0.806269 cents |
TE Error |
0.233064 cents/octave |
Mirkat (72 & 111)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 111 | 176 | 258 | 312 | 384 | 411 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 2 | 1 | 2 | 9 | 1 | ] |
⟨ | 0 | 6 | 13 | 14 | 3 | 22 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0246, 183.5886]
TE Step Tunings (cents)
⟨7.64079, 5.85529]
TE Tuning Map (cents)
⟨1200.074, 1901.581, 2786.676, 3370.289, 4150.987, 4438.973]
TE Mistunings (cents)
⟨0.074, -0.374, 0.362, 1.464, -0.331, -1.554]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.911803 |
Adjusted Error |
1.113097 cents |
TE Error |
0.300801 cents/octave |
Mirkwai (31 & 72 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 152 | 241 | 353 | 427 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 0 | ] |
⟨ | 0 | 1 | 3 | 3 | ] |
⟨ | 0 | 0 | 5 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0000, 1901.7828, -583.9055]
TE Step Tunings (cents)
⟨0.53055, 4.86725, 5.48099]
TE Tuning Map (cents)
⟨1200.000, 1901.783, 2785.821, 3369.726]
TE Mistunings (cents)
⟨0.000, -0.172, -0.493, 0.900]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.211610 |
Adjusted Error |
0.561014 cents |
TE Error |
0.199837 cents/octave |
Mirwomo (31 & 41 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 6 | 2 | ] |
⟨ | 0 | 2 | 0 | -3 | 5 | ] |
⟨ | 0 | 0 | 1 | -1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7368, 350.1703, 2785.8143]
TE Step Tunings (cents)
⟨18.62232, 15.54802, -2.00341]
TE Tuning Map (cents)
⟨1200.737, 1901.077, 2785.814, 3368.096, 4152.325]
TE Mistunings (cents)
⟨0.737, -0.878, -0.499, -0.730, 1.007]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.219611 |
Adjusted Error |
1.583919 cents |
TE Error |
0.457855 cents/octave |
Misneb (53 & 74)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 74 | 117 | 172 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.2540, 113.2642]
TE Step Tunings (cents)
⟨20.22389, 1.73497]
TE Tuning Map (cents)
⟨1200.254, 1901.798, 2785.953]
TE Mistunings (cents)
⟨0.254, -0.157, -0.360]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.375404 |
Adjusted Error |
0.420442 cents |
TE Error |
0.181075 cents/octave |
Misneb (53 & 21)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 21 | 33 | 49 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 1 | 3 | ] |
⟨ | 0 | -15 | 14 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7666, 113.2131]
TE Step Tunings (cents)
⟨22.05773, 1.46224]
TE Tuning Map (cents)
⟨1199.767, 1901.103, 2784.750, 3372.874]
TE Mistunings (cents)
⟨-0.233, -0.852, -1.563, 4.048]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.526677 |
Adjusted Error |
2.380305 cents |
TE Error |
0.847882 cents/octave |
Misneb (53 & 21p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 21 | 33 | 49 | 59 | 73 | 78 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 1 | 3 | 1 | 2 | ] |
⟨ | 0 | -15 | 14 | -2 | 26 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1735, 113.3397]
TE Step Tunings (cents)
⟨20.21395, 6.13495]
TE Tuning Map (cents)
⟨1200.174, 1900.425, 2786.929, 3373.841, 4147.005, 4440.461]
TE Mistunings (cents)
⟨0.174, -1.530, 0.615, 5.015, -4.313, -0.067]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.704111 |
Adjusted Error |
3.631261 cents |
TE Error |
0.981305 cents/octave |
Misneb (53 & 74)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 53 | 84 | 123 | 196 | ] |
⟨ | 74 | 117 | 172 | 274 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 3 | 1 | 2 | ] |
⟨ | 0 | -15 | 14 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3356, 113.2823]
TE Step Tunings (cents)
⟨19.46141, 2.28218]
TE Tuning Map (cents)
⟨1200.336, 1901.773, 2786.287, 4439.752]
TE Mistunings (cents)
⟨0.336, -0.182, -0.026, -0.775]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.103025 |
Adjusted Error |
0.762661 cents |
TE Error |
0.206100 cents/octave |
Misty (12 & 99)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 99 | 157 | 230 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.8596, 96.8546]
TE Step Tunings (cents)
⟨-2.67641, 12.44137]
TE Tuning Map (cents)
⟨1199.579, 1902.443, 2786.576]
TE Mistunings (cents)
⟨-0.421, 0.488, 0.262]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.985238 |
Adjusted Error |
0.715821 cents |
TE Error |
0.308287 cents/octave |
Misty (99 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 12 | 19 | 28 | 34 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.8579, 96.9443]
TE Step Tunings (cents)
⟨12.08064, 0.29922]
TE Tuning Map (cents)
⟨1199.574, 1902.345, 2786.925, 3368.591]
TE Mistunings (cents)
⟨-0.426, 0.390, 0.611, -0.235]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.894491 |
Adjusted Error |
0.792296 cents |
TE Error |
0.282222 cents/octave |
Misty (12 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 6 | 6 | 7 | ] |
⟨ | 0 | -1 | 4 | 10 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.8730, 96.7588]
TE Step Tunings (cents)
⟨6.89339, 12.83791]
TE Tuning Map (cents)
⟨1199.619, 1902.606, 2786.273, 3366.826, 4153.734]
TE Mistunings (cents)
⟨-0.381, 0.651, -0.040, -2.000, 2.416]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.580637 |
Adjusted Error |
1.770471 cents |
TE Error |
0.511781 cents/octave |
Misty (87 & 12f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 5 | 6 | 6 | 7 | 7 | ] |
⟨ | 0 | -1 | 4 | 10 | 14 | 17 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.8894, 96.6698]
TE Step Tunings (cents)
⟨13.21016, 4.19871]
TE Tuning Map (cents)
⟨1199.668, 1902.777, 2786.015, 3366.034, 4152.603, 4442.612]
TE Mistunings (cents)
⟨-0.332, 0.822, -0.298, -2.792, 1.285, 2.084]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.011435 |
Adjusted Error |
2.049097 cents |
TE Error |
0.553744 cents/octave |
Mite (5 & 1cdd)
Equal Temperament Mappings
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 4 | ] |
⟨ | 0 | -2 | -3 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1188.5549, 238.4157]
TE Step Tunings (cents)
⟨238.41575, -3.52386]
TE Tuning Map (cents)
⟨1188.555, 1900.278, 2850.417, 3323.725]
TE Mistunings (cents)
⟨-11.445, -1.677, 64.104, -45.101]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.769936 |
Adjusted Error |
47.650693 cents |
TE Error |
16.973519 cents/octave |
Mitonic (171 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 46 | 73 | 107 | 129 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | -3 | 6 | ] |
⟨ | 0 | 17 | 35 | -21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0963, 182.4727]
TE Step Tunings (cents)
⟨6.92807, 0.33470]
TE Tuning Map (cents)
⟨1200.096, 1901.940, 2786.257, 3368.650]
TE Mistunings (cents)
⟨0.096, -0.015, -0.057, -0.176]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.863778 |
Adjusted Error |
0.165319 cents |
TE Error |
0.058888 cents/octave |
Mockingbird (8d & 12f & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | 2 | 3 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | -1 | ] |
⟨ | 0 | 0 | 1 | 3 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1193.3894, 1903.5129, 2787.5268]
TE Step Tunings (cents)
⟨8.85413, 38.40520, 44.11294]
TE Tuning Map (cents)
⟨1193.389, 1903.513, 2787.527, 3362.165, 4154.807, 4464.182]
TE Mistunings (cents)
⟨-6.611, 1.558, 1.213, -6.661, 3.489, 23.655]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.092741 |
Adjusted Error |
14.525282 cents |
TE Error |
3.925285 cents/octave |
Modus (27e & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | 4 | 2 | ] |
⟨ | 0 | 4 | 9 | -8 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.4392, 176.5276]
TE Step Tunings (cents)
⟨39.25434, 19.51028]
TE Tuning Map (cents)
⟨1196.439, 1902.550, 2785.188, 3373.536, 4158.155]
TE Mistunings (cents)
⟨-3.561, 0.595, -1.126, 4.710, 6.837]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.439222 |
Adjusted Error |
6.879912 cents |
TE Error |
1.988741 cents/octave |
Modus (27e & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 4 | 2 | 4 | ] |
⟨ | 0 | 4 | 9 | -8 | 10 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.8879, 176.4943]
TE Step Tunings (cents)
⟨38.57223, 22.20539]
TE Tuning Map (cents)
⟨1196.888, 1902.865, 2785.337, 3375.597, 4158.719, 4434.563]
TE Mistunings (cents)
⟨-3.112, 0.910, -0.977, 6.771, 7.401, -5.965]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.328370 |
Adjusted Error |
7.274057 cents |
TE Error |
1.965728 cents/octave |
Mohaha (7 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 31 | 49 | 72 | 107 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.8629, 348.6342]
TE Step Tunings (cents)
⟨9.10603, 36.71357]
TE Tuning Map (cents)
⟨1201.863, 1899.131, 2789.074, 4146.897]
TE Mistunings (cents)
⟨1.863, -2.824, 2.760, -4.421]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.231830 |
Adjusted Error |
5.384511 cents |
TE Error |
1.556473 cents/octave |
Mohajira (31 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 7 | 11 | 16 | 20 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8228, 348.6538]
TE Step Tunings (cents)
⟨38.93095, -0.86239]
TE Tuning Map (cents)
⟨1200.823, 1898.130, 2789.230, 3369.745]
TE Mistunings (cents)
⟨0.823, -3.825, 2.917, 0.919]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.674936 |
Adjusted Error |
4.015824 cents |
TE Error |
1.430465 cents/octave |
Mohajira (31 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 6 | 2 | ] |
⟨ | 0 | 2 | 8 | -11 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.1652, 348.8151]
TE Step Tunings (cents)
⟨39.37499, -2.77993]
TE Tuning Map (cents)
⟨1201.165, 1898.795, 2790.521, 3370.026, 4146.406]
TE Mistunings (cents)
⟨1.165, -3.160, 4.207, 1.200, -4.912]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.443299 |
Adjusted Error |
5.087415 cents |
TE Error |
1.470593 cents/octave |
Mohajira (31 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 6 | 2 | 4 | ] |
⟨ | 0 | 2 | 8 | -11 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4464, 348.6879]
TE Step Tunings (cents)
⟨39.92280, -5.30864]
TE Tuning Map (cents)
⟨1200.446, 1897.822, 2789.503, 3367.111, 4144.332, 4453.097]
TE Mistunings (cents)
⟨0.446, -4.133, 3.190, -1.715, -6.986, 12.570]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.247683 |
Adjusted Error |
7.534541 cents |
TE Error |
2.036121 cents/octave |
Mohajira (31 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | 26 | 29 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 1 | 0 | 6 | 2 | 4 | 7 | ] |
⟨ | 0 | 2 | 8 | -11 | 5 | -1 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0634, 348.7544]
TE Step Tunings (cents)
⟨41.15437, -10.81742]
TE Tuning Map (cents)
⟨1200.063, 1897.572, 2790.036, 3364.081, 4143.899, 4451.499, 4912.899]
TE Mistunings (cents)
⟨0.063, -4.383, 3.722, -4.745, -7.419, 10.971, 7.944]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.296774 |
Adjusted Error |
8.495999 cents |
TE Error |
2.078551 cents/octave |
Mohajira (7p & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | 29 | 30 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | 89 | 98 | 102 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 1 | 1 | 0 | 6 | 2 | 4 | 7 | 6 | ] |
⟨ | 0 | 2 | 8 | -11 | 5 | -1 | -10 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7762, 348.7453]
TE Step Tunings (cents)
⟨28.54725, 41.66439]
TE Tuning Map (cents)
⟨1199.776, 1897.267, 2789.962, 3362.459, 4143.279, 4450.360, 4910.981, 5106.186]
TE Mistunings (cents)
⟨-0.224, -4.688, 3.648, -6.366, -8.039, 9.832, 6.026, 8.673]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.194422 |
Adjusted Error |
8.912108 cents |
TE Error |
2.097990 cents/octave |
Mohamaq (7d & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 19 | 24 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | -1 | 2 | ] |
⟨ | 0 | 2 | 8 | 13 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2556, 350.3470]
TE Step Tunings (cents)
⟨40.37834, 53.91807]
TE Tuning Map (cents)
⟨1199.256, 1899.950, 2802.776, 3355.256, 4150.246]
TE Mistunings (cents)
⟨-0.744, -2.005, 16.463, -13.570, -1.072]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.658689 |
Adjusted Error |
13.477112 cents |
TE Error |
3.895759 cents/octave |
Mohamaq (7d & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 19 | 24 | 26 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | -1 | 2 | 4 | ] |
⟨ | 0 | 2 | 8 | 13 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.6632, 350.3542]
TE Step Tunings (cents)
⟨37.29464, 55.15298]
TE Tuning Map (cents)
⟨1198.663, 1899.372, 2802.833, 3355.941, 4149.097, 4444.298]
TE Mistunings (cents)
⟨-1.337, -2.583, 16.520, -12.885, -2.221, 3.771]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.764891 |
Adjusted Error |
13.305948 cents |
TE Error |
3.595775 cents/octave |
Mohoho (7 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 24 | 26 | ] |
⟨ | 24 | 38 | 56 | 83 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 2 | 4 | ] |
⟨ | 0 | 2 | 8 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9040, 348.8876]
TE Step Tunings (cents)
⟨26.02541, 42.40526]
TE Tuning Map (cents)
⟨1199.904, 1897.679, 2791.101, 4144.246, 4450.729]
TE Mistunings (cents)
⟨-0.096, -4.276, 4.787, -7.072, 10.201]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.319550 |
Adjusted Error |
7.990803 cents |
TE Error |
2.159420 cents/octave |
Momentous (31 & 41 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 3 | 5 | 7 | ] |
⟨ | 0 | 3 | 0 | -1 | 4 | -5 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0666, 234.1859, 2786.7536]
TE Step Tunings (cents)
⟨5.65982, 11.06844, 12.40883]
TE Tuning Map (cents)
⟨1200.067, 1902.624, 2786.754, 3366.014, 4150.323, 4442.783]
TE Mistunings (cents)
⟨0.067, 0.669, 0.440, -2.812, -0.995, 2.255]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.248675 |
Adjusted Error |
1.955859 cents |
TE Error |
0.528548 cents/octave |
Monkey (41 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 7 | 11 | 16 | 20 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.8022, 175.7763]
TE Step Tunings (cents)
⟨29.63158, -2.01322]
TE Tuning Map (cents)
⟨1200.802, 1903.907, 2782.788, 3367.367]
TE Mistunings (cents)
⟨0.802, 1.952, -3.525, -1.459]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.521239 |
Adjusted Error |
3.054622 cents |
TE Error |
1.088078 cents/octave |
Monkey (41 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | 5 | 2 | ] |
⟨ | 0 | 4 | 9 | -15 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4060, 175.6297]
TE Step Tunings (cents)
⟨29.00217, 1.61670]
TE Tuning Map (cents)
⟨1200.406, 1902.925, 2781.074, 3367.584, 4157.109]
TE Mistunings (cents)
⟨0.406, 0.970, -5.240, -1.242, 5.791]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.320969 |
Adjusted Error |
4.545097 cents |
TE Error |
1.313828 cents/octave |
Monkey (41 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 5 | 2 | 4 | ] |
⟨ | 0 | 4 | 9 | -15 | 10 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9326, 175.6125]
TE Step Tunings (cents)
⟨29.35493, -0.51710]
TE Tuning Map (cents)
⟨1199.933, 1902.383, 2780.445, 3365.475, 4155.990, 4448.505]
TE Mistunings (cents)
⟨-0.067, 0.428, -5.869, -3.350, 4.672, 7.978]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.073049 |
Adjusted Error |
5.725066 cents |
TE Error |
1.547131 cents/octave |
Monocerus (58 & 38d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 6 | 8 | 9 | ] |
⟨ | 0 | -8 | -13 | -23 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8236, 62.2738]
TE Step Tunings (cents)
⟨16.44523, 6.46906]
TE Tuning Map (cents)
⟨1199.647, 1901.104, 2789.382, 3366.292, 4152.937]
TE Mistunings (cents)
⟨-0.353, -0.851, 3.069, -2.534, 1.619]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.378277 |
Adjusted Error |
2.764568 cents |
TE Error |
0.799139 cents/octave |
Monocerus (58 & 38df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 6 | 8 | 9 | 10 | ] |
⟨ | 0 | -8 | -13 | -23 | -20 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8281, 62.2834]
TE Step Tunings (cents)
⟨16.27153, 6.73441]
TE Tuning Map (cents)
⟨1199.656, 1901.045, 2789.284, 3366.106, 4152.785, 4441.196]
TE Mistunings (cents)
⟨-0.344, -0.910, 2.971, -2.719, 1.467, 0.668]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.096072 |
Adjusted Error |
2.717270 cents |
TE Error |
0.734310 cents/octave |
Monzismic (1171 & 1783)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 1171 | 1856 | 2719 | ] |
⟨ | 1783 | 2826 | 4140 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9975, 249.0179]
TE Step Tunings (cents)
⟨0.18166, 0.55371]
TE Tuning Map (cents)
⟨1199.998, 1901.959, 2786.313]
TE Mistunings (cents)
⟨-0.002, 0.004, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.232806 |
Adjusted Error |
0.004909 cents |
TE Error |
0.002114 cents/octave |
Morfil (31 & 60e & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 60 | 95 | 139 | 168 | 207 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | -3 | -2 | ] |
⟨ | 0 | 1 | 2 | 6 | 5 | ] |
⟨ | 0 | 0 | 3 | 6 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5944, 1901.8399, -739.7475]
TE Step Tunings (cents)
⟨7.98846, 1.17681, 9.38663]
TE Tuning Map (cents)
⟨1200.594, 1901.840, 2785.032, 3370.771, 4149.021]
TE Mistunings (cents)
⟨0.594, -0.115, -1.282, 1.945, -2.297]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.255667 |
Adjusted Error |
1.947479 cents |
TE Error |
0.562948 cents/octave |
Mosura (31 & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 3 | -1 | ] |
⟨ | 0 | 3 | 12 | -1 | 23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7758, 232.5689]
TE Step Tunings (cents)
⟨37.93114, 4.98207]
TE Tuning Map (cents)
⟨1200.776, 1898.483, 2790.827, 3369.759, 4148.310]
TE Mistunings (cents)
⟨0.776, -3.472, 4.514, 0.933, -3.008]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.789604 |
Adjusted Error |
4.903795 cents |
TE Error |
1.417515 cents/octave |
Mosura (31 & 36p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 36 | 57 | 84 | 101 | 125 | 133 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 3 | -1 | 7 | ] |
⟨ | 0 | 3 | 12 | -1 | 23 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9460, 232.6297]
TE Step Tunings (cents)
⟨24.95451, 11.84323]
TE Tuning Map (cents)
⟨1199.946, 1897.835, 2791.556, 3367.208, 4150.536, 4444.918]
TE Mistunings (cents)
⟨-0.054, -4.120, 5.242, -1.617, -0.782, 4.390]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.718129 |
Adjusted Error |
5.580954 cents |
TE Error |
1.508187 cents/octave |
Mother (5 & 2p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1187.9337, 473.6206]
TE Step Tunings (cents)
⟨240.69254, -7.76449]
TE Tuning Map (cents)
⟨1187.934, 1902.247, 2849.488, 3323.109]
TE Mistunings (cents)
⟨-12.066, 0.292, 63.174, -45.717]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.511426 |
Adjusted Error |
47.623435 cents |
TE Error |
16.963810 cents/octave |
Mothra (31 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 3 | 5 | ] |
⟨ | 0 | 3 | 12 | -1 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.4058, 232.3025]
TE Step Tunings (cents)
⟨32.83635, 7.05689]
TE Tuning Map (cents)
⟨1201.406, 1898.313, 2787.630, 3371.915, 4148.609]
TE Mistunings (cents)
⟨1.406, -3.642, 1.316, 3.089, -2.709]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.523244 |
Adjusted Error |
4.743526 cents |
TE Error |
1.371187 cents/octave |
Mothra (31 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 3 | 5 | 1 | ] |
⟨ | 0 | 3 | 12 | -1 | -8 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.1135, 232.0260]
TE Step Tunings (cents)
⟨27.10860, 13.87488]
TE Tuning Map (cents)
⟨1201.114, 1897.192, 2784.312, 3371.315, 4149.360, 4449.478]
TE Mistunings (cents)
⟨1.114, -4.763, -2.002, 2.489, -1.958, 8.950]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.545199 |
Adjusted Error |
6.404287 cents |
TE Error |
1.730683 cents/octave |
Mothwelltri (9 & 4)
Equal Temperament Mappings
| 2 | 7/3 | 11 | |
[ ⟨ | 9 | 11 | 31 | ] |
⟨ | 4 | 5 | 14 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.9278, 268.7157]
TE Step Tunings (cents)
⟨126.06477, 16.58622]
TE Tuning Map (cents)
⟨1200.928, 1469.644, 4140.215]
TE Mistunings (cents)
⟨0.928, 2.773, -11.103]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
0.343089 |
Adjusted Error |
8.065369 cents |
TE Error |
2.331414 cents/octave |
Mowgli (19 & 66c)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 66 | 105 | 154 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0000, 126.7237]
TE Step Tunings (cents)
⟨36.23401, 7.75082]
TE Tuning Map (cents)
⟨1200.000, 1900.856, 2787.922]
TE Mistunings (cents)
⟨-0.000, -1.099, 1.608]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.463926 |
Adjusted Error |
1.313917 cents |
TE Error |
0.565873 cents/octave |
Muggles (19 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 16 | 25 | 37 | 45 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.9778, 379.7340]
TE Step Tunings (cents)
⟨55.85431, 8.92162]
TE Tuning Map (cents)
⟨1203.978, 1898.670, 2787.690, 3361.751]
TE Mistunings (cents)
⟨3.978, -3.285, 1.376, -7.075]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.996906 |
Adjusted Error |
7.269475 cents |
TE Error |
2.589439 cents/octave |
Muggles (19p & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | 5 | 0 | ] |
⟨ | 0 | 5 | 1 | -7 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.1288, 378.7089]
TE Step Tunings (cents)
⟨43.69825, 23.30388]
TE Tuning Map (cents)
⟨1203.129, 1893.544, 2784.967, 3364.682, 4165.798]
TE Mistunings (cents)
⟨3.129, -8.411, -1.347, -4.144, 14.480]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.130593 |
Adjusted Error |
11.780681 cents |
TE Error |
3.405381 cents/octave |
Muggles (19p & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | 5 | 0 | 4 | ] |
⟨ | 0 | 5 | 1 | -7 | 11 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.4797, 378.7481]
TE Step Tunings (cents)
⟨42.57067, 24.66481]
TE Tuning Map (cents)
⟨1203.480, 1893.740, 2785.708, 3366.162, 4166.229, 4435.171]
TE Mistunings (cents)
⟨3.480, -8.215, -0.606, -2.664, 14.911, -5.357]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.988790 |
Adjusted Error |
11.761392 cents |
TE Error |
3.178377 cents/octave |
Murakuc (31 & 42ef)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 42 | 67 | 98 | 118 | 146 | 156 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -7 | -4 | 1 | -11 | 1 | ] |
⟨ | 0 | 19 | 14 | 4 | 32 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.6663, 541.6968]
TE Step Tunings (cents)
⟨23.39207, 11.27410]
TE Tuning Map (cents)
⟨1198.666, 1901.576, 2789.091, 3365.454, 4148.970, 4448.847]
TE Mistunings (cents)
⟨-1.334, -0.379, 2.777, -3.372, -2.348, 8.320]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.423255 |
Adjusted Error |
4.830638 cents |
TE Error |
1.305423 cents/octave |
Mutt (171 & 84)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 84 | 133 | 195 | 236 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | 5 | 7 | 8 | ] |
⟨ | 0 | -7 | -1 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0352, 14.0377]
TE Step Tunings (cents)
⟨6.97898, 0.07975]
TE Tuning Map (cents)
⟨1200.105, 1901.912, 2786.208, 3368.734]
TE Mistunings (cents)
⟨0.105, -0.043, -0.105, -0.092]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.231230 |
Adjusted Error |
0.171921 cents |
TE Error |
0.061240 cents/octave |
Mutt (87 & 84p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 84 | 133 | 195 | 236 | 291 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 8 | 10 | ] |
⟨ | 0 | -7 | -1 | 12 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.9785, 13.9790]
TE Step Tunings (cents)
⟨8.56596, 5.41306]
TE Tuning Map (cents)
⟨1199.936, 1902.039, 2785.871, 3367.576, 4153.554]
TE Mistunings (cents)
⟨-0.064, 0.084, -0.443, -1.249, 2.236]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.170244 |
Adjusted Error |
1.256353 cents |
TE Error |
0.363167 cents/octave |
Mutt (87 & 84)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 84 | 133 | 195 | 236 | 291 | 311 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 5 | 7 | 8 | 10 | 11 | ] |
⟨ | 0 | -7 | -1 | 12 | 11 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.9612, 13.9768]
TE Step Tunings (cents)
⟨8.61131, 5.36548]
TE Tuning Map (cents)
⟨1199.884, 1901.969, 2785.752, 3367.411, 4153.357, 4441.504]
TE Mistunings (cents)
⟨-0.116, 0.014, -0.562, -1.415, 2.039, 0.976]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.377859 |
Adjusted Error |
1.302250 cents |
TE Error |
0.351918 cents/octave |
Myna (31 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.3441, 309.9764]
TE Step Tunings (cents)
⟨26.04645, 14.51497]
TE Tuning Map (cents)
⟨1199.344, 1900.420, 2789.787, 3369.179]
TE Mistunings (cents)
⟨-0.656, -1.535, 3.474, 0.353]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.284905 |
Adjusted Error |
2.671588 cents |
TE Error |
0.951639 cents/octave |
Myna (31 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | 0 | 1 | -3 | ] |
⟨ | 0 | 10 | 9 | 7 | 25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3471, 309.9755]
TE Step Tunings (cents)
⟨26.09050, 14.46450]
TE Tuning Map (cents)
⟨1199.347, 1900.408, 2789.780, 3369.176, 4151.347]
TE Mistunings (cents)
⟨-0.653, -1.547, 3.466, 0.350, 0.029]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.610142 |
Adjusted Error |
2.944628 cents |
TE Error |
0.851188 cents/octave |
Myna (31 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | 0 | 1 | -3 | 5 | ] |
⟨ | 0 | 10 | 9 | 7 | 25 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.6551, 309.9284]
TE Step Tunings (cents)
⟨3.98175, 18.53829]
TE Tuning Map (cents)
⟨1198.655, 1900.629, 2789.355, 3368.154, 4152.244, 4443.634]
TE Mistunings (cents)
⟨-1.345, -1.326, 3.042, -0.672, 0.926, 3.106]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.105132 |
Adjusted Error |
3.397755 cents |
TE Error |
0.918203 cents/octave |
Myno (31 & 4p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 4 | 6 | 9 | 11 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | 0 | 1 | 5 | ] |
⟨ | 0 | 10 | 9 | 7 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0743, 310.0145]
TE Step Tunings (cents)
⟨38.98359, -1.85428]
TE Tuning Map (cents)
⟨1201.074, 1899.070, 2790.130, 3371.176, 4145.285]
TE Mistunings (cents)
⟨1.074, -2.885, 3.816, 2.350, -6.033]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.829442 |
Adjusted Error |
5.110184 cents |
TE Error |
1.477174 cents/octave |
Mystery (58 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 29 | 46 | 68 | 82 | 101 | ] |
⟨ | 0 | 0 | -1 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨41.3637, 25.3233]
TE Step Tunings (cents)
⟨6.75767, 9.28280]
TE Tuning Map (cents)
⟨1199.548, 1902.731, 2787.410, 3366.502, 4152.413]
TE Mistunings (cents)
⟨-0.452, 0.776, 1.096, -2.324, 1.095]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.260365 |
Adjusted Error |
1.864543 cents |
TE Error |
0.538974 cents/octave |
Mystery (58 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 29 | 46 | 68 | 82 | 101 | 108 | ] |
⟨ | 0 | 0 | -1 | -1 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨41.3623, 25.4286]
TE Step Tunings (cents)
⟨6.43894, 9.49481]
TE Tuning Map (cents)
⟨1199.507, 1902.667, 2787.209, 3366.282, 4152.166, 4441.702]
TE Mistunings (cents)
⟨-0.493, 0.712, 0.896, -2.544, 0.848, 1.175]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.838940 |
Adjusted Error |
1.896064 cents |
TE Error |
0.512389 cents/octave |
Na"Naa' (46 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | 237 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 2 | 3 | 5 | 7 | 9 | 10 | 8 | ] |
⟨ | 0 | 1 | -2 | -8 | -12 | -15 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.6276, 103.7477]
TE Step Tunings (cents)
⟨10.54526, 12.31333]
TE Tuning Map (cents)
⟨1199.255, 1902.631, 2790.643, 3367.412, 4151.676, 4440.061, 4900.769]
TE Mistunings (cents)
⟨-0.745, 0.676, 4.329, -1.414, 0.358, -0.467, -4.187]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.584564 |
Adjusted Error |
3.636913 cents |
TE Error |
0.889773 cents/octave |
Na"Naa' (46 & 58i)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 23 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | 208 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | 237 | 263 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 23 | |
[ ⟨ | 2 | 3 | 5 | 7 | 9 | 10 | 8 | 12 | ] |
⟨ | 0 | 1 | -2 | -8 | -12 | -15 | 1 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.6297, 103.8059]
TE Step Tunings (cents)
⟨12.22326, 10.98257]
TE Tuning Map (cents)
⟨1199.259, 1902.695, 2790.536, 3366.960, 4150.996, 4439.208, 4900.843, 5430.855]
TE Mistunings (cents)
⟨-0.741, 0.740, 4.223, -1.866, -0.322, -1.320, -4.112, 2.581]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.676524 |
Adjusted Error |
3.913983 cents |
TE Error |
0.865244 cents/octave |
Namaka (58 & 87 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 10 | -6 | -1 | ] |
⟨ | 0 | 2 | 0 | -12 | 9 | 3 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7076, 951.2770, 2786.8466]
TE Step Tunings (cents)
⟨5.03219, 6.63287, 6.24115]
TE Tuning Map (cents)
⟨1199.708, 1902.554, 2786.847, 3368.598, 4150.094, 4440.970]
TE Mistunings (cents)
⟨-0.292, 0.599, 0.533, -0.228, -1.224, 0.442]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.339177 |
Adjusted Error |
0.987187 cents |
TE Error |
0.266776 cents/octave |
Namo (17 & 24)
Equal Temperament Mappings
| 2 | 3 | 11 | 13 | |
[ ⟨ | 17 | 27 | 59 | 63 | ] |
⟨ | 24 | 38 | 83 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 11 | 13 | |
[ ⟨ | 1 | 1 | 2 | 4 | ] |
⟨ | 0 | 2 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8578, 351.1531]
TE Step Tunings (cents)
⟨35.66873, 24.68706]
TE Tuning Map (cents)
⟨1198.858, 1901.164, 4153.481, 4444.278]
TE Mistunings (cents)
⟨-1.142, -0.791, 2.163, 3.751]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.753978 |
Adjusted Error |
3.189623 cents |
TE Error |
0.861958 cents/octave |
Nautilus (15 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 14 | 22 | 32 | 39 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | -6 | -10 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.1994, 82.6567]
TE Step Tunings (cents)
⟨45.00607, 37.65059]
TE Tuning Map (cents)
⟨1202.199, 1908.459, 2780.032, 3358.628]
TE Mistunings (cents)
⟨2.199, 6.504, -6.282, -10.198]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.802224 |
Adjusted Error |
9.117511 cents |
TE Error |
3.247723 cents/octave |
Nautilus (15 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -6 | -10 | -3 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.4141, 82.6698]
TE Step Tunings (cents)
⟨45.03693, 37.63287]
TE Tuning Map (cents)
⟨1202.414, 1908.809, 2780.544, 3359.233, 4148.298]
TE Mistunings (cents)
⟨2.414, 6.854, -5.769, -9.593, -3.020]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.611696 |
Adjusted Error |
10.161904 cents |
TE Error |
2.937449 cents/octave |
Nautilus (15 & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 5 | ] |
⟨ | 0 | -6 | -10 | -3 | -8 | -19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.4506, 82.6987]
TE Step Tunings (cents)
⟨44.66827, 38.03047]
TE Tuning Map (cents)
⟨1202.451, 1908.709, 2780.364, 3359.255, 4148.212, 4440.977]
TE Mistunings (cents)
⟨2.451, 6.754, -5.949, -9.570, -3.106, 0.449]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.811081 |
Adjusted Error |
9.925853 cents |
TE Error |
2.682344 cents/octave |
Necromancy (41 & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | 6 | 11 | ] |
⟨ | 0 | 5 | 1 | 12 | -8 | -23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9740, 380.7791]
TE Step Tunings (cents)
⟨22.67818, 12.28039]
TE Tuning Map (cents)
⟨1199.974, 1903.895, 2780.727, 3369.375, 4153.611, 4441.795]
TE Mistunings (cents)
⟨-0.026, 1.940, -5.587, 0.549, 2.293, 1.268]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.471721 |
Adjusted Error |
4.241685 cents |
TE Error |
1.146265 cents/octave |
Negra (19 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 70 | ] |
⟨ | 10 | 16 | 23 | 28 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 1 | 2 | 2 | 3 | 4 | ] |
⟨ | 0 | -4 | 3 | -2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.7212, 125.9569]
TE Step Tunings (cents)
⟨55.84757, 14.26174]
TE Tuning Map (cents)
⟨1203.721, 1903.615, 2785.313, 3359.250, 4437.014]
TE Mistunings (cents)
⟨3.721, 1.660, -1.001, -9.576, -3.514]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.235962 |
Adjusted Error |
8.704564 cents |
TE Error |
2.352305 cents/octave |
Negri (19 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 10 | 16 | 23 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.3475, 126.0009]
TE Step Tunings (cents)
⟨57.66160, 10.67771]
TE Tuning Map (cents)
⟨1202.347, 1900.691, 2782.698]
TE Mistunings (cents)
⟨2.347, -1.264, -3.616]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.581498 |
Adjusted Error |
3.924823 cents |
TE Error |
1.690329 cents/octave |
Negri (19 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 10 | 16 | 23 | 28 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.5032, 125.9747]
TE Step Tunings (cents)
⟨56.24356, 13.48755]
TE Tuning Map (cents)
⟨1203.503, 1903.108, 2784.930, 3358.560]
TE Mistunings (cents)
⟨3.503, 1.153, -1.383, -10.266]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.374493 |
Adjusted Error |
7.229649 cents |
TE Error |
2.575253 cents/octave |
Negri (9 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 3 | 4 | ] |
⟨ | 0 | -4 | 3 | -2 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.1813, 126.7042]
TE Step Tunings (cents)
⟨64.86087, 61.84335]
TE Tuning Map (cents)
⟨1202.181, 1897.546, 2784.475, 3353.136, 4175.204]
TE Mistunings (cents)
⟨2.181, -4.409, -1.838, -15.690, 23.886]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.288952 |
Adjusted Error |
14.842200 cents |
TE Error |
4.290358 cents/octave |
Negri (9 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 3 | 4 | 4 | ] |
⟨ | 0 | -4 | 3 | -2 | -5 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.6876, 126.7143]
TE Step Tunings (cents)
⟨64.45527, 62.25902]
TE Tuning Map (cents)
⟨1202.688, 1898.518, 2785.518, 3354.634, 4177.179, 4430.608]
TE Mistunings (cents)
⟨2.688, -3.437, -0.796, -14.192, 25.861, -9.920]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.177188 |
Adjusted Error |
15.157330 cents |
TE Error |
4.096089 cents/octave |
Negric (9 & 10e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 10 | 16 | 23 | 28 | 34 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 3 | 3 | ] |
⟨ | 0 | -4 | 3 | -2 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1205.8628, 127.6599]
TE Step Tunings (cents)
⟨70.73648, 56.92345]
TE Tuning Map (cents)
⟨1205.863, 1901.086, 2794.705, 3362.269, 4128.228]
TE Mistunings (cents)
⟨5.863, -0.869, 8.392, -6.557, -23.090]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.390254 |
Adjusted Error |
15.295152 cents |
TE Error |
4.421291 cents/octave |
Negric (9 & 19p & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 3 | 0 | 4 | ] |
⟨ | 0 | 4 | -3 | 2 | 0 | 3 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.7212, -125.9569, 4151.3179]
TE Step Tunings (cents)
⟨-14.26174, 36.32685, 33.78246]
TE Tuning Map (cents)
⟨1203.721, 1903.615, 2785.313, 3359.250, 4151.318, 4437.014]
TE Mistunings (cents)
⟨3.721, 1.660, -1.001, -9.576, 0.000, -3.514]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.121547 |
Adjusted Error |
7.946144 cents |
TE Error |
2.147351 cents/octave |
Negric (9 & 10e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 10 | 16 | 23 | 28 | 34 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -4 | 3 | -2 | 4 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1205.8652, 127.6594]
TE Step Tunings (cents)
⟨70.72847, 56.93090]
TE Tuning Map (cents)
⟨1205.865, 1901.093, 2794.708, 3362.277, 4128.233, 4440.483]
TE Mistunings (cents)
⟨5.865, -0.862, 8.395, -6.549, -23.085, -0.045]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.292031 |
Adjusted Error |
14.935239 cents |
TE Error |
4.036071 cents/octave |
Negril (19p & 10e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 10 | 16 | 23 | 28 | 34 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 3 | 2 | ] |
⟨ | 0 | -4 | 3 | -2 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.7369, 125.0520]
TE Step Tunings (cents)
⟨47.78358, 29.48489]
TE Tuning Map (cents)
⟨1202.737, 1905.266, 2780.630, 3358.107, 4156.202]
TE Mistunings (cents)
⟨2.737, 3.311, -5.684, -10.719, 4.884]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.187681 |
Adjusted Error |
9.076449 cents |
TE Error |
2.623682 cents/octave |
Negril (19p & 10e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 10 | 16 | 23 | 28 | 34 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 3 | 2 | 4 | ] |
⟨ | 0 | -4 | 3 | -2 | 14 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.9617, 125.0235]
TE Step Tunings (cents)
⟨47.27347, 30.47658]
TE Tuning Map (cents)
⟨1202.962, 1905.829, 2780.994, 3358.838, 4156.253, 4436.776]
TE Mistunings (cents)
⟨2.962, 3.874, -5.320, -9.988, 4.935, -3.751]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.048494 |
Adjusted Error |
9.028371 cents |
TE Error |
2.439810 cents/octave |
Negroni (10p & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 3 | 5 | ] |
⟨ | 0 | -4 | 3 | -2 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.5079, 124.9028]
TE Step Tunings (cents)
⟨33.86359, 45.51958]
TE Tuning Map (cents)
⟨1203.508, 1907.405, 2781.724, 3360.718, 4143.998]
TE Mistunings (cents)
⟨3.508, 5.450, -4.590, -8.108, -7.320]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.966997 |
Adjusted Error |
9.888528 cents |
TE Error |
2.858426 cents/octave |
Negroni (10p & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 3 | 5 | 4 | ] |
⟨ | 0 | -4 | 3 | -2 | -15 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.5696, 124.9153]
TE Step Tunings (cents)
⟨33.74848, 45.58341]
TE Tuning Map (cents)
⟨1203.570, 1907.478, 2781.885, 3360.878, 4144.119, 4439.533]
TE Mistunings (cents)
⟨3.570, 5.523, -4.429, -7.948, -7.199, -0.995]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.803131 |
Adjusted Error |
9.666167 cents |
TE Error |
2.612167 cents/octave |
Neominor (72 & 89)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 89 | 141 | 207 | 250 | 308 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 12 | 8 | 7 | ] |
⟨ | 0 | -6 | -41 | -22 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3471, 283.3578]
TE Step Tunings (cents)
⟨11.55588, 4.13847]
TE Tuning Map (cents)
⟨1200.347, 1900.894, 2786.495, 3368.905, 4152.063]
TE Mistunings (cents)
⟨0.347, -1.061, 0.181, 0.079, 0.745]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.003820 |
Adjusted Error |
1.219608 cents |
TE Error |
0.352546 cents/octave |
Neominor (72 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 12 | 8 | 7 | 7 | ] |
⟨ | 0 | -6 | -41 | -22 | -15 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6892, 283.4566]
TE Step Tunings (cents)
⟨16.00470, 2.84417]
TE Tuning Map (cents)
⟨1200.689, 1901.328, 2786.552, 3369.469, 4152.976, 4436.433]
TE Mistunings (cents)
⟨0.689, -0.627, 0.238, 0.644, 1.658, -4.095]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.587493 |
Adjusted Error |
2.214485 cents |
TE Error |
0.598438 cents/octave |
Neptune (171 & 68)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 68 | 108 | 158 | 191 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 21 | 13 | 13 | ] |
⟨ | 0 | -40 | -22 | -21 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0660, 582.4845]
TE Step Tunings (cents)
⟨6.76498, 0.63609]
TE Tuning Map (cents)
⟨1200.066, 1902.008, 2786.200, 3368.684]
TE Mistunings (cents)
⟨0.066, 0.053, -0.114, -0.141]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.186369 |
Adjusted Error |
0.143173 cents |
TE Error |
0.050999 cents/octave |
Nessafof (99 & 183)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 183 | 290 | 425 | 514 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.9024, 157.4419]
TE Step Tunings (cents)
⟨6.29629, 3.14959]
TE Tuning Map (cents)
⟨1199.707, 1901.898, 2786.721, 3369.256]
TE Mistunings (cents)
⟨-0.293, -0.057, 0.407, 0.430]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.634744 |
Adjusted Error |
0.527788 cents |
TE Error |
0.188002 cents/octave |
Nestoria (53 & 65)
Equal Temperament Mappings
| 2 | 3 | 5 | 19 | |
[ ⟨ | 53 | 84 | 123 | 225 | ] |
⟨ | 65 | 103 | 151 | 276 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 19 | |
[ ⟨ | 1 | 2 | -1 | 3 | ] |
⟨ | 0 | -1 | 8 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2252, 498.3475]
TE Step Tunings (cents)
⟨13.49588, 7.46067]
TE Tuning Map (cents)
⟨1200.225, 1902.103, 2786.555, 5095.718]
TE Mistunings (cents)
⟨0.225, 0.148, 0.241, -1.795]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.554447 |
Adjusted Error |
1.059308 cents |
TE Error |
0.249371 cents/octave |
Neusec (190 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 190 | 301 | 441 | 533 | 657 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 11 | 15 | 19 | 15 | ] |
⟨ | 0 | -31 | -41 | -53 | -32 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0382, 151.5570]
TE Step Tunings (cents)
⟨3.18409, 3.00555]
TE Tuning Map (cents)
⟨1200.076, 1902.154, 2786.737, 3368.207, 4150.750]
TE Mistunings (cents)
⟨0.076, 0.199, 0.424, -0.619, -0.568]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
15.027367 |
Adjusted Error |
0.558984 cents |
TE Error |
0.161583 cents/octave |
Neusec (198 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 198 | 314 | 460 | 556 | 685 | 733 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 11 | 15 | 19 | 15 | 17 | ] |
⟨ | 0 | -31 | -41 | -53 | -32 | -38 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0034, 151.5461]
TE Step Tunings (cents)
⟨3.20403, 2.97689]
TE Tuning Map (cents)
⟨1200.007, 1902.109, 2786.662, 3368.123, 4150.577, 4441.307]
TE Mistunings (cents)
⟨0.007, 0.154, 0.348, -0.703, -0.741, 0.779]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.876683 |
Adjusted Error |
0.649803 cents |
TE Error |
0.175602 cents/octave |
Neutral (24 & 17)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 24 | 38 | 83 | ] |
⟨ | 17 | 27 | 59 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0639, 350.5440]
TE Step Tunings (cents)
⟨41.07083, 12.60964]
TE Tuning Map (cents)
⟨1200.064, 1901.152, 4152.848]
TE Mistunings (cents)
⟨0.064, -0.803, 1.530]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.642436 |
Adjusted Error |
1.349317 cents |
TE Error |
0.390040 cents/octave |
Newspeak (31 & 53e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 53 | 84 | 123 | 149 | 184 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 3 | 1 | -4 | ] |
⟨ | 0 | 7 | -3 | 8 | 33 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2102, 271.3360]
TE Step Tunings (cents)
⟨21.71355, 9.94510]
TE Tuning Map (cents)
⟨1200.210, 1899.352, 2786.623, 3370.898, 4153.248]
TE Mistunings (cents)
⟨0.210, -2.603, 0.309, 2.072, 1.930]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.798235 |
Adjusted Error |
2.941519 cents |
TE Error |
0.850290 cents/octave |
Newt (270 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 41 | 65 | 95 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 19 | 11 | ] |
⟨ | 0 | 2 | -57 | -28 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9316, 351.0932]
TE Step Tunings (cents)
⟨4.35876, 0.56257]
TE Tuning Map (cents)
⟨1199.932, 1902.118, 2786.389, 3368.638]
TE Mistunings (cents)
⟨-0.068, 0.163, 0.075, -0.187]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.334220 |
Adjusted Error |
0.202238 cents |
TE Error |
0.072039 cents/octave |
Newt (270 & 311)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 311 | 493 | 722 | 873 | 1076 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 19 | 11 | -10 | ] |
⟨ | 0 | 2 | -57 | -28 | 46 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9603, 351.1038]
TE Step Tunings (cents)
⟨3.12136, 1.14853]
TE Tuning Map (cents)
⟨1199.960, 1902.168, 2786.332, 3368.658, 4151.170]
TE Mistunings (cents)
⟨-0.040, 0.213, 0.018, -0.167, -0.148]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.655870 |
Adjusted Error |
0.244958 cents |
TE Error |
0.070809 cents/octave |
Newt (270 & 311)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 311 | 493 | 722 | 873 | 1076 | 1151 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 19 | 11 | -10 | -20 | ] |
⟨ | 0 | 2 | -57 | -28 | 46 | 81 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9747, 351.1094]
TE Step Tunings (cents)
⟨2.68140, 1.53053]
TE Tuning Map (cents)
⟨1199.975, 1902.194, 2786.285, 3368.659, 4151.284, 4440.366]
TE Mistunings (cents)
⟨-0.025, 0.239, -0.029, -0.167, -0.033, -0.162]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
15.050420 |
Adjusted Error |
0.257138 cents |
TE Error |
0.069488 cents/octave |
Nickel (12 & 9 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 2 | -2 | ] |
⟨ | 0 | 1 | 0 | 2 | 2 | ] |
⟨ | 0 | 0 | 1 | -1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8916, 1887.0925, 2789.3015]
TE Step Tunings (cents)
⟨58.33734, 36.49818, 24.33714]
TE Tuning Map (cents)
⟨1198.892, 1887.092, 2789.301, 3382.667, 4165.703]
TE Mistunings (cents)
⟨-1.108, -14.863, 2.988, 13.841, 14.385]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.073288 |
Adjusted Error |
17.802756 cents |
TE Error |
5.146151 cents/octave |
Nickel (9 & 7p & 12f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 2 | -2 | -1 | ] |
⟨ | 0 | 1 | 0 | 2 | 2 | 3 | ] |
⟨ | 0 | 0 | 1 | -1 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7458, 1884.6054, 2789.6651]
TE Step Tunings (cents)
⟨50.22650, 29.22497, 45.26104]
TE Tuning Map (cents)
⟨1199.746, 1884.605, 2789.665, 3379.037, 4159.384, 4454.070]
TE Mistunings (cents)
⟨-0.254, -17.350, 3.351, 10.211, 8.066, 13.543]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.070829 |
Adjusted Error |
18.749238 cents |
TE Error |
5.066760 cents/octave |
Nightingale (12f & 15 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | -5 | -4 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | -1 | ] |
⟨ | 0 | 0 | 1 | 3 | 5 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1670, 1899.4669, 2788.5457]
TE Step Tunings (cents)
⟨32.93772, 8.65395, 35.53184]
TE Tuning Map (cents)
⟨1200.167, 1899.467, 2788.546, 3366.536, 4142.960, 4454.048]
TE Mistunings (cents)
⟨0.167, -2.488, 2.232, -2.290, -8.358, 13.520]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.129227 |
Adjusted Error |
7.287177 cents |
TE Error |
1.969273 cents/octave |
Niner (27 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 27 | 43 | 63 | 76 | ] |
⟨ | 9 | 14 | 21 | 25 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 9 | 14 | 21 | 25 | ] |
⟨ | 0 | 1 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.0290, 40.4081]
TE Step Tunings (cents)
⟨40.40807, 11.80477]
TE Tuning Map (cents)
⟨1197.261, 1902.814, 2793.608, 3366.132]
TE Mistunings (cents)
⟨-2.739, 0.859, 7.295, -2.694]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.392347 |
Adjusted Error |
6.051717 cents |
TE Error |
2.155665 cents/octave |
Niner (9 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 0 | 1 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨132.9580, 39.9461]
TE Step Tunings (cents)
⟨13.11970, 39.94611]
TE Tuning Map (cents)
⟨1196.622, 1901.358, 2792.119, 3363.897, 4161.645]
TE Mistunings (cents)
⟨-3.378, -0.597, 5.805, -4.929, 10.327]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.146353 |
Adjusted Error |
8.444842 cents |
TE Error |
2.441107 cents/octave |
Niner (9 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 0 | 1 | 0 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.0180, 40.1267]
TE Step Tunings (cents)
⟨12.63781, 40.12672]
TE Tuning Map (cents)
⟨1197.162, 1902.378, 2793.377, 3365.576, 4163.684, 4429.719]
TE Mistunings (cents)
⟨-2.838, 0.423, 7.063, -3.250, 12.366, -10.808]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.959107 |
Adjusted Error |
9.558052 cents |
TE Error |
2.582950 cents/octave |
Novemkleismic (72 & 117bd)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 117 | 186 | 272 | 329 | 405 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 12 | 19 | 23 | 30 | ] |
⟨ | 0 | 6 | 5 | 6 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3465, 50.3486]
TE Step Tunings (cents)
⟨12.20113, 2.74904]
TE Tuning Map (cents)
⟨1200.119, 1902.250, 2785.327, 3369.062, 4151.442]
TE Mistunings (cents)
⟨0.119, 0.295, -0.987, 0.236, 0.124]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.587987 |
Adjusted Error |
0.754187 cents |
TE Error |
0.218009 cents/octave |
Novemkleismic (72 & 189f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 189 | 300 | 439 | 531 | 654 | 700 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 12 | 19 | 23 | 30 | 28 | ] |
⟨ | 0 | 6 | 5 | 6 | 3 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3385, 50.4208]
TE Step Tunings (cents)
⟨7.87064, 3.35111]
TE Tuning Map (cents)
⟨1200.047, 1902.587, 2785.536, 3369.311, 4151.418, 4439.370]
TE Mistunings (cents)
⟨0.047, 0.632, -0.778, 0.485, 0.100, -1.157]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.516825 |
Adjusted Error |
0.957831 cents |
TE Error |
0.258843 cents/octave |
Nusecond (31 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 4 | 5 | ] |
⟨ | 0 | -11 | -13 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6189, 154.5295]
TE Step Tunings (cents)
⟨36.61694, 8.06171]
TE Tuning Map (cents)
⟨1199.619, 1899.032, 2789.592, 3371.093]
TE Mistunings (cents)
⟨-0.381, -2.923, 3.279, 2.268]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.727733 |
Adjusted Error |
3.492746 cents |
TE Error |
1.244141 cents/octave |
Nusecond (31 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 4 | 5 | 5 | ] |
⟨ | 0 | -11 | -13 | -17 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3503, 154.6903]
TE Step Tunings (cents)
⟨37.17205, 6.00209]
TE Tuning Map (cents)
⟨1200.350, 1899.458, 2790.427, 3372.016, 4145.468]
TE Mistunings (cents)
⟨0.350, -2.497, 4.114, 3.191, -5.850]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.483498 |
Adjusted Error |
4.866708 cents |
TE Error |
1.406794 cents/octave |
Nusecond (31 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 4 | 5 | 5 | 5 | ] |
⟨ | 0 | -11 | -13 | -17 | -12 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0160, 154.3517]
TE Step Tunings (cents)
⟨35.79734, 11.16230]
TE Tuning Map (cents)
⟨1199.016, 1899.180, 2789.492, 3371.102, 4142.860, 4451.563]
TE Mistunings (cents)
⟨-0.984, -2.775, 3.179, 2.276, -8.458, 11.036]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.357572 |
Adjusted Error |
6.994543 cents |
TE Error |
1.890192 cents/octave |
Nuso (12 & 2 & 5p)
Equal Temperament Mappings
| 2 | 3 | 17 | 19 | |
[ ⟨ | 12 | 19 | 49 | 51 | ] |
⟨ | 2 | 3 | 8 | 8 | ] |
⟨ | 5 | 8 | 20 | 21 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 17 | 19 | |
[ ⟨ | 1 | 0 | 0 | -3 | ] |
⟨ | 0 | 1 | 0 | 2 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6330, 1900.8948, 4901.4300]
TE Step Tunings (cents)
⟨98.89792, 1.69204, 2.09479]
TE Tuning Map (cents)
⟨1200.633, 1900.895, 4901.430, 5101.321]
TE Mistunings (cents)
⟨0.633, -1.060, -3.525, 3.808]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.033316 |
Adjusted Error |
3.287311 cents |
TE Error |
0.773862 cents/octave |
Nusu (12 & 2 & 17g)
Equal Temperament Mappings
| 2 | 3 | 17 | 19 | |
[ ⟨ | 12 | 19 | 49 | 51 | ] |
⟨ | 2 | 3 | 8 | 8 | ] |
⟨ | 17 | 27 | 70 | 72 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 17 | 19 | |
[ ⟨ | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 0 | 4 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8644, 1901.2738, 4906.0880]
TE Step Tunings (cents)
⟨86.01801, -3.77794, 10.30613]
TE Tuning Map (cents)
⟨1199.864, 1901.274, 4906.088, 5098.736]
TE Mistunings (cents)
⟨-0.136, -0.681, 1.133, 1.223]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.040358 |
Adjusted Error |
1.279275 cents |
TE Error |
0.301153 cents/octave |
Octacot (41 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.6804, 88.0529]
TE Step Tunings (cents)
⟨21.93157, 11.12911]
TE Tuning Map (cents)
⟨1199.680, 1904.104, 2784.633, 3367.943]
TE Mistunings (cents)
⟨-0.320, 2.149, -1.681, -0.883]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.787037 |
Adjusted Error |
2.247205 cents |
TE Error |
0.800470 cents/octave |
Octacot (41 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | 2 | 2 | ] |
⟨ | 0 | 8 | 18 | 11 | 20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6089, 87.9464]
TE Step Tunings (cents)
⟨24.66377, 6.97757]
TE Tuning Map (cents)
⟨1199.609, 1903.181, 2782.645, 3366.629, 4158.147]
TE Mistunings (cents)
⟨-0.391, 1.226, -3.669, -2.197, 6.829]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.574021 |
Adjusted Error |
4.308745 cents |
TE Error |
1.245507 cents/octave |
Octacot (41 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 2 | 2 | 4 | ] |
⟨ | 0 | 8 | 18 | 11 | 20 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8684, 88.0224]
TE Step Tunings (cents)
⟨21.13141, 12.31409]
TE Tuning Map (cents)
⟨1198.868, 1903.048, 2783.272, 3365.984, 4158.185, 4443.384]
TE Mistunings (cents)
⟨-1.132, 1.093, -3.042, -2.842, 6.867, 2.856]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.140388 |
Adjusted Error |
4.540526 cents |
TE Error |
1.227023 cents/octave |
Octagari (12 & 41 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 1 | 4 | ] |
⟨ | 0 | 1 | 0 | -2 | ] |
⟨ | 0 | 0 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5363, 1902.8869, 792.6387]
TE Step Tunings (cents)
⟨10.95479, 21.15644, 7.43204]
TE Tuning Map (cents)
⟨1199.536, 1902.887, 2784.814, 3370.288]
TE Mistunings (cents)
⟨-0.464, 0.932, -1.500, 1.462]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.145811 |
Adjusted Error |
1.568804 cents |
TE Error |
0.558819 cents/octave |
Octagari (12 & 41 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 4 | 4 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | ] |
⟨ | 0 | 0 | 2 | 3 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6201, 1903.2810, 791.5250]
TE Step Tunings (cents)
⟨6.56000, 24.66531, 7.30816]
TE Tuning Map (cents)
⟨1199.620, 1903.281, 2782.670, 3366.493, 4158.018]
TE Mistunings (cents)
⟨-0.380, 1.326, -3.644, -2.332, 6.700]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.137328 |
Adjusted Error |
4.306531 cents |
TE Error |
1.244867 cents/octave |
Octagari (12f & 15 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 4 | 4 | 2 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | -1 | ] |
⟨ | 0 | 0 | 2 | 3 | 4 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5511, 1902.7615, 789.6648]
TE Step Tunings (cents)
⟨-5.72187, -3.14656, 32.10761]
TE Tuning Map (cents)
⟨1200.551, 1902.762, 2779.881, 3365.676, 4155.341, 4446.665]
TE Mistunings (cents)
⟨0.551, 0.807, -6.433, -3.150, 4.023, 6.137]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.152376 |
Adjusted Error |
5.571237 cents |
TE Error |
1.505561 cents/octave |
Octant (224 & 472)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | ] |
⟨ | 472 | 748 | 1096 | 1325 | 1633 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 16 | 26 | 28 | ] |
⟨ | 0 | -1 | 8 | -11 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨150.0010, 48.2872]
TE Step Tunings (cents)
⟨1.07141, 2.03392]
TE Tuning Map (cents)
⟨1200.008, 1901.726, 2786.314, 3368.866, 4151.741]
TE Mistunings (cents)
⟨0.008, -0.229, 0.000, 0.040, 0.423]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
18.699145 |
Adjusted Error |
0.294068 cents |
TE Error |
0.085005 cents/octave |
Octant (224 & 248)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 248 | 393 | 576 | 696 | 858 | 918 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 16 | 26 | 28 | 28 | ] |
⟨ | 0 | -1 | 8 | -11 | -1 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨149.9957, 48.2739]
TE Step Tunings (cents)
⟨3.46602, 1.70797]
TE Tuning Map (cents)
⟨1199.966, 1901.670, 2786.123, 3368.876, 4151.606, 4441.250]
TE Mistunings (cents)
⟨-0.034, -0.285, -0.191, 0.050, 0.288, 0.722]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
17.748622 |
Adjusted Error |
0.441730 cents |
TE Error |
0.119372 cents/octave |
Octarod (19 & 22 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 0 | ] |
⟨ | 0 | 1 | 1 | 2 | ] |
⟨ | 0 | 0 | 2 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0000, 1903.7424, 440.9020]
TE Step Tunings (cents)
⟨25.93232, 17.42819, 11.99503]
TE Tuning Map (cents)
⟨1200.000, 1903.742, 2785.546, 3366.583]
TE Mistunings (cents)
⟨-0.000, 1.787, -0.767, -2.243]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.120819 |
Adjusted Error |
1.994696 cents |
TE Error |
0.710525 cents/octave |
Octarod (22 & 41 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 1 | 2 | 0 | ] |
⟨ | 0 | 0 | 2 | -1 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2907, 1903.9204, 439.2452]
TE Step Tunings (cents)
⟨9.18670, 19.30784, 7.61340]
TE Tuning Map (cents)
⟨1199.291, 1903.920, 2782.411, 3368.596, 4155.562]
TE Mistunings (cents)
⟨-0.709, 1.965, -3.903, -0.230, 4.244]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.147110 |
Adjusted Error |
3.907201 cents |
TE Error |
1.129434 cents/octave |
Octoid (72 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 152 | 241 | 353 | 427 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 8 | 13 | 19 | 23 | ] |
⟨ | 0 | -3 | -4 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨150.0003, 16.0596]
TE Step Tunings (cents)
⟨5.13147, 5.46406]
TE Tuning Map (cents)
⟨1200.002, 1901.825, 2785.767, 3369.709]
TE Mistunings (cents)
⟨0.002, -0.130, -0.546, 0.883]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.250515 |
Adjusted Error |
0.563276 cents |
TE Error |
0.200643 cents/octave |
Octoid (72 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |
⟨ | 0 | -3 | -4 | -5 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨149.9932, 16.0371]
TE Step Tunings (cents)
⟨4.71866, 5.65922]
TE Tuning Map (cents)
⟨1199.946, 1901.800, 2785.722, 3369.658, 4151.698]
TE Mistunings (cents)
⟨-0.054, -0.155, -0.591, 0.832, 0.380]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.799717 |
Adjusted Error |
0.651443 cents |
TE Error |
0.188309 cents/octave |
Octoid (72 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 31 | ] |
⟨ | 0 | -3 | -4 | -5 | -3 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨150.0006, 16.0955]
TE Step Tunings (cents)
⟨0.67251, 5.14100]
TE Tuning Map (cents)
⟨1200.004, 1901.721, 2785.628, 3369.535, 4151.729, 4440.776]
TE Mistunings (cents)
⟨0.004, -0.234, -0.685, 0.709, 0.411, 0.248]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.569860 |
Adjusted Error |
0.660931 cents |
TE Error |
0.178609 cents/octave |
Octokaidecal (10 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨597.0628, 128.2428]
TE Step Tunings (cents)
⟨84.09150, 44.15132]
TE Tuning Map (cents)
⟨1194.126, 1919.431, 2772.980, 3370.042]
TE Mistunings (cents)
⟨-5.874, 17.476, -13.334, 1.216]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.990685 |
Adjusted Error |
19.310292 cents |
TE Error |
6.878465 cents/octave |
Octokaidecal (8d & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 4 | 5 | 7 | ] |
⟨ | 0 | 1 | 3 | 3 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨595.2326, 131.2785]
TE Step Tunings (cents)
⟨61.15983, 70.11866]
TE Tuning Map (cents)
⟨1190.465, 1916.976, 2774.766, 3369.998, 4166.628]
TE Mistunings (cents)
⟨-9.535, 15.021, -11.548, 1.172, 15.310]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.074125 |
Adjusted Error |
23.218357 cents |
TE Error |
6.711610 cents/octave |
Octopod (41 & 14cf)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 2 | 2 | 1 | ] |
⟨ | 0 | 8 | 18 | 11 | 20 | 37 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5230, 87.7355]
TE Step Tunings (cents)
⟨27.77367, 4.41446]
TE Tuning Map (cents)
⟨1200.523, 1902.407, 2779.762, 3366.136, 4155.756, 4446.736]
TE Mistunings (cents)
⟨0.523, 0.452, -6.552, -2.690, 4.438, 6.208]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.115933 |
Adjusted Error |
5.590694 cents |
TE Error |
1.510819 cents/octave |
Octopus (72 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 0 | -3 | -4 | -5 | -3 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨150.0315, 16.1118]
TE Step Tunings (cents)
⟨11.08702, 5.02483]
TE Tuning Map (cents)
⟨1200.252, 1902.074, 2786.151, 3370.165, 4152.546, 4436.497]
TE Mistunings (cents)
⟨0.252, 0.119, -0.163, 1.339, 1.228, -4.031]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.317754 |
Adjusted Error |
1.919149 cents |
TE Error |
0.518627 cents/octave |
Octowerck (72 & 176)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 176 | 279 | 409 | 494 | 609 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 12 | 17 | 22 | 27 | ] |
⟨ | 0 | 3 | 7 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨150.0233, 33.7602]
TE Step Tunings (cents)
⟨7.39163, 3.79539]
TE Tuning Map (cents)
⟨1200.186, 1901.560, 2786.718, 3368.033, 4151.910]
TE Mistunings (cents)
⟨0.186, -0.395, 0.404, -0.793, 0.592]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.400038 |
Adjusted Error |
0.751685 cents |
TE Error |
0.217286 cents/octave |
Octowerck (72 & 248)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 248 | 393 | 576 | 696 | 858 | 918 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 12 | 17 | 22 | 27 | 26 | ] |
⟨ | 0 | 3 | 7 | 2 | 3 | 16 | ] ⟩ |
TE Generator Tunings (cents)
⟨150.0248, 33.7480]
TE Step Tunings (cents)
⟨3.98447, 3.68273]
TE Tuning Map (cents)
⟨1200.198, 1901.541, 2786.657, 3368.041, 4151.913, 4440.612]
TE Mistunings (cents)
⟨0.198, -0.414, 0.343, -0.785, 0.595, 0.084]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.840010 |
Adjusted Error |
0.736308 cents |
TE Error |
0.198979 cents/octave |
Odin (342 & 1848 & 270)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 1848 | 2929 | 4291 | 5188 | 6393 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 6 | 0 | 0 | 8 | 17 | ] |
⟨ | 0 | 1 | 0 | -2 | -4 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨200.0008, 1901.9369, 2786.3443]
TE Step Tunings (cents)
⟨0.18765, 0.63548, -0.14273]
TE Tuning Map (cents)
⟨1200.005, 1901.937, 2786.344, 3368.822, 4151.300]
TE Mistunings (cents)
⟨0.005, -0.018, 0.031, -0.004, -0.018]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.546727 |
Adjusted Error |
0.029353 cents |
TE Error |
0.008485 cents/octave |
Ogene (15 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 5 | 7 | 8 | 10 | 12 | ] |
⟨ | 0 | -1 | 0 | 2 | 2 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.6583, 87.0984]
TE Step Tunings (cents)
⟨13.43152, 36.83341]
TE Tuning Map (cents)
⟨1195.975, 1906.193, 2790.608, 3363.463, 4160.780, 4435.507]
TE Mistunings (cents)
⟨-4.025, 4.238, 4.295, -5.362, 9.462, -5.021]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.895285 |
Adjusted Error |
9.523787 cents |
TE Error |
2.573691 cents/octave |
Omicronbeta (72 & 72f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 267 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 0 | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨16.6769, 4.4838]
TE Step Tunings (cents)
⟨12.19306, 4.48380]
TE Tuning Map (cents)
⟨1200.734, 1901.162, 2785.035, 3368.725, 4152.537, 4440.528]
TE Mistunings (cents)
⟨0.734, -0.793, -1.279, -0.101, 1.219, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.246819 |
Adjusted Error |
1.666988 cents |
TE Error |
0.450484 cents/octave |
Ominous (72 & 31 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 3 | 5 | 1 | ] |
⟨ | 0 | 3 | 0 | -1 | 4 | -10 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7027, 233.5455, 2787.0135]
TE Step Tunings (cents)
⟨10.90293, 6.54038, 4.62913]
TE Tuning Map (cents)
⟨1200.703, 1901.339, 2787.013, 3368.563, 4150.682, 4439.275]
TE Mistunings (cents)
⟨0.703, -0.616, 0.700, -0.263, -0.636, -1.253]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.276468 |
Adjusted Error |
1.427438 cents |
TE Error |
0.385748 cents/octave |
Oodako (27e & 6)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 6 | 10 | 14 | 17 | 21 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 3 | 7 | 8 | 10 | ] |
⟨ | 0 | 4 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.6704, 176.3926]
TE Step Tunings (cents)
⟨45.88533, -7.14876]
TE Tuning Map (cents)
⟨1196.011, 1901.582, 2790.693, 3365.756, 4163.097]
TE Mistunings (cents)
⟨-3.989, -0.373, 4.379, -3.070, 11.779]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.878002 |
Adjusted Error |
8.794239 cents |
TE Error |
2.542105 cents/octave |
Oodako (27e & 21p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 21 | 33 | 49 | 59 | 73 | 78 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 3 | 7 | 8 | 10 | 12 | ] |
⟨ | 0 | 4 | 0 | 1 | 1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨398.8713, 176.0531]
TE Step Tunings (cents)
⟨35.75736, 11.00787]
TE Tuning Map (cents)
⟨1196.614, 1900.826, 2792.099, 3367.024, 4164.766, 4434.350]
TE Mistunings (cents)
⟨-3.386, -1.129, 5.786, -1.802, 13.448, -6.178]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.937496 |
Adjusted Error |
9.125992 cents |
TE Error |
2.466191 cents/octave |
Oolong (27 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 27 | 43 | 63 | 76 | ] |
⟨ | 50 | 79 | 116 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 6 | 7 | 8 | ] |
⟨ | 0 | -17 | -18 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9214, 311.6589]
TE Step Tunings (cents)
⟨16.03177, 15.34127]
TE Tuning Map (cents)
⟨1199.921, 1901.327, 2789.589, 3366.193]
TE Mistunings (cents)
⟨-0.079, -0.628, 3.275, -2.633]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.938063 |
Adjusted Error |
2.444600 cents |
TE Error |
0.870784 cents/octave |
Opossum (7d & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 19 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 4 | ] |
⟨ | 0 | -3 | -5 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.8949, 159.1451]
TE Step Tunings (cents)
⟨77.26581, 81.87928]
TE Tuning Map (cents)
⟨1195.895, 1914.355, 2791.959, 3351.274]
TE Mistunings (cents)
⟨-4.105, 12.400, 5.646, -17.552]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.160351 |
Adjusted Error |
15.571104 cents |
TE Error |
5.546539 cents/octave |
Opossum (7d & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 19 | 24 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 4 | 4 | ] |
⟨ | 0 | -3 | -5 | -9 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.3363, 159.3188]
TE Step Tunings (cents)
⟨78.21391, 81.10487]
TE Tuning Map (cents)
⟨1196.336, 1914.716, 2792.415, 3351.476, 4148.070]
TE Mistunings (cents)
⟨-3.664, 12.761, 6.101, -17.350, -3.248]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.070412 |
Adjusted Error |
17.243690 cents |
TE Error |
4.984544 cents/octave |
Opossum (8d & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 4 | 4 | 4 | ] |
⟨ | 0 | -3 | -5 | -9 | -4 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1193.6766, 157.9679]
TE Step Tunings (cents)
⟨87.90103, 70.06691]
TE Tuning Map (cents)
⟨1193.677, 1913.449, 2791.190, 3352.995, 4142.835, 4458.770]
TE Mistunings (cents)
⟨-6.323, 11.494, 4.876, -15.831, -8.483, 18.243]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.068583 |
Adjusted Error |
19.055563 cents |
TE Error |
5.149540 cents/octave |
Oquatonic (224 & 84)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 224 | 355 | 520 | ] |
⟨ | 84 | 133 | 195 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨42.8618, 16.0379]
TE Step Tunings (cents)
⟨5.25187, 0.28226]
TE Tuning Map (cents)
⟨1200.129, 1901.955, 2786.014]
TE Mistunings (cents)
⟨0.129, 0.000, -0.300]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.326952 |
Adjusted Error |
0.244742 cents |
TE Error |
0.105405 cents/octave |
Oquatonic (140 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 140 | 222 | 325 | 393 | ] |
⟨ | 224 | 355 | 520 | 629 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 28 | 44 | 65 | 79 | ] |
⟨ | 0 | 1 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨42.8570, 16.3993]
TE Step Tunings (cents)
⟨2.62360, 3.71737]
TE Tuning Map (cents)
⟨1199.996, 1902.107, 2785.705, 3369.304]
TE Mistunings (cents)
⟨-0.004, 0.152, -0.609, 0.478]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.959612 |
Adjusted Error |
0.459031 cents |
TE Error |
0.163510 cents/octave |
Oquatonic (140 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 140 | 222 | 325 | 393 | 518 | ] |
⟨ | 224 | 355 | 520 | 629 | 829 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 28 | 44 | 65 | 79 | 104 | ] |
⟨ | 0 | 1 | 0 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨42.8566, 16.4238]
TE Step Tunings (cents)
⟨2.82042, 3.59431]
TE Tuning Map (cents)
⟨1199.985, 1902.115, 2785.680, 3369.248, 4440.664]
TE Mistunings (cents)
⟨-0.015, 0.160, -0.634, 0.422, 0.136]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.683268 |
Adjusted Error |
0.546203 cents |
TE Error |
0.147605 cents/octave |
Oracle (31 & 51p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 51 | 81 | 118 | 143 | 176 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 7 | -4 | 1 | 3 | ] |
⟨ | 0 | -12 | 14 | 4 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2157, 542.2164]
TE Step Tunings (cents)
⟨25.07527, 8.31142]
TE Tuning Map (cents)
⟨1201.216, 1901.913, 2786.167, 3370.081, 4145.864]
TE Mistunings (cents)
⟨1.216, -0.042, -0.147, 1.255, -5.454]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.372434 |
Adjusted Error |
3.158725 cents |
TE Error |
0.913076 cents/octave |
Oregon (11 & 4)
Equal Temperament Mappings
| 2 | 9 | 15 | 7 | 11 | |
[ ⟨ | 11 | 35 | 43 | 31 | 38 | ] |
⟨ | 4 | 13 | 16 | 11 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 15 | 7 | 11 | |
[ ⟨ | 1 | 4 | 5 | 2 | 4 | ] |
⟨ | 0 | -3 | -4 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.0409, 325.6069]
TE Step Tunings (cents)
⟨104.38669, 12.44682]
TE Tuning Map (cents)
⟨1198.041, 3815.343, 4687.777, 3372.902, 4140.950]
TE Mistunings (cents)
⟨-1.959, 11.433, -0.492, 4.077, -10.368]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
0.773551 |
Adjusted Error |
9.237640 cents |
TE Error |
2.364448 cents/octave |
Orga (270 & 1106)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 1106 | 1753 | 2568 | 3105 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | -8 | -15 | 6 | ] |
⟨ | 0 | 29 | 51 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9927, 231.1012]
TE Step Tunings (cents)
⟨0.49605, 0.96388]
TE Tuning Map (cents)
⟨1199.985, 1901.992, 2786.269, 3368.855]
TE Mistunings (cents)
⟨-0.015, 0.037, -0.045, 0.029]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
20.475544 |
Adjusted Error |
0.049497 cents |
TE Error |
0.017631 cents/octave |
Orga (270 & 836)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 836 | 1325 | 1941 | 2347 | 2892 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | -8 | -15 | 6 | 10 | ] |
⟨ | 0 | 29 | 51 | -1 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0025, 231.1039]
TE Step Tunings (cents)
⟨1.02010, 1.10596]
TE Tuning Map (cents)
⟨1200.005, 1901.992, 2786.260, 3368.911, 4151.194]
TE Mistunings (cents)
⟨0.005, 0.037, -0.053, 0.085, -0.124]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
20.785488 |
Adjusted Error |
0.089126 cents |
TE Error |
0.025763 cents/octave |
Orgone (26 & 11)
Equal Temperament Mappings
| 2 | 7 | 11 | |
[ ⟨ | 26 | 73 | 90 | ] |
⟨ | 11 | 31 | 38 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.6602, 323.2801]
TE Step Tunings (cents)
⟨42.89931, 7.66164]
TE Tuning Map (cents)
⟨1199.660, 3369.161, 4152.080]
TE Mistunings (cents)
⟨-0.340, 0.335, 0.763]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.682345 |
Adjusted Error |
0.843344 cents |
TE Error |
0.243781 cents/octave |
Orson (53 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 31 | 49 | 72 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.2903, 271.6930]
TE Step Tunings (cents)
⟨20.45005, 3.75606]
TE Tuning Map (cents)
⟨1200.290, 1901.851, 2785.792]
TE Mistunings (cents)
⟨0.290, -0.104, -0.522]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.443501 |
Adjusted Error |
0.499951 cents |
TE Error |
0.215317 cents/octave |
Orwell (31 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 53 | 84 | 123 | 149 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0210, 271.5134]
TE Step Tunings (cents)
⟨10.04072, 16.76903]
TE Tuning Map (cents)
⟨1200.021, 1900.594, 2785.523, 3372.128]
TE Mistunings (cents)
⟨0.021, -1.361, -0.791, 3.303]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.256775 |
Adjusted Error |
2.099766 cents |
TE Error |
0.747952 cents/octave |
Orwell (31 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 3 | 1 | 3 | ] |
⟨ | 0 | 7 | -3 | 8 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6045, 271.5628]
TE Step Tunings (cents)
⟨28.63963, 14.21709]
TE Tuning Map (cents)
⟨1200.604, 1900.940, 2787.125, 3373.107, 4144.939]
TE Mistunings (cents)
⟨0.604, -1.015, 0.811, 4.281, -6.379]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.050464 |
Adjusted Error |
3.981596 cents |
TE Error |
1.150939 cents/octave |
Orwell (31 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 3 | 1 | 3 | 8 | ] |
⟨ | 0 | 7 | -3 | 8 | 2 | -19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3681, 271.6297]
TE Step Tunings (cents)
⟨8.04409, 17.94342]
TE Tuning Map (cents)
⟨1200.368, 1901.408, 2786.215, 3373.405, 4144.364, 4441.981]
TE Mistunings (cents)
⟨0.368, -0.547, -0.099, 4.580, -6.954, 1.453]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.044773 |
Adjusted Error |
4.029042 cents |
TE Error |
1.088801 cents/octave |
Orwell (53 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 183 | 196 | ] |
⟨ | 31 | 49 | 72 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 1 | 0 | 3 | 3 | 8 | ] |
⟨ | 0 | 7 | -3 | 2 | -19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7260, 271.8185]
TE Step Tunings (cents)
⟨21.29171, 2.33114]
TE Tuning Map (cents)
⟨1200.726, 1902.730, 2786.723, 4145.815, 4441.257]
TE Mistunings (cents)
⟨0.726, 0.775, 0.409, -5.503, 0.729]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.079123 |
Adjusted Error |
3.036164 cents |
TE Error |
0.820487 cents/octave |
Orwellian (31 & 22 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 0 | 1 | ] |
⟨ | 0 | 0 | 3 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4187, 1901.2248, 928.9454]
TE Step Tunings (cents)
⟨22.94558, 12.47677, 7.91173]
TE Tuning Map (cents)
⟨1199.419, 1901.225, 2786.836, 3371.117]
TE Mistunings (cents)
⟨-0.581, -0.730, 0.522, 2.291]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.140541 |
Adjusted Error |
1.579810 cents |
TE Error |
0.562740 cents/octave |
Orwellian (22 & 31 & 5p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 5 | 8 | 12 | 14 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 2 | 5 | ] |
⟨ | 0 | 1 | 0 | 1 | 0 | ] |
⟨ | 0 | 0 | 3 | -1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7889, 1900.4915, 928.6520]
TE Step Tunings (cents)
⟨12.85422, 30.33329, -4.46715]
TE Tuning Map (cents)
⟨1200.789, 1900.491, 2785.956, 3373.417, 4146.641]
TE Mistunings (cents)
⟨0.789, -1.464, -0.358, 4.591, -4.677]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.161849 |
Adjusted Error |
3.790139 cents |
TE Error |
1.095596 cents/octave |
Osiris (171 & 328)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 328 | 520 | 762 | 921 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 13 | 33 | 21 | ] |
⟨ | 0 | -32 | -86 | -51 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0285, 428.0763]
TE Step Tunings (cents)
⟨5.68170, 0.69652]
TE Tuning Map (cents)
⟨1200.028, 1901.930, 2786.381, 3368.709]
TE Mistunings (cents)
⟨0.028, -0.025, 0.068, -0.117]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.118326 |
Adjusted Error |
0.084836 cents |
TE Error |
0.030219 cents/octave |
Oxpecker (31 & 15 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 2 | 2 | ] |
⟨ | 0 | 1 | 1 | 1 | 1 | ] |
⟨ | 0 | 0 | 2 | 6 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4168, 1901.5485, -155.8298]
TE Step Tunings (cents)
⟨31.79592, 14.22082, 0.20443]
TE Tuning Map (cents)
⟨1200.417, 1901.549, 2790.306, 3367.404, 4146.552]
TE Mistunings (cents)
⟨0.417, -0.406, 3.992, -1.422, -4.766]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.164152 |
Adjusted Error |
3.578414 cents |
TE Error |
1.034394 cents/octave |
Oxygen (7d & 1c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 19 | ] |
⟨ | 1 | 2 | 3 | 3 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | -3 | -5 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1214.4235, 171.1446]
TE Step Tunings (cents)
⟨171.14457, 16.41156]
TE Tuning Map (cents)
⟨1214.424, 1915.413, 2787.548, 3300.981]
TE Mistunings (cents)
⟨14.424, 13.458, 1.234, -67.844]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.864946 |
Adjusted Error |
41.270289 cents |
TE Error |
14.700773 cents/octave |
Pajara (12 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 22 | 35 | 51 | 62 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨598.8593, 106.8442]
TE Step Tunings (cents)
⟨22.43268, 42.20575]
TE Tuning Map (cents)
⟨1197.719, 1903.422, 2780.608, 3379.468]
TE Mistunings (cents)
⟨-2.281, 1.467, -5.705, 10.642]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.196130 |
Adjusted Error |
7.221543 cents |
TE Error |
2.572365 cents/octave |
Pajara (12 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 6 | 8 | ] |
⟨ | 0 | 1 | -2 | -2 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨598.8595, 106.6820]
TE Step Tunings (cents)
⟨24.21730, 41.23234]
TE Tuning Map (cents)
⟨1197.719, 1903.260, 2780.934, 3379.793, 4150.784]
TE Mistunings (cents)
⟨-2.281, 1.305, -5.380, 10.967, -0.534]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.608577 |
Adjusted Error |
7.969546 cents |
TE Error |
2.303715 cents/octave |
Pajara (10e & 12p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 34 | 37 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 44 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 5 | 6 | 8 | 7 | ] |
⟨ | 0 | 1 | -2 | -2 | -6 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0085, 108.9205]
TE Step Tunings (cents)
⟨53.51426, 55.40620]
TE Tuning Map (cents)
⟨1200.017, 1908.946, 2782.201, 3382.210, 4146.545, 4417.900]
TE Mistunings (cents)
⟨0.017, 6.991, -4.112, 13.384, -4.773, -22.628]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.670656 |
Adjusted Error |
13.896354 cents |
TE Error |
3.755325 cents/octave |
Pajara (10 & 22)
Contorted
Archy (order 2)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 10 | 16 | 28 | ] |
⟨ | 22 | 35 | 62 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨598.4834, 109.0449]
TE Step Tunings (cents)
⟨2.52750, 53.25871]
TE Tuning Map (cents)
⟨1196.967, 1904.495, 3372.810]
TE Mistunings (cents)
⟨-3.033, 2.540, 3.984]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.100288 |
Adjusted Error |
6.017469 cents |
TE Error |
2.143466 cents/octave |
Pajaric (12 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 6 | 7 | ] |
⟨ | 0 | 1 | -2 | -2 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨597.5361, 105.0907]
TE Step Tunings (cents)
⟨72.08280, 33.00785]
TE Tuning Map (cents)
⟨1195.072, 1897.699, 2777.499, 3375.035, 4182.752]
TE Mistunings (cents)
⟨-4.928, -4.256, -8.815, 6.209, 31.435]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.088802 |
Adjusted Error |
17.866553 cents |
TE Error |
5.164592 cents/octave |
Pajaric (10p & 12f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 5 | 6 | 7 | 8 | ] |
⟨ | 0 | 1 | -2 | -2 | 0 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨597.2629, 106.9520]
TE Step Tunings (cents)
⟨44.44904, 62.50295]
TE Tuning Map (cents)
⟨1194.526, 1898.741, 2772.410, 3369.673, 4180.840, 4457.247]
TE Mistunings (cents)
⟨-5.474, -3.214, -13.903, 0.847, 29.522, 16.720]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.098097 |
Adjusted Error |
19.303038 cents |
TE Error |
5.216417 cents/octave |
Pajaro (10p & 22f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 82 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 5 | 6 | 6 | 8 | ] |
⟨ | 0 | 1 | -2 | -2 | 5 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨598.8578, 110.6068]
TE Step Tunings (cents)
⟨18.95933, 45.82374]
TE Tuning Map (cents)
⟨1197.716, 1907.180, 2773.075, 3371.933, 4146.181, 4459.042]
TE Mistunings (cents)
⟨-2.284, 5.225, -13.238, 3.107, -5.137, 18.514]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.711646 |
Adjusted Error |
13.261168 cents |
TE Error |
3.583674 cents/octave |
Pajarous (22 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 6 | 6 | ] |
⟨ | 0 | 1 | -2 | -2 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.4227, 109.4723]
TE Step Tunings (cents)
⟨52.06108, 5.35017]
TE Tuning Map (cents)
⟨1198.845, 1907.741, 2778.169, 3377.592, 4143.898]
TE Mistunings (cents)
⟨-1.155, 5.786, -8.145, 8.766, -7.420]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.718856 |
Adjusted Error |
9.943874 cents |
TE Error |
2.874424 cents/octave |
Pajarous (10p & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 5 | 6 | 6 | 7 | ] |
⟨ | 0 | 1 | -2 | -2 | 5 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9396, 110.2286]
TE Step Tunings (cents)
⟨12.63592, 48.79636]
TE Tuning Map (cents)
⟨1199.879, 1910.047, 2779.241, 3379.180, 4150.781, 4420.034]
TE Mistunings (cents)
⟨-0.121, 8.092, -7.073, 10.354, -0.537, -20.493]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.601677 |
Adjusted Error |
13.483370 cents |
TE Error |
3.643721 cents/octave |
Paradigmic (80 & 99e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 80 | 127 | 186 | 225 | 277 | ] |
⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 6 | 12 | -1 | ] |
⟨ | 0 | -13 | -14 | -35 | 17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0627, 314.8495]
TE Step Tunings (cents)
⟨5.52820, 7.64451]
TE Tuning Map (cents)
⟨1199.063, 1902.270, 2786.483, 3369.019, 4153.379]
TE Mistunings (cents)
⟨-0.937, 0.315, 0.169, 0.193, 2.061]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.141486 |
Adjusted Error |
1.752411 cents |
TE Error |
0.506560 cents/octave |
Paradigmic (19p & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 6 | 12 | -1 | 10 | ] |
⟨ | 0 | -13 | -14 | -35 | 17 | -24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2713, 314.8885]
TE Step Tunings (cents)
⟨6.38601, 13.47421]
TE Tuning Map (cents)
⟨1199.271, 1902.805, 2787.188, 3370.157, 4153.834, 4435.388]
TE Mistunings (cents)
⟨-0.729, 0.850, 0.875, 1.331, 2.516, -5.140]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.661339 |
Adjusted Error |
2.883625 cents |
TE Error |
0.779265 cents/octave |
Parahemfi (99 & 41 & 19)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 19 | 30 | 44 | 53 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 2 | -1 | ] |
⟨ | 0 | 1 | 2 | 3 | ] |
⟨ | 0 | 0 | 3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8556, 1902.4627, -1139.3891]
TE Step Tunings (cents)
⟨10.44256, 3.07366, 2.10645]
TE Tuning Map (cents)
⟨1199.856, 1902.463, 2786.469, 3368.143]
TE Mistunings (cents)
⟨-0.144, 0.508, 0.156, -0.683]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.181247 |
Adjusted Error |
0.607084 cents |
TE Error |
0.216248 cents/octave |
Parahemif (58 & 41 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | -1 | 2 | 4 | ] |
⟨ | 0 | 2 | 0 | 13 | 5 | -1 | ] |
⟨ | 0 | 0 | 1 | 0 | 0 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.7629, 351.3282, 2786.3137]
TE Step Tunings (cents)
⟨13.14752, 8.08661, 3.07811]
TE Tuning Map (cents)
⟨1198.763, 1901.419, 2786.314, 3368.504, 4154.167, 4443.723]
TE Mistunings (cents)
⟨-1.237, -0.536, -0.000, -0.322, 2.849, 3.196]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.255790 |
Adjusted Error |
2.652043 cents |
TE Error |
0.716683 cents/octave |
Parahemwuer (31 & 99 & 19)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 19 | 30 | 44 | 53 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -3 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 2 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8196, 1901.9550, 1393.5621]
TE Step Tunings (cents)
⟨3.34447, 10.70869, 1.89372]
TE Tuning Map (cents)
⟨1199.820, 1901.955, 2787.124, 3368.352]
TE Mistunings (cents)
⟨-0.180, 0.000, 0.811, -0.474]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.172089 |
Adjusted Error |
0.600337 cents |
TE Error |
0.213844 cents/octave |
Parakleismic (118 & 99)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 118 | 187 | 274 | ] |
⟨ | 99 | 157 | 230 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9712, 315.2329]
TE Step Tunings (cents)
⟨8.80622, 1.62461]
TE Tuning Map (cents)
⟨1199.971, 1901.828, 2786.566]
TE Mistunings (cents)
⟨-0.029, -0.127, 0.253]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.469778 |
Adjusted Error |
0.185181 cents |
TE Error |
0.079753 cents/octave |
Parakleismic (99 & 19)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 19 | 30 | 44 | 53 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 5 | 6 | 12 | ] |
⟨ | 0 | -13 | -14 | -35 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7822, 315.1240]
TE Step Tunings (cents)
⟨11.55578, 2.93471]
TE Tuning Map (cents)
⟨1199.782, 1902.300, 2786.958, 3368.048]
TE Mistunings (cents)
⟨-0.218, 0.345, 0.644, -0.778]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.496772 |
Adjusted Error |
0.699652 cents |
TE Error |
0.249221 cents/octave |
Parakleismic (118 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 6 | 12 | -6 | ] |
⟨ | 0 | -13 | -14 | -35 | 36 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3303, 315.3377]
TE Step Tunings (cents)
⟨10.23546, -0.39229]
TE Tuning Map (cents)
⟨1200.330, 1902.262, 2787.254, 3367.145, 4150.175]
TE Mistunings (cents)
⟨0.330, 0.307, 0.940, -1.681, -1.143]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.925793 |
Adjusted Error |
1.364986 cents |
TE Error |
0.394569 cents/octave |
Parapyth (17 & 41 & 46)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 48 | 59 | 63 | ] |
⟨ | 41 | 65 | 115 | 142 | 152 | ] |
⟨ | 46 | 73 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 7 | 12 | ] |
⟨ | 0 | 1 | 0 | -4 | -7 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3714, 1902.8589, 3368.1420]
TE Step Tunings (cents)
⟨13.57134, 12.05644, 10.31184]
TE Tuning Map (cents)
⟨1199.371, 1902.859, 3368.142, 4152.306, 4440.586]
TE Mistunings (cents)
⟨-0.629, 0.904, -0.684, 0.988, 0.058]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.112815 |
Adjusted Error |
1.536092 cents |
TE Error |
0.415111 cents/octave |
Parizekmic (53 & 34 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 53 | 84 | 123 | 196 | ] |
⟨ | 34 | 54 | 79 | 126 | ] |
⟨ | 24 | 38 | 56 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | ] |
⟨ | 0 | 2 | 0 | 3 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9502, 951.0713, 2786.5822]
TE Step Tunings (cents)
⟨17.71753, 4.46996, 4.53928]
TE Tuning Map (cents)
⟨1199.950, 1902.143, 2786.582, 4439.846]
TE Mistunings (cents)
⟨-0.050, 0.188, 0.268, -0.682]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.093131 |
Adjusted Error |
0.467354 cents |
TE Error |
0.126297 cents/octave |
Parkleismic (80 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 80 | 127 | 186 | 225 | 277 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 6 | 12 | 20 | ] |
⟨ | 0 | -13 | -14 | -35 | -63 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1868, 314.8467]
TE Step Tunings (cents)
⟨13.84600, 4.81614]
TE Tuning Map (cents)
⟨1199.187, 1902.926, 2787.266, 3370.606, 4148.392]
TE Mistunings (cents)
⟨-0.813, 0.971, 0.953, 1.780, -2.926]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.125013 |
Adjusted Error |
2.357927 cents |
TE Error |
0.681594 cents/octave |
Parkleismic (19e & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 6 | 12 | 20 | 10 | ] |
⟨ | 0 | -13 | -14 | -35 | -63 | -24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5349, 314.9526]
TE Step Tunings (cents)
⟨5.97718, 13.57461]
TE Tuning Map (cents)
⟨1199.535, 1903.290, 2787.873, 3371.077, 4148.683, 4436.486]
TE Mistunings (cents)
⟨-0.465, 1.335, 1.559, 2.251, -2.635, -4.042]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.666668 |
Adjusted Error |
2.942220 cents |
TE Error |
0.795100 cents/octave |
Passion (12 & 13p)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 13 | 21 | 30 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.8135, 98.4903]
TE Step Tunings (cents)
⟨82.56022, 15.93007]
TE Tuning Map (cents)
⟨1197.814, 1903.176, 2789.588]
TE Mistunings (cents)
⟨-2.186, 1.221, 3.274]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.023259 |
Adjusted Error |
3.637493 cents |
TE Error |
1.566583 cents/octave |
Passion (12 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 37 | 59 | 86 | 104 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.0466, 97.9116]
TE Step Tunings (cents)
⟨31.58925, 22.10745]
TE Tuning Map (cents)
⟨1197.047, 1904.535, 2785.739, 3373.209]
TE Mistunings (cents)
⟨-2.953, 2.580, -0.574, 4.383]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.479636 |
Adjusted Error |
5.227958 cents |
TE Error |
1.862236 cents/octave |
Passion (12 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 2 | 2 | ] |
⟨ | 0 | -5 | 4 | 10 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.9428, 97.7696]
TE Step Tunings (cents)
⟨26.64683, 23.70759]
TE Tuning Map (cents)
⟨1196.943, 1905.038, 2784.964, 3371.582, 4153.738]
TE Mistunings (cents)
⟨-3.057, 3.083, -1.350, 2.756, 2.420]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.903092 |
Adjusted Error |
5.975930 cents |
TE Error |
1.727431 cents/octave |
Pater (3p & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | 5 | 7 | 8 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1179.7898, 439.3609]
TE Step Tunings (cents)
⟨24.48247, 138.29279]
TE Tuning Map (cents)
⟨1179.790, 1920.219, 2798.940, 3376.594]
TE Mistunings (cents)
⟨-20.210, 18.264, 12.627, 7.768]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.899822 |
Adjusted Error |
33.760236 cents |
TE Error |
12.025639 cents/octave |
Pele (41 & 58 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 10 | 17 | ] |
⟨ | 0 | 1 | 0 | -6 | -10 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5434, 1902.5550, 2786.7299]
TE Step Tunings (cents)
⟨11.29796, 7.62353, 6.39484]
TE Tuning Map (cents)
⟨1199.543, 1902.555, 2786.730, 3366.834, 4153.418]
TE Mistunings (cents)
⟨-0.457, 0.600, 0.416, -1.992, 2.100]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.212770 |
Adjusted Error |
1.733731 cents |
TE Error |
0.501161 cents/octave |
Pele (58 & 41 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 10 | 17 | 22 | ] |
⟨ | 0 | 1 | 0 | -6 | -10 | -13 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4978, 1902.6178, 2787.0303]
TE Step Tunings (cents)
⟨6.54523, 9.94446, 8.95981]
TE Tuning Map (cents)
⟨1199.498, 1902.618, 2787.030, 3366.302, 4152.316, 4441.951]
TE Mistunings (cents)
⟨-0.502, 0.663, 0.717, -2.524, 0.998, 1.424]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.232703 |
Adjusted Error |
1.887950 cents |
TE Error |
0.510196 cents/octave |
Pelogic (7d & 2p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 19 | ] |
⟨ | 2 | 3 | 5 | 6 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1210.4941, 531.7568]
TE Step Tunings (cents)
⟨146.98054, 90.81516]
TE Tuning Map (cents)
⟨1210.494, 1889.231, 2805.764, 3337.521]
TE Mistunings (cents)
⟨10.494, -12.724, 19.451, -31.305]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.859878 |
Adjusted Error |
26.966953 cents |
TE Error |
9.605823 cents/octave |
Penta (5 & 1bd)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1187.7601, 237.5291]
TE Step Tunings (cents)
⟨237.52910, 0.11455]
TE Tuning Map (cents)
⟨1187.760, 1900.347, 2850.578, 3325.637]
TE Mistunings (cents)
⟨-12.240, -1.608, 64.265, -43.189]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.712157 |
Adjusted Error |
47.674526 cents |
TE Error |
16.982009 cents/octave |
Penta (11 & 52)
Equal Temperament Mappings
| 2 | 9 | 7 | 11 | |
[ ⟨ | 11 | 35 | 31 | 38 | ] |
⟨ | 52 | 165 | 146 | 180 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 7 | 11 | |
[ ⟨ | 1 | 5 | 5 | 2 | ] |
⟨ | 0 | -5 | -6 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4851, 438.2766]
TE Step Tunings (cents)
⟨-0.16909, 23.10279]
TE Tuning Map (cents)
⟨1199.485, 3806.042, 3367.765, 4152.077]
TE Mistunings (cents)
⟨-0.515, 2.132, -1.060, 0.759]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.300217 |
Adjusted Error |
1.648544 cents |
TE Error |
0.476536 cents/octave |
Pental (65 & 60)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 65 | 103 | 151 | ] |
⟨ | 60 | 95 | 139 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨240.0389, 18.7932]
TE Step Tunings (cents)
⟨14.52025, 4.27298]
TE Tuning Map (cents)
⟨1200.195, 1901.518, 2786.501]
TE Mistunings (cents)
⟨0.195, -0.437, 0.187]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.518667 |
Adjusted Error |
0.465047 cents |
TE Error |
0.200285 cents/octave |
Pentoid (5p & 4p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |
⟨ | 4 | 6 | 9 | 11 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 3 | ] |
⟨ | 0 | -2 | -3 | -1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1205.6925, 265.5661]
TE Step Tunings (cents)
⟨143.42808, 122.13802]
TE Tuning Map (cents)
⟨1205.692, 1880.253, 2820.379, 3351.511, 4148.210]
TE Mistunings (cents)
⟨5.692, -21.702, 34.065, -17.315, -3.108]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.722505 |
Adjusted Error |
33.682186 cents |
TE Error |
9.736335 cents/octave |
Pentoid (5p & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 3 | 5 | ] |
⟨ | 0 | -2 | -3 | -1 | 2 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1205.6883, 265.1858]
TE Step Tunings (cents)
⟨24.70415, 120.24084]
TE Tuning Map (cents)
⟨1205.688, 1881.005, 2821.507, 3351.879, 4147.437, 4437.327]
TE Mistunings (cents)
⟨5.688, -20.950, 35.194, -16.947, -3.881, -3.201]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.786477 |
Adjusted Error |
32.933842 cents |
TE Error |
8.899981 cents/octave |
Pepperoni (29 & 46)
Equal Temperament Mappings
| 2 | 3 | 11/7 | 13/7 | |
[ ⟨ | 29 | 46 | 19 | 26 | ] |
⟨ | 46 | 73 | 30 | 41 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 11/7 | 13/7 | |
[ ⟨ | 1 | 2 | -1 | -2 | ] |
⟨ | 0 | -1 | 4 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1887, 495.6128]
TE Step Tunings (cents)
⟨13.60539, 17.49201]
TE Tuning Map (cents)
⟨1199.189, 1902.765, 783.263, 1070.912]
TE Mistunings (cents)
⟨-0.811, 0.810, 0.771, -0.789]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
3.709379 |
Adjusted Error |
1.394584 cents |
TE Error |
0.879884 cents/octave |
Peregrine (36 & 63)
Equal Temperament Mappings
| 2 | 3 | 7 | 13 | 23 | |
[ ⟨ | 36 | 57 | 101 | 133 | 163 | ] |
⟨ | 63 | 100 | 177 | 233 | 285 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 13 | 23 | |
[ ⟨ | 9 | 14 | 25 | 33 | 41 | ] |
⟨ | 0 | 1 | 1 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3301, 36.1999]
TE Step Tunings (cents)
⟨13.26058, 11.46968]
TE Tuning Map (cents)
⟨1199.971, 1902.822, 3369.453, 4436.094, 5430.335]
TE Mistunings (cents)
⟨-0.029, 0.867, 0.627, -4.434, 2.060]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.645715 |
Adjusted Error |
2.855807 cents |
TE Error |
0.631318 cents/octave |
Petredecu (37 & 50 & 16)
Equal Temperament Mappings
| 2 | 5 | 11 | 13 | |
[ ⟨ | 37 | 86 | 128 | 137 | ] |
⟨ | 50 | 116 | 173 | 185 | ] |
⟨ | 16 | 37 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 1 | ] |
⟨ | 0 | 1 | 1 | 1 | ] |
⟨ | 0 | 0 | 3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9572, 2786.1601, 454.9958]
TE Step Tunings (cents)
⟨14.96479, 12.56486, 1.12608]
TE Tuning Map (cents)
⟨1199.957, 2786.160, 4151.147, 4441.113]
TE Mistunings (cents)
⟨-0.043, -0.154, -0.171, 0.585]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.054145 |
Adjusted Error |
0.339483 cents |
TE Error |
0.091741 cents/octave |
Petrtri (29 & 8)
Equal Temperament Mappings
| 2 | 11/5 | 13/5 | |
[ ⟨ | 29 | 33 | 40 | ] |
⟨ | 8 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 11/5 | 13/5 | |
[ ⟨ | 1 | 0 | 1 | ] |
⟨ | 0 | 3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7413, 454.9642]
TE Step Tunings (cents)
⟨40.48981, 3.19210]
TE Tuning Map (cents)
⟨1199.741, 1364.893, 1654.706]
TE Mistunings (cents)
⟨-0.259, -0.112, 0.492]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.112663 |
Adjusted Error |
0.359213 cents |
TE Error |
0.260581 cents/octave |
Phicordial (103 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 103 | 163 | 239 | 289 | 356 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 7 | -4 | 1 | 17 | ] |
⟨ | 0 | -18 | 21 | 6 | -45 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7635, 361.3522]
TE Step Tunings (cents)
⟨11.23133, 4.39363]
TE Tuning Map (cents)
⟨1200.764, 1901.005, 2785.342, 3368.877, 4152.131]
TE Mistunings (cents)
⟨0.764, -0.950, -0.972, 0.051, 0.813]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.358741 |
Adjusted Error |
1.675473 cents |
TE Error |
0.484320 cents/octave |
Phicordial (103 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 7 | -4 | 1 | 17 | 4 | ] |
⟨ | 0 | -18 | 21 | 6 | -45 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7066, 361.3333]
TE Step Tunings (cents)
⟨11.21314, 4.57530]
TE Tuning Map (cents)
⟨1200.707, 1900.947, 2785.173, 3368.706, 4152.014, 4441.493]
TE Mistunings (cents)
⟨0.707, -1.008, -1.141, -0.119, 0.696, 0.966]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.681546 |
Adjusted Error |
1.692817 cents |
TE Error |
0.457464 cents/octave |
Phicordial (10 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | 41 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | 421 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 7 | -4 | 1 | 17 | 4 | 8 | ] |
⟨ | 0 | -18 | 21 | 6 | -45 | -1 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5933, 361.3011]
TE Step Tunings (cents)
⟨4.38327, 11.23069]
TE Tuning Map (cents)
⟨1200.593, 1900.734, 2784.949, 3368.400, 4151.539, 4441.072, 4907.833]
TE Mistunings (cents)
⟨0.593, -1.221, -1.365, -0.426, 0.221, 0.545, 2.877]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.119967 |
Adjusted Error |
2.092847 cents |
TE Error |
0.512016 cents/octave |
Photia (12 & 65)
Equal Temperament Mappings
| 2 | 3 | 5 | 17 | 19 | |
[ ⟨ | 12 | 19 | 28 | 49 | 51 | ] |
⟨ | 65 | 103 | 151 | 266 | 276 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 17 | 19 | |
[ ⟨ | 1 | 2 | -1 | 7 | 3 | ] |
⟨ | 0 | -1 | 8 | -7 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7244, 498.4156]
TE Step Tunings (cents)
⟨4.45625, 17.63461]
TE Tuning Map (cents)
⟨1199.724, 1901.033, 2787.601, 4909.162, 5094.420]
TE Mistunings (cents)
⟨-0.276, -0.922, 1.287, 4.206, -3.093]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.735140 |
Adjusted Error |
2.887580 cents |
TE Error |
0.679762 cents/octave |
Picasso (83 & 11)
Equal Temperament Mappings
| 2 | 7 | 9 | 11 | 13 | |
[ ⟨ | 83 | 233 | 263 | 287 | 307 | ] |
⟨ | 11 | 31 | 35 | 38 | 41 | ] ⟩ |
Reduced Mapping
| 2 | 7 | 9 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 4 | -1 | ] |
⟨ | 0 | 10 | 12 | -3 | 26 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2643, 216.9370]
TE Step Tunings (cents)
⟨14.22130, 1.80876]
TE Tuning Map (cents)
⟨1200.264, 3369.634, 3803.509, 4150.246, 4440.098]
TE Mistunings (cents)
⟨0.264, 0.809, -0.401, -1.072, -0.429]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.850774 |
Adjusted Error |
0.873037 cents |
TE Error |
0.235928 cents/octave |
Picasso (11 & 83)
Equal Temperament Mappings
| 2 | 7 | 9 | 11 | 13 | 15 | |
[ ⟨ | 11 | 31 | 35 | 38 | 41 | 43 | ] |
⟨ | 83 | 233 | 263 | 287 | 307 | 324 | ] ⟩ |
Reduced Mapping
| 2 | 7 | 9 | 11 | 13 | 15 | |
[ ⟨ | 1 | 1 | 1 | 4 | -1 | 3 | ] |
⟨ | 0 | 10 | 12 | -3 | 26 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4325, 216.9475]
TE Step Tunings (cents)
⟨0.15146, 14.44297]
TE Tuning Map (cents)
⟨1200.433, 3369.907, 3803.802, 4150.888, 4440.202, 4686.035]
TE Mistunings (cents)
⟨0.433, 1.081, -0.108, -0.430, -0.326, -2.234]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
2.655369 |
Adjusted Error |
1.321745 cents |
TE Error |
0.338311 cents/octave |
Picasso (11 & 83)
Equal Temperament Mappings
| 2 | 7 | 9 | 11 | 13 | 15 | 17 | |
[ ⟨ | 11 | 31 | 35 | 38 | 41 | 43 | 45 | ] |
⟨ | 83 | 233 | 263 | 287 | 307 | 324 | 339 | ] ⟩ |
Reduced Mapping
| 2 | 7 | 9 | 11 | 13 | 15 | 17 | |
[ ⟨ | 1 | 1 | 1 | 4 | -1 | 3 | 3 | ] |
⟨ | 0 | 10 | 12 | -3 | 26 | 5 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5237, 216.9544]
TE Step Tunings (cents)
⟨-0.64022, 14.54899]
TE Tuning Map (cents)
⟨1200.524, 3370.068, 3803.976, 4151.231, 4440.291, 4686.343, 4903.297]
TE Mistunings (cents)
⟨0.524, 1.242, 0.066, -0.086, -0.237, -1.926, -1.658]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
2.482796 |
Adjusted Error |
1.451343 cents |
TE Error |
0.355072 cents/octave |
Pirate (4296 & 2513)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 4296 | 6809 | 9975 | ] |
⟨ | 2513 | 3983 | 5835 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0002, 185.7542]
TE Step Tunings (cents)
⟨0.25192, 0.04686]
TE Tuning Map (cents)
⟨1200.000, 1901.955, 2786.313]
TE Mistunings (cents)
⟨0.000, 0.000, -0.001]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.314114 |
Adjusted Error |
0.000428 cents |
TE Error |
0.000184 cents/octave |
Plutino (41 & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 15 | 15 | 22 | ] |
⟨ | 0 | -7 | -26 | -25 | -38 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7860, 585.1786]
TE Step Tunings (cents)
⟨29.42890, -3.39942]
TE Tuning Map (cents)
⟨1199.786, 1902.680, 2782.148, 3367.326, 4158.507]
TE Mistunings (cents)
⟨-0.214, 0.725, -4.166, -1.500, 7.189]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.307709 |
Adjusted Error |
4.397230 cents |
TE Error |
1.271085 cents/octave |
Plutino (41 & 2cde)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 15 | 15 | 22 | 12 | ] |
⟨ | 0 | -7 | -26 | -25 | -38 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0433, 584.7650]
TE Step Tunings (cents)
⟨29.51332, -5.50149]
TE Tuning Map (cents)
⟨1199.043, 1901.862, 2781.760, 3366.525, 4157.883, 4447.515]
TE Mistunings (cents)
⟨-0.957, -0.093, -4.554, -2.301, 6.565, 6.987]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.044364 |
Adjusted Error |
5.363265 cents |
TE Error |
1.449359 cents/octave |
Pluto (41 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 80 | 127 | 186 | 225 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 5 | 15 | 15 | ] |
⟨ | 0 | -7 | -26 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4731, 584.8899]
TE Step Tunings (cents)
⟨11.74237, 8.97545]
TE Tuning Map (cents)
⟨1199.473, 1903.136, 2784.959, 3369.849]
TE Mistunings (cents)
⟨-0.527, 1.181, -1.355, 1.023]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.299998 |
Adjusted Error |
1.604247 cents |
TE Error |
0.571444 cents/octave |
Pluto (41 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 15 | 15 | 2 | ] |
⟨ | 0 | -7 | -26 | -25 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1848, 584.7164]
TE Step Tunings (cents)
⟨9.10860, 10.32165]
TE Tuning Map (cents)
⟨1199.185, 1902.909, 2785.144, 3369.861, 4152.519]
TE Mistunings (cents)
⟨-0.815, 0.954, -1.169, 1.035, 1.201]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.758473 |
Adjusted Error |
1.917903 cents |
TE Error |
0.554398 cents/octave |
Pluto (41 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 15 | 15 | 2 | -8 | ] |
⟨ | 0 | -7 | -26 | -25 | 3 | 24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2482, 584.7568]
TE Step Tunings (cents)
⟨9.86156, 9.93655]
TE Tuning Map (cents)
⟨1199.248, 1902.944, 2785.047, 3369.804, 4152.767, 4440.177]
TE Mistunings (cents)
⟨-0.752, 0.989, -1.267, 0.978, 1.449, -0.351]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.030057 |
Adjusted Error |
1.885396 cents |
TE Error |
0.509506 cents/octave |
Pnict (171 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 15 | 24 | 35 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | 10 | 11 | 6 | ] |
⟨ | 0 | -13 | -10 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0312, 161.4116]
TE Step Tunings (cents)
⟨6.99562, 0.25614]
TE Tuning Map (cents)
⟨1200.094, 1901.961, 2786.227, 3368.657]
TE Mistunings (cents)
⟨0.094, 0.006, -0.087, -0.169]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.951884 |
Adjusted Error |
0.164853 cents |
TE Error |
0.058722 cents/octave |
Pocus (19 & 44)
Contorted
Magic (order 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 44 | 70 | 102 | 124 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 2 | -1 | ] |
⟨ | 0 | 10 | 2 | 24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0824, 190.3476]
TE Step Tunings (cents)
⟨32.28438, 13.35635]
TE Tuning Map (cents)
⟨1201.082, 1903.476, 2782.860, 3367.259]
TE Mistunings (cents)
⟨1.082, 1.521, -3.454, -1.567]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.597358 |
Adjusted Error |
3.015814 cents |
TE Error |
1.074254 cents/octave |
Pogo (130 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | -2 | 7 | 0 | ] |
⟨ | 0 | -3 | 24 | -5 | 25 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9701, 166.0803]
TE Step Tunings (cents)
⟨1.91697, 4.24435]
TE Tuning Map (cents)
⟨1199.940, 1901.640, 2785.986, 3369.389, 4152.007]
TE Mistunings (cents)
⟨-0.060, -0.315, -0.328, 0.563, 0.689]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.089528 |
Adjusted Error |
0.585023 cents |
TE Error |
0.169110 cents/octave |
Pogo (130 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | -2 | 7 | 0 | 11 | ] |
⟨ | 0 | -3 | 24 | -5 | 25 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9671, 166.0803]
TE Step Tunings (cents)
⟨2.01588, 4.18692]
TE Tuning Map (cents)
⟨1199.934, 1901.627, 2785.993, 3369.368, 4152.008, 4440.594]
TE Mistunings (cents)
⟨-0.066, -0.328, -0.320, 0.542, 0.690, 0.066]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.335462 |
Adjusted Error |
0.572219 cents |
TE Error |
0.154635 cents/octave |
Polypyth (46 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 11 | -10 | -11 | ] |
⟨ | 0 | -1 | -21 | 31 | 35 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3343, 495.5482]
TE Step Tunings (cents)
⟨5.37825, 7.86723]
TE Tuning Map (cents)
⟨1199.334, 1903.120, 2786.164, 3368.652, 4151.511]
TE Mistunings (cents)
⟨-0.666, 1.165, -0.149, -0.174, 0.193]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.488952 |
Adjusted Error |
1.543110 cents |
TE Error |
0.446059 cents/octave |
Polypyth (46 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 11 | -10 | -11 | -12 | ] |
⟨ | 0 | -1 | -21 | 31 | 35 | 38 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3777, 495.5754]
TE Step Tunings (cents)
⟨4.26541, 8.29065]
TE Tuning Map (cents)
⟨1199.378, 1903.180, 2786.072, 3369.060, 4151.983, 4439.332]
TE Mistunings (cents)
⟨-0.622, 1.225, -0.242, 0.234, 0.665, -1.196]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.454519 |
Adjusted Error |
1.615710 cents |
TE Error |
0.436626 cents/octave |
Ponens (7p & 27p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 27 | 43 | 63 | 76 | 93 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 4 | 3 | 4 | ] |
⟨ | 0 | 4 | 9 | -8 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5795, 176.9873]
TE Step Tunings (cents)
⟨15.66082, 40.33162]
TE Tuning Map (cents)
⟨1198.580, 1906.529, 2791.465, 3378.420, 4126.700, 4440.343]
TE Mistunings (cents)
⟨-1.420, 4.574, 5.152, 9.594, -24.618, -0.184]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.164838 |
Adjusted Error |
13.306703 cents |
TE Error |
3.595979 cents/octave |
Pontiac (171 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 53 | 84 | 123 | 149 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | -1 | 19 | ] |
⟨ | 0 | -1 | 8 | -39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0989, 498.2844]
TE Step Tunings (cents)
⟨6.89674, 0.39162]
TE Tuning Map (cents)
⟨1200.099, 1901.913, 2786.176, 3368.788]
TE Mistunings (cents)
⟨0.099, -0.042, -0.137, -0.038]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.605902 |
Adjusted Error |
0.167030 cents |
TE Error |
0.059497 cents/octave |
Porcupine (7 & 15)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.5623, 163.8906]
TE Step Tunings (cents)
⟨59.23368, 52.32843]
TE Tuning Map (cents)
⟨1199.562, 1907.453, 2779.234]
TE Mistunings (cents)
⟨-0.438, 5.498, -7.080]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.959950 |
Adjusted Error |
6.218940 cents |
TE Error |
2.678352 cents/octave |
Porcupine (22 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 15 | 24 | 35 | 42 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.8391, 162.5868]
TE Step Tunings (cents)
⟨43.12358, 16.60803]
TE Tuning Map (cents)
⟨1197.839, 1907.918, 2780.583, 3371.199]
TE Mistunings (cents)
⟨-2.161, 5.963, -5.730, 2.373]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.726220 |
Adjusted Error |
7.106033 cents |
TE Error |
2.531220 cents/octave |
Porcupine (15 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 2 | 4 | ] |
⟨ | 0 | -3 | -5 | 6 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.3520, 162.5239]
TE Step Tunings (cents)
⟨19.53090, 41.15402]
TE Tuning Map (cents)
⟨1198.352, 1909.132, 2782.437, 3371.847, 4143.313]
TE Mistunings (cents)
⟨-1.648, 7.177, -3.877, 3.021, -8.005]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.567100 |
Adjusted Error |
8.823097 cents |
TE Error |
2.550447 cents/octave |
Porcupine (7p & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 2 | 4 | 4 | ] |
⟨ | 0 | -3 | -5 | 6 | -4 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.0716, 162.3112]
TE Step Tunings (cents)
⟨40.52487, 60.89317]
TE Tuning Map (cents)
⟨1197.072, 1907.210, 2779.659, 3368.010, 4139.041, 4463.664]
TE Mistunings (cents)
⟨-2.928, 5.255, -6.655, -0.816, -12.276, 23.136]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.432343 |
Adjusted Error |
13.474050 cents |
TE Error |
3.641202 cents/octave |
Porcupinefish (15 & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 2 | 4 | 6 | ] |
⟨ | 0 | -3 | -5 | 6 | -4 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.3520, 162.0544]
TE Step Tunings (cents)
⟨29.85856, 34.11244]
TE Tuning Map (cents)
⟨1198.352, 1910.541, 2784.784, 3369.031, 4145.190, 4435.187]
TE Mistunings (cents)
⟨-1.648, 8.586, -1.530, 0.205, -6.128, -5.341]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.062455 |
Adjusted Error |
9.278158 cents |
TE Error |
2.507312 cents/octave |
Porkpie (7p & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 2 | 4 | 3 | ] |
⟨ | 0 | -3 | -5 | 6 | -4 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0929, 163.7005]
TE Step Tunings (cents)
⟨1.13168, 54.18959]
TE Tuning Map (cents)
⟨1200.093, 1909.084, 2781.776, 3382.389, 4145.570, 4418.781]
TE Mistunings (cents)
⟨0.093, 7.129, -4.537, 13.563, -5.748, -21.747]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.605095 |
Adjusted Error |
13.903164 cents |
TE Error |
3.757165 cents/octave |
Porky (22 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 7 | 11 | 16 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 5 | ] |
⟨ | 0 | -3 | -5 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0870, 164.4241]
TE Step Tunings (cents)
⟨49.11845, 17.06873]
TE Tuning Map (cents)
⟨1200.087, 1906.902, 2778.141, 3369.650]
TE Mistunings (cents)
⟨0.087, 4.947, -8.173, 0.824]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.058862 |
Adjusted Error |
6.617392 cents |
TE Error |
2.357162 cents/octave |
Porky (22 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 5 | 4 | ] |
⟨ | 0 | -3 | -5 | -16 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8930, 164.6746]
TE Step Tunings (cents)
⟨48.17103, 20.16147]
TE Tuning Map (cents)
⟨1200.893, 1907.762, 2779.306, 3369.672, 4144.874]
TE Mistunings (cents)
⟨0.893, 5.807, -7.008, 0.846, -6.444]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.910073 |
Adjusted Error |
8.022808 cents |
TE Error |
2.319112 cents/octave |
Porky (22p & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 5 | 4 | 3 | ] |
⟨ | 0 | -3 | -5 | -16 | -4 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.1850, 165.2534]
TE Step Tunings (cents)
⟨45.41083, 29.02096]
TE Tuning Map (cents)
⟨1202.185, 1908.610, 2780.288, 3366.870, 4147.726, 4432.822]
TE Mistunings (cents)
⟨2.185, 6.655, -6.026, -1.956, -3.592, -7.706]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.181670 |
Adjusted Error |
8.942171 cents |
TE Error |
2.416516 cents/octave |
Porkypine (7 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 15 | 24 | 35 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 2 | 3 | 4 | ] |
⟨ | 0 | -3 | -5 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3508, 164.1256]
TE Step Tunings (cents)
⟨61.18301, 51.47132]
TE Tuning Map (cents)
⟨1200.351, 1908.325, 2780.424, 4144.901]
TE Mistunings (cents)
⟨0.351, 6.370, -5.889, -6.417]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.834962 |
Adjusted Error |
8.845052 cents |
TE Error |
2.556793 cents/octave |
Portending (72 & 87 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 3 | 5 | 6 | ] |
⟨ | 0 | 3 | 0 | -1 | 4 | 12 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4547, 234.0014, 2785.7830]
TE Step Tunings (cents)
⟨8.21332, 6.84773, 0.32545]
TE Tuning Map (cents)
⟨1200.455, 1902.459, 2785.783, 3367.363, 4152.496, 4439.180]
TE Mistunings (cents)
⟨0.455, 0.504, -0.531, -1.463, 1.178, -1.348]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.253596 |
Adjusted Error |
1.417595 cents |
TE Error |
0.383088 cents/octave |
Portent (31 & 72 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 3 | 5 | ] |
⟨ | 0 | 3 | 0 | -1 | 4 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4905, 233.7840, 2786.3003]
TE Step Tunings (cents)
⟨-0.49840, 12.96206, 6.14506]
TE Tuning Map (cents)
⟨1200.491, 1901.842, 2786.300, 3367.688, 4151.288]
TE Mistunings (cents)
⟨0.491, -0.113, -0.013, -1.138, -0.030]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.177081 |
Adjusted Error |
0.990839 cents |
TE Error |
0.286417 cents/octave |
Portentous (72 & 87 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 3 | 5 | -5 | ] |
⟨ | 0 | 3 | 0 | -1 | 4 | -3 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4891, 233.7796, 2786.1182]
TE Step Tunings (cents)
⟨7.71961, 5.75845, 4.63524]
TE Tuning Map (cents)
⟨1200.489, 1901.828, 2786.118, 3367.688, 4151.446, 4440.688]
TE Mistunings (cents)
⟨0.489, -0.127, -0.196, -1.138, 0.128, 0.161]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.313256 |
Adjusted Error |
0.979478 cents |
TE Error |
0.264692 cents/octave |
Potassium (12 & 9 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -5 | -2 | ] |
⟨ | 0 | 1 | 0 | 2 | 2 | ] |
⟨ | 0 | 0 | 1 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7734, 1895.8134, 2784.5241]
TE Step Tunings (cents)
⟨73.55038, 0.36423, 44.84154]
TE Tuning Map (cents)
⟨1199.773, 1895.813, 2784.524, 3361.808, 4176.604]
TE Mistunings (cents)
⟨-0.227, -6.142, -1.790, -7.018, 25.286]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.082053 |
Adjusted Error |
13.428297 cents |
TE Error |
3.881648 cents/octave |
Potassium (9 & 12f & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | -2 | -8 | ] |
⟨ | 0 | 1 | 0 | 2 | 2 | 3 | ] |
⟨ | 0 | 0 | 1 | 2 | 1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8821, 1895.8240, 2784.4049]
TE Step Tunings (cents)
⟨46.59732, 26.74212, 45.96007]
TE Tuning Map (cents)
⟨1199.882, 1895.824, 2784.405, 3361.047, 4176.289, 4441.630]
TE Mistunings (cents)
⟨-0.118, -6.131, -1.909, -7.779, 24.971, 1.102]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.090119 |
Adjusted Error |
13.128385 cents |
TE Error |
3.547791 cents/octave |
Prajapati (31 & 31e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 31 | 49 | 72 | 87 | 108 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨38.7364, 6.5236]
TE Step Tunings (cents)
⟨32.21278, 6.52362]
TE Tuning Map (cents)
⟨1200.828, 1898.083, 2789.020, 3370.066, 4151.318]
TE Mistunings (cents)
⟨0.828, -3.872, 2.707, 1.241, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.581929 |
Adjusted Error |
4.432153 cents |
TE Error |
1.281179 cents/octave |
Prajapati (31 & 31e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 31 | 49 | 72 | 87 | 108 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨38.7116, 9.1717]
TE Step Tunings (cents)
⟨29.54000, 9.17165]
TE Tuning Map (cents)
⟨1200.061, 1896.871, 2787.239, 3367.913, 4151.318, 4451.839]
TE Mistunings (cents)
⟨0.061, -5.084, 0.925, -0.913, -0.000, 11.312]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.339397 |
Adjusted Error |
6.739592 cents |
TE Error |
1.821295 cents/octave |
Prodigal (31 & 19e & 72)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | -13 | -4 | ] |
⟨ | 0 | 1 | 0 | 2 | 6 | -1 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7810, 1900.7226, 2785.9117]
TE Step Tunings (cents)
⟨7.17162, -1.00457, 13.85483]
TE Tuning Map (cents)
⟨1200.781, 1900.723, 2785.912, 3369.364, 4151.918, 4439.800]
TE Mistunings (cents)
⟨0.781, -1.232, -0.402, 0.538, 0.600, -0.727]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.271358 |
Adjusted Error |
1.755222 cents |
TE Error |
0.474328 cents/octave |
Prodigious (72 & 41 & 12f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | -13 | -23 | ] |
⟨ | 0 | 1 | 0 | 2 | 6 | 11 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6299, 1901.3383, 2784.7202]
TE Step Tunings (cents)
⟨14.02225, 4.09105, 1.94123]
TE Tuning Map (cents)
⟨1200.630, 1901.338, 2784.720, 3368.967, 4154.001, 4439.114]
TE Mistunings (cents)
⟨0.630, -0.617, -1.594, 0.141, 2.683, -1.414]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.255122 |
Adjusted Error |
2.009513 cents |
TE Error |
0.543047 cents/octave |
Prodigy (31 & 41 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -5 | -13 | ] |
⟨ | 0 | 1 | 0 | 2 | 6 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7864, 1901.0431, 2785.3356]
TE Step Tunings (cents)
⟨18.11550, 15.69133, -0.34489]
TE Tuning Map (cents)
⟨1200.786, 1901.043, 2785.336, 3368.825, 4152.042]
TE Mistunings (cents)
⟨0.786, -0.912, -0.978, -0.001, 0.724]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.165602 |
Adjusted Error |
1.673972 cents |
TE Error |
0.483886 cents/octave |
Prodigy (31 & 41 & 12f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | -13 | -8 | ] |
⟨ | 0 | 1 | 0 | 2 | 6 | 3 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8322, 1901.7185, 2783.3313]
TE Step Tunings (cents)
⟨15.40326, 20.21403, -8.78701]
TE Tuning Map (cents)
⟨1200.832, 1901.719, 2783.331, 3365.939, 4149.487, 4448.492]
TE Mistunings (cents)
⟨0.832, -0.236, -2.982, -2.887, -1.831, 7.964]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.156666 |
Adjusted Error |
4.361387 cents |
TE Error |
1.178613 cents/octave |
Progress (15 & 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 0 | 0 | 3 | ] |
⟨ | 0 | -3 | 5 | 6 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.5543, 560.0029]
TE Step Tunings (cents)
⟨75.54847, 31.16364]
TE Tuning Map (cents)
⟨1195.554, 1906.654, 2800.015, 3360.018, 4146.666]
TE Mistunings (cents)
⟨-4.446, 4.699, 13.701, -8.808, -4.652]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.517379 |
Adjusted Error |
13.400564 cents |
TE Error |
3.873632 cents/octave |
Progress (15 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 0 | 0 | 3 | 7 | ] |
⟨ | 0 | -3 | 5 | 6 | 1 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.1433, 560.0892]
TE Step Tunings (cents)
⟨39.63015, 35.33477]
TE Tuning Map (cents)
⟨1195.143, 1905.162, 2800.446, 3360.535, 4145.519, 4445.379]
TE Mistunings (cents)
⟨-4.857, 3.207, 14.132, -8.291, -5.799, 4.851]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.657158 |
Adjusted Error |
13.340158 cents |
TE Error |
3.605020 cents/octave |
Progression (8d & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 8 | 13 | 19 | 23 | ] |
⟨ | 9 | 14 | 21 | 25 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1194.0766, 140.2313]
TE Step Tunings (cents)
⟨68.00500, 72.22629]
TE Tuning Map (cents)
⟨1194.077, 1895.233, 2808.847, 3369.772]
TE Mistunings (cents)
⟨-5.923, -6.722, 22.533, 0.946]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.209782 |
Adjusted Error |
17.039863 cents |
TE Error |
6.069722 cents/octave |
Progression (9 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 2 | 2 | 3 | ] |
⟨ | 0 | 5 | 3 | 7 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1194.8347, 140.1410]
TE Step Tunings (cents)
⟨73.70675, 66.43425]
TE Tuning Map (cents)
⟨1194.835, 1895.540, 2810.092, 3370.656, 4145.068]
TE Mistunings (cents)
⟨-5.165, -6.415, 23.779, 1.831, -6.250]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.106094 |
Adjusted Error |
19.050692 cents |
TE Error |
5.506885 cents/octave |
Progression (9 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 2 | 2 | 3 | 3 | ] |
⟨ | 0 | 5 | 3 | 7 | 4 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.5069, 140.2242]
TE Step Tunings (cents)
⟨73.71367, 66.51048]
TE Tuning Map (cents)
⟨1195.507, 1896.628, 2811.686, 3372.583, 4147.417, 4427.866]
TE Mistunings (cents)
⟨-4.493, -5.327, 25.373, 3.757, -3.901, -12.662]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.009153 |
Adjusted Error |
19.444241 cents |
TE Error |
5.254576 cents/octave |
Protannic (31 & 72 & 29g)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | 294 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 0 | -5 | -13 | 21 | 12 | ] |
⟨ | 0 | 1 | 0 | 2 | 6 | -8 | -5 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | -2 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.9353, 1901.1068, 2785.6154]
TE Step Tunings (cents)
⟨6.43275, 13.12730, 1.94327]
TE Tuning Map (cents)
⟨1200.935, 1901.107, 2785.615, 3368.768, 4151.328, 4439.557, 4905.690]
TE Mistunings (cents)
⟨0.935, -0.848, -0.698, -0.058, 0.010, -0.971, 0.734]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.280398 |
Adjusted Error |
1.797195 cents |
TE Error |
0.439685 cents/octave |
Ptolemy (7p & 38d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | 8 | 2 | ] |
⟨ | 0 | 2 | 8 | -18 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.8972, 348.0490]
TE Step Tunings (cents)
⟨17.00545, 28.54892]
TE Tuning Map (cents)
⟨1203.897, 1899.995, 2784.392, 3366.295, 4148.040]
TE Mistunings (cents)
⟨3.897, -1.960, -1.921, -2.531, -3.278]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.355075 |
Adjusted Error |
6.763626 cents |
TE Error |
1.955126 cents/octave |
Ptolemy (7p & 38df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 0 | 8 | 2 | 6 | ] |
⟨ | 0 | 2 | 8 | -18 | 5 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.9617, 348.0556]
TE Step Tunings (cents)
⟨17.46616, 28.46575]
TE Tuning Map (cents)
⟨1203.962, 1900.073, 2784.445, 3366.693, 4148.201, 4439.326]
TE Mistunings (cents)
⟨3.962, -1.882, -1.869, -2.133, -3.116, -1.202]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.161292 |
Adjusted Error |
6.627732 cents |
TE Error |
1.791066 cents/octave |
Pycnic (19 & 17p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 17 | 27 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | -1 | 8 | ] |
⟨ | 0 | -3 | 7 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.3583, 569.3091]
TE Step Tunings (cents)
⟨51.38753, 13.35266]
TE Tuning Map (cents)
⟨1203.358, 1902.148, 2781.805, 3364.467]
TE Mistunings (cents)
⟨3.358, 0.193, -4.509, -4.359]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.545778 |
Adjusted Error |
5.867712 cents |
TE Error |
2.090121 cents/octave |
Qak (171 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 121 | 192 | 281 | 340 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -14 | -3 | -20 | ] |
⟨ | 0 | 41 | 14 | 60 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0566, 456.1655]
TE Step Tunings (cents)
⟨6.57554, 0.62512]
TE Tuning Map (cents)
⟨1200.057, 1901.994, 2786.147, 3368.799]
TE Mistunings (cents)
⟨0.057, 0.039, -0.166, -0.027]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.639883 |
Adjusted Error |
0.133331 cents |
TE Error |
0.047494 cents/octave |
Qeema (4e & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 2 | -1 | ] |
⟨ | 0 | 6 | 5 | 3 | 17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1204.6156, 315.9410]
TE Step Tunings (cents)
⟨20.19892, 59.14842]
TE Tuning Map (cents)
⟨1204.616, 1895.646, 2784.321, 3357.054, 4166.382]
TE Mistunings (cents)
⟨4.616, -6.309, -1.993, -11.772, 15.064]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.772634 |
Adjusted Error |
13.347129 cents |
TE Error |
3.858185 cents/octave |
Qeema (4ef & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 2 | -1 | 0 | ] |
⟨ | 0 | 6 | 5 | 3 | 17 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1204.5699, 316.2441]
TE Step Tunings (cents)
⟨14.21072, 60.40668]
TE Tuning Map (cents)
⟨1204.570, 1897.465, 2785.791, 3357.872, 4171.580, 4427.418]
TE Mistunings (cents)
⟨4.570, -4.490, -0.523, -10.954, 20.262, -13.110]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.699550 |
Adjusted Error |
14.414472 cents |
TE Error |
3.895340 cents/octave |
Qilin (58 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 4 | 6 | ] |
⟨ | 0 | -8 | -13 | -23 | -49 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3892, 62.1646]
TE Step Tunings (cents)
⟨18.26094, 7.38184]
TE Tuning Map (cents)
⟨1199.389, 1901.461, 2790.027, 3367.770, 4150.268]
TE Mistunings (cents)
⟨-0.611, -0.494, 3.714, -1.056, -1.050]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.622448 |
Adjusted Error |
2.794058 cents |
TE Error |
0.807664 cents/octave |
Qilin (58 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 4 | 6 | 5 | ] |
⟨ | 0 | -8 | -13 | -23 | -49 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2904, 62.1603]
TE Step Tunings (cents)
⟨18.24542, 7.42401]
TE Tuning Map (cents)
⟨1199.290, 1901.299, 2789.788, 3367.476, 4149.890, 4442.446]
TE Mistunings (cents)
⟨-0.710, -0.656, 3.474, -1.350, -1.428, 1.918]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.220443 |
Adjusted Error |
2.859994 cents |
TE Error |
0.772879 cents/octave |
Qintosec (65 & 270)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 65 | 103 | 151 | ] |
⟨ | 270 | 428 | 627 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨239.9786, 111.0952]
TE Step Tunings (cents)
⟨0.32403, 4.36604]
TE Tuning Map (cents)
⟨1199.893, 1902.041, 2786.436]
TE Mistunings (cents)
⟨-0.107, 0.086, 0.123]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.213690 |
Adjusted Error |
0.175550 cents |
TE Error |
0.075605 cents/octave |
Qintosec (10 & 65d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 65 | 103 | 151 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 9 | 10 | 13 | ] |
⟨ | 0 | -2 | 3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.8408, 128.3623]
TE Step Tunings (cents)
⟨10.17588, 16.88377]
TE Tuning Map (cents)
⟨1199.204, 1901.842, 2783.494, 3374.654]
TE Mistunings (cents)
⟨-0.796, -0.113, -2.819, 5.829]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.767157 |
Adjusted Error |
3.557630 cents |
TE Error |
1.267253 cents/octave |
Quadbilu (24 & 200)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 24 | 38 | 83 | ] |
⟨ | 200 | 317 | 692 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨149.9917, 48.0261]
TE Step Tunings (cents)
⟨0.71807, 5.91350]
TE Tuning Map (cents)
⟨1199.934, 1901.866, 4151.742]
TE Mistunings (cents)
⟨-0.066, -0.089, 0.424]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.063126 |
Adjusted Error |
0.299946 cents |
TE Error |
0.086704 cents/octave |
Quadbiru (22 & 26)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 22 | 35 | 62 | ] |
⟨ | 26 | 41 | 73 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.4799, 274.1626]
TE Step Tunings (cents)
⟨32.76524, 18.38941]
TE Tuning Map (cents)
⟨1198.960, 1900.749, 3373.871]
TE Mistunings (cents)
⟨-1.040, -1.206, 5.045]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.070438 |
Adjusted Error |
3.584592 cents |
TE Error |
1.276857 cents/octave |
Quadbizo (41 & 14)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 41 | 65 | 115 | ] |
⟨ | 14 | 22 | 39 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.1746, 87.8432]
TE Step Tunings (cents)
⟨29.62981, -1.04626]
TE Tuning Map (cents)
⟨1200.175, 1902.920, 3366.624]
TE Mistunings (cents)
⟨0.175, 0.965, -2.202]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.162618 |
Adjusted Error |
1.633976 cents |
TE Error |
0.582034 cents/octave |
Quadla-Quadzo (77 & 125)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 77 | 122 | 216 | ] |
⟨ | 125 | 198 | 351 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.3112, 124.7646]
TE Step Tunings (cents)
⟨8.47104, 4.38433]
TE Tuning Map (cents)
⟨1200.311, 1901.564, 3368.644]
TE Mistunings (cents)
⟨0.311, -0.391, -0.182]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.229734 |
Adjusted Error |
0.652154 cents |
TE Error |
0.232302 cents/octave |
Quadlo (7 & 6p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.0318, 175.3655]
TE Step Tunings (cents)
⟨150.83891, 24.52658]
TE Tuning Map (cents)
⟨1203.032, 1904.494, 4135.192]
TE Mistunings (cents)
⟨3.032, 2.539, -16.126]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.044320 |
Adjusted Error |
11.557972 cents |
TE Error |
3.341003 cents/octave |
Quadluyo (7 & 6 & 20ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 6 | 10 | 14 | 21 | ] |
⟨ | 20 | 32 | 47 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 1 | 0 | 1 | ] |
⟨ | 0 | 4 | 0 | 1 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5650, 175.5064, 2783.1870]
TE Step Tunings (cents)
⟨80.43827, -4.06408, 33.04408]
TE Tuning Map (cents)
⟨1199.565, 1901.591, 2783.187, 4158.259]
TE Mistunings (cents)
⟨-0.435, -0.364, -3.127, 6.941]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.166986 |
Adjusted Error |
4.265225 cents |
TE Error |
1.232926 cents/octave |
Quadraennealimmal (342 & 369)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 369 | 585 | 857 | 1036 | 1277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 17 | 25 | 28 | 39 | ] |
⟨ | 0 | -8 | -12 | -8 | -23 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3372, 45.5963]
TE Step Tunings (cents)
⟨2.72658, 0.72505]
TE Tuning Map (cents)
⟨1200.034, 1901.962, 2786.274, 3368.670, 4151.435]
TE Mistunings (cents)
⟨0.034, 0.007, -0.040, -0.155, 0.117]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
20.829309 |
Adjusted Error |
0.116971 cents |
TE Error |
0.033812 cents/octave |
Quadritikleismic (72 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 140 | 222 | 325 | 393 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨300.0520, 17.0029]
TE Step Tunings (cents)
⟨5.00321, 5.99983]
TE Tuning Map (cents)
⟨1200.208, 1902.329, 2785.482, 3368.584]
TE Mistunings (cents)
⟨0.208, 0.374, -0.831, -0.242]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.454858 |
Adjusted Error |
0.679974 cents |
TE Error |
0.242212 cents/octave |
Quadritikleismic (72 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 140 | 222 | 325 | 393 | 484 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 6 | 9 | 11 | 14 | ] |
⟨ | 0 | 6 | 5 | 4 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨300.0996, 16.9303]
TE Step Tunings (cents)
⟨7.63695, 4.64670]
TE Tuning Map (cents)
⟨1200.398, 1902.179, 2785.548, 3368.816, 4150.603]
TE Mistunings (cents)
⟨0.398, 0.224, -0.766, -0.009, -0.715]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.523765 |
Adjusted Error |
0.889025 cents |
TE Error |
0.256986 cents/octave |
Quadritikleismic (72 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 140 | 222 | 325 | 393 | 484 | 518 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 4 | 6 | 9 | 11 | 14 | 14 | ] |
⟨ | 0 | 6 | 5 | 4 | -3 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨300.0959, 16.9941]
TE Step Tunings (cents)
⟨5.39828, 5.79791]
TE Tuning Map (cents)
⟨1200.384, 1902.540, 2785.834, 3369.031, 4150.360, 4439.260]
TE Mistunings (cents)
⟨0.384, 0.585, -0.480, 0.205, -0.958, -1.268]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.012147 |
Adjusted Error |
1.095096 cents |
TE Error |
0.295937 cents/octave |
Quadru (12 & 4)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨299.1341, 100.1896]
TE Step Tunings (cents)
⟨100.18961, -1.43475]
TE Tuning Map (cents)
⟨1196.536, 1894.994, 3390.664]
TE Mistunings (cents)
⟨-3.464, -6.961, 21.839]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.036126 |
Adjusted Error |
15.529450 cents |
TE Error |
5.531702 cents/octave |
Quadru + Ya (4 & 8d & 4c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 4 | 6 | 9 | 11 | ] |
⟨ | 8 | 13 | 19 | 23 | ] |
⟨ | 4 | 6 | 10 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 4 | 0 | 0 | 5 | ] |
⟨ | 0 | 1 | 0 | 1 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨299.1341, 1894.9941, 2786.3137]
TE Step Tunings (cents)
⟨104.83745, 100.18961, -6.08259]
TE Tuning Map (cents)
⟨1196.536, 1894.994, 2786.314, 3390.664]
TE Mistunings (cents)
⟨-3.464, -6.961, -0.000, 21.839]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.167338 |
Adjusted Error |
13.448898 cents |
TE Error |
4.790594 cents/octave |
Quadru-Asepyo (12 & 41 & 18)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 18 | 29 | 42 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 3 | 4 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 4 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3479, 1901.9550, -204.3389]
TE Step Tunings (cents)
⟨14.47897, 25.68549, -1.47250]
TE Tuning Map (cents)
⟨1200.348, 1901.955, 2783.688, 3371.019]
TE Mistunings (cents)
⟨0.348, 0.000, -2.626, 2.193]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.246555 |
Adjusted Error |
1.990133 cents |
TE Error |
0.708900 cents/octave |
Quadru-Ayo (31 & 22 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 14 | 22 | 32 | 39 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 3 | 1 | ] |
⟨ | 0 | 1 | 3 | 2 | ] |
⟨ | 0 | 0 | 4 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8936, 1900.6182, -1628.9488]
TE Step Tunings (cents)
⟨27.01119, 17.15855, -1.06724]
TE Tuning Map (cents)
⟨1199.894, 1900.618, 2785.740, 3372.181]
TE Mistunings (cents)
⟨-0.106, -1.337, -0.574, 3.355]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.169079 |
Adjusted Error |
2.087733 cents |
TE Error |
0.743666 cents/octave |
Quadtho (19 & 10)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 19 | 30 | 70 | ] |
⟨ | 10 | 16 | 37 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.6460, 125.0241]
TE Step Tunings (cents)
⟨48.59541, 27.83333]
TE Tuning Map (cents)
⟨1201.646, 1903.196, 4431.512]
TE Mistunings (cents)
⟨1.646, 1.241, -9.016]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.050581 |
Adjusted Error |
6.500675 cents |
TE Error |
1.756730 cents/octave |
Quanharuk (41 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 15 | 12 | -7 | ] |
⟨ | 0 | 5 | -40 | -29 | 33 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9711, 380.3424]
TE Step Tunings (cents)
⟨-1.25403, 5.58655]
TE Tuning Map (cents)
⟨1199.971, 1901.712, 2785.871, 3369.724, 4151.501]
TE Mistunings (cents)
⟨-0.029, -0.243, -0.443, 0.898, 0.183]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.594441 |
Adjusted Error |
0.630038 cents |
TE Error |
0.182122 cents/octave |
Quanharuk (224 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 15 | 12 | -7 | -15 | ] |
⟨ | 0 | 5 | -40 | -29 | 33 | 59 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9664, 380.3403]
TE Step Tunings (cents)
⟨5.61103, -1.38793]
TE Tuning Map (cents)
⟨1199.966, 1901.701, 2785.884, 3369.728, 4151.465, 4440.581]
TE Mistunings (cents)
⟨-0.034, -0.254, -0.430, 0.902, 0.147, 0.054]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.243430 |
Adjusted Error |
0.615987 cents |
TE Error |
0.166463 cents/octave |
Quanic (94 & 111)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] |
⟨ | 111 | 176 | 258 | 312 | 384 | 411 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | -4 | 0 | 1 | 3 | ] |
⟨ | 0 | 5 | 54 | 24 | 21 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6648, 140.4563]
TE Step Tunings (cents)
⟨4.99602, 6.57692]
TE Tuning Map (cents)
⟨1199.665, 1901.946, 2785.980, 3370.951, 4149.247, 4441.732]
TE Mistunings (cents)
⟨-0.335, -0.009, -0.334, 2.125, -2.071, 1.204]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.750103 |
Adjusted Error |
1.634299 cents |
TE Error |
0.441650 cents/octave |
Quartemka (87 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 87 | 138 | 202 | ] |
⟨ | 26 | 41 | 60 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9798, 137.9596]
TE Step Tunings (cents)
⟨12.98880, 2.69055]
TE Tuning Map (cents)
⟨1199.980, 1902.767, 2785.170]
TE Mistunings (cents)
⟨-0.020, 0.812, -1.143]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.375118 |
Adjusted Error |
0.952848 cents |
TE Error |
0.410369 cents/octave |
Quartemka (87 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | 6 | 2 | 3 | ] |
⟨ | 0 | -21 | -32 | 7 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3063, 138.0247]
TE Step Tunings (cents)
⟨12.27604, 5.08809]
TE Tuning Map (cents)
⟨1200.306, 1902.706, 2785.047, 3366.786, 4153.018]
TE Mistunings (cents)
⟨0.306, 0.751, -1.267, -2.040, 1.700]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.260369 |
Adjusted Error |
1.821203 cents |
TE Error |
0.526446 cents/octave |
Quartemka (87 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 6 | 2 | 3 | 6 | ] |
⟨ | 0 | -21 | -32 | 7 | 4 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2719, 138.0213]
TE Step Tunings (cents)
⟨12.26254, 5.13196]
TE Tuning Map (cents)
⟨1200.272, 1902.641, 2784.951, 3366.693, 4152.901, 4441.206]
TE Mistunings (cents)
⟨0.272, 0.686, -1.363, -2.133, 1.583, 0.678]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.633525 |
Adjusted Error |
1.804085 cents |
TE Error |
0.487533 cents/octave |
Quartemka (87 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 301 | 322 | ] |
⟨ | 26 | 41 | 60 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 1 | 4 | 6 | 3 | 6 | ] |
⟨ | 0 | -21 | -32 | 4 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9127, 137.9468]
TE Step Tunings (cents)
⟨13.12071, 2.24658]
TE Tuning Map (cents)
⟨1199.913, 1902.768, 2785.178, 4151.526, 4440.540]
TE Mistunings (cents)
⟨-0.087, 0.813, -1.136, 0.208, 0.012]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.330523 |
Adjusted Error |
1.185677 cents |
TE Error |
0.320415 cents/octave |
Quarto (27e & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -11 | -18 | -5 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.3216, 45.0693]
TE Step Tunings (cents)
⟨26.52022, 18.54907]
TE Tuning Map (cents)
⟨1198.322, 1900.881, 2783.718, 3369.618, 4162.317]
TE Mistunings (cents)
⟨-1.678, -1.074, -2.596, 0.793, 10.999]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.956943 |
Adjusted Error |
5.934439 cents |
TE Error |
1.715437 cents/octave |
Quarto (27e & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |
⟨ | 0 | -11 | -18 | -5 | -14 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.9466, 45.1655]
TE Step Tunings (cents)
⟨24.64246, 20.52308]
TE Tuning Map (cents)
⟨1198.947, 1901.072, 2783.860, 3371.012, 4163.469, 4434.462]
TE Mistunings (cents)
⟨-1.053, -0.883, -2.454, 2.186, 12.151, -6.066]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.793470 |
Adjusted Error |
6.438958 cents |
TE Error |
1.740052 cents/octave |
Quartonic (53 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | -11 | -18 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1441, 45.1064]
TE Step Tunings (cents)
⟨18.72952, 7.64739]
TE Tuning Map (cents)
⟨1199.144, 1902.117, 2785.517, 3371.900]
TE Mistunings (cents)
⟨-0.856, 0.162, -0.797, 3.074]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.303549 |
Adjusted Error |
2.014710 cents |
TE Error |
0.717654 cents/octave |
Quartonic (27e & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 5 | ] |
⟨ | 0 | -11 | -18 | -5 | -41 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8811, 44.9995]
TE Step Tunings (cents)
⟨12.78950, 16.10499]
TE Tuning Map (cents)
⟨1198.881, 1902.768, 2786.653, 3371.646, 4149.427]
TE Mistunings (cents)
⟨-1.119, 0.813, 0.339, 2.820, -1.891]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.280311 |
Adjusted Error |
2.609139 cents |
TE Error |
0.754210 cents/octave |
Quartonic (53 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 5 | 4 | ] |
⟨ | 0 | -11 | -18 | -5 | -41 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3026, 45.0541]
TE Step Tunings (cents)
⟨17.15692, 10.74022]
TE Tuning Map (cents)
⟨1199.303, 1903.011, 2786.935, 3372.638, 4149.297, 4436.778]
TE Mistunings (cents)
⟨-0.697, 1.056, 0.621, 3.812, -2.021, -3.750]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.118643 |
Adjusted Error |
3.100820 cents |
TE Error |
0.837960 cents/octave |
Quartz (53 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 3 | ] |
⟨ | 0 | -11 | -18 | -5 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5143, 45.4049]
TE Step Tunings (cents)
⟨19.98669, 5.43153]
TE Tuning Map (cents)
⟨1200.514, 1901.575, 2784.255, 3374.518, 4146.402]
TE Mistunings (cents)
⟨0.514, -0.380, -2.059, 5.692, -4.916]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.232407 |
Adjusted Error |
4.162717 cents |
TE Error |
1.203295 cents/octave |
Quartz (53 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 3 | 4 | ] |
⟨ | 0 | -11 | -18 | -5 | 12 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5961, 45.4099]
TE Step Tunings (cents)
⟨19.93921, 5.53146]
TE Tuning Map (cents)
⟨1200.596, 1901.683, 2784.410, 3374.739, 4146.707, 4439.105]
TE Mistunings (cents)
⟨0.596, -0.272, -1.903, 5.913, -4.611, -1.422]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.866838 |
Adjusted Error |
4.114320 cents |
TE Error |
1.111846 cents/octave |
Quasiorwell (270 & 301)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 301 | 477 | 699 | 845 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -7 | 3 | 1 | ] |
⟨ | 0 | 38 | -3 | 8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9403, 271.0935]
TE Step Tunings (cents)
⟨3.21642, 1.10135]
TE Tuning Map (cents)
⟨1199.940, 1901.973, 2786.540, 3368.689]
TE Mistunings (cents)
⟨-0.060, 0.018, 0.227, -0.137]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.267246 |
Adjusted Error |
0.175305 cents |
TE Error |
0.062445 cents/octave |
Quasiorwell (270 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -7 | 3 | 1 | -11 | ] |
⟨ | 0 | 38 | -3 | 8 | 64 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9484, 271.0989]
TE Step Tunings (cents)
⟨4.42649, 0.15468]
TE Tuning Map (cents)
⟨1199.948, 1902.119, 2786.549, 3368.739, 4150.896]
TE Mistunings (cents)
⟨-0.052, 0.164, 0.235, -0.086, -0.422]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.383885 |
Adjusted Error |
0.307024 cents |
TE Error |
0.088750 cents/octave |
Quasiorwell (270 & 301)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 301 | 477 | 699 | 845 | 1041 | 1114 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -7 | 3 | 1 | -11 | 22 | ] |
⟨ | 0 | 38 | -3 | 8 | 64 | -81 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9916, 271.1051]
TE Step Tunings (cents)
⟨3.21575, 1.10212]
TE Tuning Map (cents)
⟨1199.992, 1902.054, 2786.659, 3368.833, 4150.821, 4440.300]
TE Mistunings (cents)
⟨-0.008, 0.099, 0.346, 0.007, -0.497, -0.228]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.856517 |
Adjusted Error |
0.339748 cents |
TE Error |
0.091813 cents/octave |
Quasisuper (22 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 17 | 27 | 40 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | -3 | 2 | ] |
⟨ | 0 | -1 | 13 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.9954, 490.5302]
TE Step Tunings (cents)
⟨39.95340, 18.70709]
TE Tuning Map (cents)
⟨1196.995, 1903.460, 2785.907, 3375.051]
TE Mistunings (cents)
⟨-3.005, 1.505, -0.407, 6.225]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.465117 |
Adjusted Error |
5.414273 cents |
TE Error |
1.928603 cents/octave |
Quasisupra (22 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -3 | 2 | 1 | ] |
⟨ | 0 | -1 | 13 | 2 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.5868, 490.8064]
TE Step Tunings (cents)
⟨39.39834, 19.46019]
TE Tuning Map (cents)
⟨1197.587, 1904.367, 2787.723, 3376.786, 4142.425]
TE Mistunings (cents)
⟨-2.413, 2.412, 1.409, 7.960, -8.893]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.207375 |
Adjusted Error |
7.444854 cents |
TE Error |
2.152045 cents/octave |
Quasisupra (17c & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -3 | 2 | 1 | 0 | ] |
⟨ | 0 | -1 | 13 | 2 | 6 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.3002, 491.2995]
TE Step Tunings (cents)
⟨23.88742, 36.00973]
TE Tuning Map (cents)
⟨1198.300, 1905.301, 2791.993, 3379.199, 4146.097, 4421.696]
TE Mistunings (cents)
⟨-1.700, 3.346, 5.679, 10.374, -5.221, -18.832]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.044763 |
Adjusted Error |
11.219833 cents |
TE Error |
3.032027 cents/octave |
Quasitemp (41 & 4)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 4 | 6 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 5 | 5 | 5 | ] |
⟨ | 0 | -14 | -11 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.9278, 292.9360]
TE Step Tunings (cents)
⟨29.18359, 1.10015]
TE Tuning Map (cents)
⟨1200.928, 1903.534, 2782.342, 3368.214]
TE Mistunings (cents)
⟨0.928, 1.579, -3.971, -0.611]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.174878 |
Adjusted Error |
3.083727 cents |
TE Error |
1.098446 cents/octave |
Quasitemp (41 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 5 | 5 | 2 | ] |
⟨ | 0 | -14 | -11 | -9 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9647, 292.5380]
TE Step Tunings (cents)
⟨24.22254, 5.59028]
TE Tuning Map (cents)
⟨1199.965, 1904.292, 2781.906, 3366.982, 4155.157]
TE Mistunings (cents)
⟨-0.035, 2.337, -4.408, -1.844, 3.839]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.701437 |
Adjusted Error |
4.220557 cents |
TE Error |
1.220015 cents/octave |
Quasithird (612 & 836)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 612 | 970 | 1421 | 1718 | 2117 | ] |
⟨ | 836 | 1325 | 1941 | 2347 | 2892 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 4 | 5 | 5 | 19 | 20 | ] |
⟨ | 0 | 5 | 16 | -29 | -23 | ] ⟩ |
TE Generator Tunings (cents)
⟨300.0073, 80.3890]
TE Step Tunings (cents)
⟨0.88553, 0.78719]
TE Tuning Map (cents)
⟨1200.029, 1901.981, 2786.260, 3368.859, 4151.200]
TE Mistunings (cents)
⟨0.029, 0.026, -0.054, 0.033, -0.118]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
25.217374 |
Adjusted Error |
0.084279 cents |
TE Error |
0.024362 cents/octave |
Quasithird (224 & 612)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 612 | 970 | 1421 | 1718 | 2117 | 2265 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 4 | 5 | 5 | 19 | 20 | 14 | ] |
⟨ | 0 | 5 | 16 | -29 | -23 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨299.9985, 80.3848]
TE Step Tunings (cents)
⟨1.06398, 1.57134]
TE Tuning Map (cents)
⟨1199.994, 1901.916, 2786.149, 3368.812, 4151.119, 4441.133]
TE Mistunings (cents)
⟨-0.006, -0.039, -0.165, -0.014, -0.199, 0.605]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
23.252755 |
Adjusted Error |
0.285623 cents |
TE Error |
0.077186 cents/octave |
Quato (41 & 4e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 5 | 5 | 5 | 12 | ] |
⟨ | 0 | -14 | -11 | -9 | -35 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2786, 293.1627]
TE Step Tunings (cents)
⟨28.62785, 6.88418]
TE Tuning Map (cents)
⟨1201.279, 1902.115, 2781.603, 3367.929, 4154.649]
TE Mistunings (cents)
⟨1.279, 0.160, -4.710, -0.897, 3.331]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.696034 |
Adjusted Error |
4.031284 cents |
TE Error |
1.165302 cents/octave |
Quato (41 & 4ef)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 5 | 5 | 12 | 12 | ] |
⟨ | 0 | -14 | -11 | -9 | -35 | -34 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.4158, 293.2736]
TE Step Tunings (cents)
⟨28.32143, 10.05924]
TE Tuning Map (cents)
⟨1201.416, 1901.249, 2781.069, 3367.617, 4152.414, 4445.687]
TE Mistunings (cents)
⟨1.416, -0.706, -5.244, -1.209, 1.096, 5.160]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.659507 |
Adjusted Error |
4.664699 cents |
TE Error |
1.260580 cents/octave |
Quatracot (224 & 34)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 224 | 355 | 520 | ] |
⟨ | 34 | 54 | 79 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.0409, 176.7875]
TE Step Tunings (cents)
⟨5.18279, 1.15107]
TE Tuning Map (cents)
⟨1200.082, 1902.049, 2785.986]
TE Mistunings (cents)
⟨0.082, 0.094, -0.327]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.724984 |
Adjusted Error |
0.232492 cents |
TE Error |
0.100129 cents/octave |
Quatracot (224 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 7 | 7 | 23 | 19 | ] |
⟨ | 0 | -13 | -8 | -59 | -41 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0847, 176.8311]
TE Step Tunings (cents)
⟨3.41902, 2.28584]
TE Tuning Map (cents)
⟨1200.169, 1901.789, 2785.944, 3368.915, 4151.535]
TE Mistunings (cents)
⟨0.169, -0.166, -0.369, 0.089, 0.217]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.557195 |
Adjusted Error |
0.409128 cents |
TE Error |
0.118265 cents/octave |
Quatracot (224 & 190)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 7 | 7 | 23 | 19 | 13 | ] |
⟨ | 0 | -13 | -8 | -59 | -41 | -19 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0571, 176.8206]
TE Step Tunings (cents)
⟨3.64702, 2.01674]
TE Tuning Map (cents)
⟨1200.114, 1901.733, 2785.836, 3368.901, 4151.443, 4441.152]
TE Mistunings (cents)
⟨0.114, -0.222, -0.478, 0.075, 0.125, 0.625]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.583004 |
Adjusted Error |
0.491039 cents |
TE Error |
0.132697 cents/octave |
Quinbigu (31 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 31 | 49 | 72 | ] |
⟨ | 27 | 43 | 63 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.4049, 309.9865]
TE Step Tunings (cents)
⟨26.19891, 14.34218]
TE Tuning Map (cents)
⟨1199.405, 1900.460, 2789.879]
TE Mistunings (cents)
⟨-0.595, -1.495, 3.565]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.599401 |
Adjusted Error |
2.543821 cents |
TE Error |
1.095564 cents/octave |
Quinbiru (58 & 31)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 58 | 92 | 163 | ] |
⟨ | 31 | 49 | 87 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.6399, 310.1222]
TE Step Tunings (cents)
⟨16.67035, 7.50838]
TE Tuning Map (cents)
⟨1199.640, 1901.582, 3370.496]
TE Mistunings (cents)
⟨-0.360, -0.373, 1.670]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.595329 |
Adjusted Error |
1.189553 cents |
TE Error |
0.423727 cents/octave |
Quincy (72 & 145)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 145 | 230 | 337 | 407 | 502 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -30 | -49 | -14 | -39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1288, 16.6148]
TE Step Tunings (cents)
⟨8.88117, 3.86679]
TE Tuning Map (cents)
⟨1200.129, 1901.815, 2786.264, 3367.780, 4152.540]
TE Mistunings (cents)
⟨0.129, -0.140, -0.050, -1.046, 1.222]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.021903 |
Adjusted Error |
0.830913 cents |
TE Error |
0.240188 cents/octave |
Quincy (72 & 217)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 217 | 344 | 504 | 609 | 751 | 803 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 5 | ] |
⟨ | 0 | -30 | -49 | -14 | -39 | -94 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0557, 16.6028]
TE Step Tunings (cents)
⟨2.65081, 4.65068]
TE Tuning Map (cents)
⟨1200.056, 1902.026, 2786.628, 3367.727, 4152.712, 4439.611]
TE Mistunings (cents)
⟨0.056, 0.071, 0.314, -1.099, 1.394, -0.917]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.023036 |
Adjusted Error |
0.955750 cents |
TE Error |
0.258280 cents/octave |
Quindecic (15 & 15f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 55 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 0 | 0 | 0 | 0 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨79.7773, 27.0010]
TE Step Tunings (cents)
⟨52.77629, 27.00100]
TE Tuning Map (cents)
⟨1196.659, 1914.655, 2792.205, 3350.646, 4148.419, 4440.528]
TE Mistunings (cents)
⟨-3.341, 12.700, 5.892, -18.179, -2.898, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.514881 |
Adjusted Error |
16.852245 cents |
TE Error |
4.554120 cents/octave |
Quinlu (17 & 9)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 17 | 27 | 59 | ] |
⟨ | 9 | 14 | 31 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.7760, 140.4122]
TE Step Tunings (cents)
⟨64.93365, 10.54488]
TE Tuning Map (cents)
⟨1198.776, 1900.837, 4157.977]
TE Mistunings (cents)
⟨-1.224, -1.118, 6.659]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.304415 |
Adjusted Error |
4.768812 cents |
TE Error |
1.378496 cents/octave |
Quinmite (99 & 301)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 99 | 157 | 230 | ] |
⟨ | 301 | 477 | 699 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9229, 302.9778]
TE Step Tunings (cents)
⟨2.17671, 3.27053]
TE Tuning Map (cents)
⟨1199.923, 1901.785, 2786.742]
TE Mistunings (cents)
⟨-0.077, -0.170, 0.428]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.797531 |
Adjusted Error |
0.304038 cents |
TE Error |
0.130942 cents/octave |
Quinmite (99 & 301)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 301 | 477 | 699 | 845 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -7 | -5 | -3 | ] |
⟨ | 0 | 34 | 29 | 23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9362, 302.9808]
TE Step Tunings (cents)
⟨2.06656, 3.30680]
TE Tuning Map (cents)
⟨1199.936, 1901.793, 2786.762, 3368.749]
TE Mistunings (cents)
⟨-0.064, -0.162, 0.448, -0.076]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.737744 |
Adjusted Error |
0.321492 cents |
TE Error |
0.114518 cents/octave |
Quinru (17 & 9)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.3660, 139.7745]
TE Step Tunings (cents)
⟨58.60493, 22.56469]
TE Tuning Map (cents)
⟨1199.366, 1898.239, 3377.154]
TE Mistunings (cents)
⟨-0.634, -3.716, 8.328]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.359072 |
Adjusted Error |
6.214241 cents |
TE Error |
2.213557 cents/octave |
Quint (5 & 25d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 25 | 40 | 58 | 71 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 0 | 0 | -2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨238.5093, 36.7010]
TE Step Tunings (cents)
⟨55.00425, 36.70102]
TE Tuning Map (cents)
⟨1192.547, 1908.075, 2788.710, 3375.832]
TE Mistunings (cents)
⟨-7.453, 6.120, 2.396, 7.006]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.257075 |
Adjusted Error |
12.377277 cents |
TE Error |
4.408875 cents/octave |
Quintannic (43 & 60e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 43 | 68 | 100 | 121 | 149 | 159 | 176 | ] |
⟨ | 60 | 95 | 139 | 168 | 207 | 222 | 245 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 1 | 5 | 7 | 8 | 3 | 7 | ] |
⟨ | 0 | 5 | -23 | -36 | -39 | 6 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7423, 139.9018]
TE Step Tunings (cents)
⟨11.08953, 12.06488]
TE Tuning Map (cents)
⟨1200.742, 1900.251, 2785.971, 3368.732, 4149.769, 4441.638, 4907.652]
TE Mistunings (cents)
⟨0.742, -1.704, -0.343, -0.094, -1.549, 1.110, 2.696]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.104754 |
Adjusted Error |
2.420690 cents |
TE Error |
0.592223 cents/octave |
Quinthu (17 & 77)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 17 | 27 | 63 | ] |
⟨ | 77 | 122 | 285 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.8407, 140.3695]
TE Step Tunings (cents)
⟨9.88548, 13.39984]
TE Tuning Map (cents)
⟨1199.841, 1901.688, 4441.739]
TE Mistunings (cents)
⟨-0.159, -0.267, 1.212]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.288219 |
Adjusted Error |
0.856948 cents |
TE Error |
0.231580 cents/octave |
Quinzogu (31 & 27 & 60)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 27 | 43 | 63 | 76 | ] |
⟨ | 60 | 95 | 139 | 168 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 4 | 0 | 0 | ] |
⟨ | 0 | 5 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1657, -579.7624, 2787.4307]
TE Step Tunings (cents)
⟨12.56231, 10.54138, 8.76861]
TE Tuning Map (cents)
⟨1200.166, 1901.851, 2787.431, 3367.193]
TE Mistunings (cents)
⟨0.166, -0.104, 1.117, -1.633]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.226455 |
Adjusted Error |
1.088620 cents |
TE Error |
0.387774 cents/octave |
Radon (41 & 5)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 41 | 65 | 115 | 142 | ] |
⟨ | 5 | 8 | 14 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 1 | 3 | 6 | ] |
⟨ | 0 | 3 | -1 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9725, 234.3752]
TE Step Tunings (cents)
⟨28.09672, 9.60141]
TE Tuning Map (cents)
⟨1199.973, 1903.098, 3365.542, 4152.958]
TE Mistunings (cents)
⟨-0.027, 1.143, -3.283, 1.640]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.037043 |
Adjusted Error |
2.514679 cents |
TE Error |
0.726905 cents/octave |
Ragismic (171 & 270 & 323)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 323 | 512 | 750 | 907 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 1 | ] |
⟨ | 0 | 1 | 0 | 7 | ] |
⟨ | 0 | 0 | 1 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0018, 1901.9869, 2786.2746]
TE Step Tunings (cents)
⟨3.41727, 1.44123, 0.70129]
TE Tuning Map (cents)
⟨1200.002, 1901.987, 2786.275, 3368.812]
TE Mistunings (cents)
⟨0.002, 0.032, -0.039, -0.014]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.178734 |
Adjusted Error |
0.037604 cents |
TE Error |
0.013395 cents/octave |
Raider (4296 & 1171)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 4296 | 6809 | 9975 | ] |
⟨ | 1171 | 1856 | 2719 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9999, 343.2961]
TE Step Tunings (cents)
⟨0.26979, 0.03499]
TE Tuning Map (cents)
⟨1200.000, 1901.955, 2786.313]
TE Mistunings (cents)
⟨-0.000, 0.000, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
17.432683 |
Adjusted Error |
0.000434 cents |
TE Error |
0.000187 cents/octave |
Restles (87 & 164)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 87 | 138 | 202 | ] |
⟨ | 164 | 260 | 381 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.6887, 358.4657]
TE Step Tunings (cents)
⟨3.63123, 5.38885]
TE Tuning Map (cents)
⟨1199.689, 1902.211, 2786.661]
TE Mistunings (cents)
⟨-0.311, 0.256, 0.347]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.434833 |
Adjusted Error |
0.511184 cents |
TE Error |
0.220155 cents/octave |
Restles (10 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 77 | 122 | 179 | 216 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -2 | 8 | 4 | ] |
⟨ | 0 | 12 | -19 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0335, 358.5585]
TE Step Tunings (cents)
⟨8.23336, 14.51558]
TE Tuning Map (cents)
⟨1200.034, 1902.635, 2787.657, 3365.900]
TE Mistunings (cents)
⟨0.034, 0.680, 1.343, -2.926]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.596154 |
Adjusted Error |
1.778781 cents |
TE Error |
0.633615 cents/octave |
Restles (87 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 77 | 122 | 179 | 216 | 266 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -2 | 8 | 4 | -7 | ] |
⟨ | 0 | 12 | -19 | -4 | 35 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1125, 358.6049]
TE Step Tunings (cents)
⟨9.99384, 4.29414]
TE Tuning Map (cents)
⟨1200.112, 1903.034, 2787.406, 3366.030, 4150.386]
TE Mistunings (cents)
⟨0.112, 1.079, 1.092, -2.796, -0.932]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.566135 |
Adjusted Error |
2.053666 cents |
TE Error |
0.593643 cents/octave |
Restles (87 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 77 | 122 | 179 | 216 | 266 | 285 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -2 | 8 | 4 | -7 | 4 | ] |
⟨ | 0 | 12 | -19 | -4 | 35 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0498, 358.5888]
TE Step Tunings (cents)
⟨10.19048, 4.07114]
TE Tuning Map (cents)
⟨1200.050, 1902.966, 2787.212, 3365.844, 4150.259, 4441.610]
TE Mistunings (cents)
⟨0.050, 1.011, 0.898, -2.982, -1.059, 1.083]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.035427 |
Adjusted Error |
2.063760 cents |
TE Error |
0.557707 cents/octave |
Restles (10 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 37 | ] |
⟨ | 77 | 122 | 179 | 216 | 285 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 1 | -2 | 8 | 4 | 4 | ] |
⟨ | 0 | 12 | -19 | -4 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9767, 358.5411]
TE Step Tunings (cents)
⟨8.19971, 14.51922]
TE Tuning Map (cents)
⟨1199.977, 1902.540, 2787.533, 3365.742, 4441.366]
TE Mistunings (cents)
⟨-0.023, 0.585, 1.219, -3.084, 0.838]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.006502 |
Adjusted Error |
2.138580 cents |
TE Error |
0.577926 cents/octave |
Restles (87 & 164)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 87 | 138 | 202 | 322 | ] |
⟨ | 164 | 260 | 381 | 607 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | -2 | 8 | 4 | ] |
⟨ | 0 | 12 | -19 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7048, 358.4705]
TE Step Tunings (cents)
⟨3.62704, 5.39117]
TE Tuning Map (cents)
⟨1199.705, 1902.236, 2786.699, 4440.349]
TE Mistunings (cents)
⟨-0.295, 0.281, 0.385, -0.179]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.572728 |
Adjusted Error |
0.713051 cents |
TE Error |
0.192694 cents/octave |
Revelation (31 & 10e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 10 | 16 | 23 | 28 | 34 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 3 | 3 | 5 | ] |
⟨ | 0 | 6 | -7 | -2 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3405, 116.4065]
TE Step Tunings (cents)
⟨37.27576, 4.57919]
TE Tuning Map (cents)
⟨1201.341, 1899.779, 2789.176, 3371.209, 4144.199]
TE Mistunings (cents)
⟨1.341, -2.176, 2.863, 2.383, -7.119]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.865488 |
Adjusted Error |
4.930414 cents |
TE Error |
1.425209 cents/octave |
Revelation (31 & 10e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 10 | 16 | 23 | 28 | 34 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 3 | 5 | 4 | ] |
⟨ | 0 | 6 | -7 | -2 | -16 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6267, 116.3283]
TE Step Tunings (cents)
⟨37.34392, 4.29651]
TE Tuning Map (cents)
⟨1200.627, 1898.596, 2787.582, 3369.224, 4141.881, 4453.522]
TE Mistunings (cents)
⟨0.627, -3.359, 1.268, 0.398, -9.437, 12.994]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.617653 |
Adjusted Error |
7.549560 cents |
TE Error |
2.040179 cents/octave |
Rhinoceros (19p & 1ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 1 | 2 | 3 | 3 | 4 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -8 | -13 | -4 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2212, 62.9378]
TE Step Tunings (cents)
⟨62.93776, 5.40379]
TE Tuning Map (cents)
⟨1201.221, 1898.940, 2785.473, 3351.913, 4175.507]
TE Mistunings (cents)
⟨1.221, -3.015, -0.841, -16.913, 24.189]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.116229 |
Adjusted Error |
14.712027 cents |
TE Error |
4.252730 cents/octave |
Rhinoceros (19p & 1ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |
⟨ | 0 | -8 | -13 | -4 | -10 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.2886, 63.1635]
TE Step Tunings (cents)
⟨63.16354, 2.18134]
TE Tuning Map (cents)
⟨1202.289, 1899.269, 2785.740, 3354.212, 4177.519, 4430.173]
TE Mistunings (cents)
⟨2.289, -2.686, -0.574, -14.614, 26.201, -10.355]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.996356 |
Adjusted Error |
15.141891 cents |
TE Error |
4.091917 cents/octave |
Ringo (10p & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 5 | 4 | 2 | ] |
⟨ | 0 | 2 | -9 | -4 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.4391, 354.0683]
TE Step Tunings (cents)
⟨-3.66938, 45.63455]
TE Tuning Map (cents)
⟨1195.439, 1903.576, 2790.581, 3365.483, 4161.220]
TE Mistunings (cents)
⟨-4.561, 1.621, 4.267, -3.343, 9.902]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.976770 |
Adjusted Error |
9.131184 cents |
TE Error |
2.639504 cents/octave |
Ringo (10p & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 5 | 4 | 2 | 4 | ] |
⟨ | 0 | 2 | -9 | -4 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.0316, 354.2805]
TE Step Tunings (cents)
⟨42.61112, 45.28943]
TE Tuning Map (cents)
⟨1196.032, 1904.593, 2791.633, 3367.004, 4163.466, 4429.846]
TE Mistunings (cents)
⟨-3.968, 2.638, 5.319, -1.822, 12.148, -10.682]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.806034 |
Adjusted Error |
10.117263 cents |
TE Error |
2.734070 cents/octave |
Ripple (12 & 11c)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 11 | 17 | 25 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.2835, 100.8618]
TE Step Tunings (cents)
⟨90.80316, 10.05868]
TE Tuning Map (cents)
⟨1200.283, 1896.258, 2793.956]
TE Mistunings (cents)
⟨0.283, -5.697, 7.642]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.559790 |
Adjusted Error |
6.544574 cents |
TE Error |
2.818595 cents/octave |
Ripple (12 & 1c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 1 | 2 | 3 | 3 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | -5 | -8 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.1130, 99.0775]
TE Step Tunings (cents)
⟨99.07746, 6.18352]
TE Tuning Map (cents)
⟨1195.113, 1894.839, 2792.719, 3387.184]
TE Mistunings (cents)
⟨-4.887, -7.116, 6.406, 18.358]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.502931 |
Adjusted Error |
13.639176 cents |
TE Error |
4.858373 cents/octave |
Ripple (12 & 1ce)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 1 | 2 | 3 | 3 | 4 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -5 | -8 | -2 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1192.9322, 98.7996]
TE Step Tunings (cents)
⟨98.79956, 7.33752]
TE Tuning Map (cents)
⟨1192.932, 1891.867, 2788.400, 3381.197, 4178.931]
TE Mistunings (cents)
⟨-7.068, -10.088, 2.086, 12.372, 27.614]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.347230 |
Adjusted Error |
20.431709 cents |
TE Error |
5.906089 cents/octave |
Rodan (46 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 46 | 73 | 107 | ] |
⟨ | 41 | 65 | 95 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.5623, 234.4425]
TE Step Tunings (cents)
⟨15.64311, 11.70681]
TE Tuning Map (cents)
⟨1199.562, 1902.890, 2785.960]
TE Mistunings (cents)
⟨-0.438, 0.935, -0.354]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.104140 |
Adjusted Error |
1.005529 cents |
TE Error |
0.433058 cents/octave |
Rodan (41 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 46 | 73 | 107 | 129 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | -1 | 3 | ] |
⟨ | 0 | 3 | 17 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2164, 234.4590]
TE Step Tunings (cents)
⟨16.83192, 11.08930]
TE Tuning Map (cents)
⟨1200.216, 1903.593, 2785.587, 3366.190]
TE Mistunings (cents)
⟨0.216, 1.638, -0.727, -2.636]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.069361 |
Adjusted Error |
2.031656 cents |
TE Error |
0.723691 cents/octave |
Rodan (41 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | -1 | 3 | 6 | ] |
⟨ | 0 | 3 | 17 | -1 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0571, 234.4699]
TE Step Tunings (cents)
⟨14.89911, 12.80855]
TE Tuning Map (cents)
⟨1200.057, 1903.467, 2785.931, 3365.702, 4152.234]
TE Mistunings (cents)
⟨0.057, 1.512, -0.383, -3.124, 0.916]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.639409 |
Adjusted Error |
2.320151 cents |
TE Error |
0.670674 cents/octave |
Rodan (41 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | -1 | 3 | 6 | 8 | ] |
⟨ | 0 | 3 | 17 | -1 | -13 | -22 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9887, 234.4799]
TE Step Tunings (cents)
⟨13.82153, 13.76752]
TE Tuning Map (cents)
⟨1199.989, 1903.429, 2786.170, 3365.486, 4151.693, 4441.351]
TE Mistunings (cents)
⟨-0.011, 1.474, -0.144, -3.340, 0.375, 0.824]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.216320 |
Adjusted Error |
2.313272 cents |
TE Error |
0.625134 cents/octave |
Rodan (46 & 41p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | 168 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 1 | -1 | 3 | 6 | 8 | 8 | ] |
⟨ | 0 | 3 | 17 | -1 | -13 | -22 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8361, 234.4925]
TE Step Tunings (cents)
⟨15.50170, 11.87215]
TE Tuning Map (cents)
⟨1199.836, 1903.314, 2786.536, 3365.016, 4150.615, 4439.855, 4908.840]
TE Mistunings (cents)
⟨-0.164, 1.359, 0.222, -3.810, -0.703, -0.673, 3.884]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.243542 |
Adjusted Error |
2.927186 cents |
TE Error |
0.716138 cents/octave |
Roman (26 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 3 | -1 | 0 | 3 | ] |
⟨ | 0 | -7 | -2 | 11 | 10 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.8528, 415.4576]
TE Step Tunings (cents)
⟨19.74424, 23.77595]
TE Tuning Map (cents)
⟨1202.853, 1903.207, 2777.643, 3367.181, 4154.576, 4439.474]
TE Mistunings (cents)
⟨2.853, 1.252, -8.671, -1.645, 3.259, -1.054]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.687216 |
Adjusted Error |
7.403823 cents |
TE Error |
2.000796 cents/octave |
Roulette (37 & 6)
Equal Temperament Mappings
| 2 | 5 | 7 | 11 | 13 | |
[ ⟨ | 37 | 86 | 104 | 128 | 137 | ] |
⟨ | 6 | 14 | 17 | 21 | 22 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 2 | 5 | ] |
⟨ | 0 | 2 | 5 | 9 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3084, 194.4822]
TE Step Tunings (cents)
⟨32.41511, -0.00843]
TE Tuning Map (cents)
⟨1199.308, 2787.581, 3371.028, 4148.957, 4440.684]
TE Mistunings (cents)
⟨-0.692, 1.268, 2.202, -2.361, 0.157]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.641449 |
Adjusted Error |
2.256465 cents |
TE Error |
0.609783 cents/octave |
Ru + Ya (12 & 22 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 6 | ] |
⟨ | 0 | 1 | 0 | -2 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.9667, 1904.4950, 2786.3137]
TE Step Tunings (cents)
⟨9.45930, 19.82580, 23.97361]
TE Tuning Map (cents)
⟨1196.967, 1904.495, 2786.314, 3372.810]
TE Mistunings (cents)
⟨-3.033, 2.540, -0.000, 3.984]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.088850 |
Adjusted Error |
5.211281 cents |
TE Error |
1.856296 cents/octave |
Rugu (12 & 5 & 4)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 4 | 6 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 0 | 2 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.4298, 1892.9863, 2795.9377]
TE Step Tunings (cents)
⟨87.08356, 22.51610, 9.71166]
TE Tuning Map (cents)
⟨1196.430, 1892.986, 2795.938, 3382.895]
TE Mistunings (cents)
⟨-3.570, -8.969, 9.624, 14.069]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.063240 |
Adjusted Error |
13.097097 cents |
TE Error |
4.665280 cents/octave |
Ruru (3d & 4)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.9490, 341.0064]
TE Step Tunings (cents)
⟨167.07648, 173.92990]
TE Tuning Map (cents)
⟨1196.949, 1878.962, 3416.917]
TE Mistunings (cents)
⟨-3.051, -22.993, 48.091]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.556252 |
Adjusted Error |
36.718700 cents |
TE Error |
13.079465 cents/octave |
Rurugu (5 & 12 & 6)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 6 | 10 | 14 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 4 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 2 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1193.9725, 1901.9550, 1395.1879]
TE Step Tunings (cents)
⟨13.32002, 83.55912, 20.77717]
TE Tuning Map (cents)
⟨1193.972, 1901.955, 2790.376, 3380.702]
TE Mistunings (cents)
⟨-6.028, -0.000, 4.062, 11.876]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.121542 |
Adjusted Error |
10.624223 cents |
TE Error |
3.784425 cents/octave |
Rurugu Nowa (6 & 1)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1193.9725, 201.2154]
TE Step Tunings (cents)
⟨201.21542, -13.32002]
TE Tuning Map (cents)
⟨1193.972, 2790.376, 3380.702]
TE Mistunings (cents)
⟨-6.028, 4.062, 11.876]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.513704 |
Adjusted Error |
12.267796 cents |
TE Error |
4.369877 cents/octave |
Ruyo (4 & 3d & 2cd)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 4 | 6 | 9 | 11 | ] |
⟨ | 3 | 5 | 7 | 9 | ] |
⟨ | 2 | 3 | 4 | 5 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -1 | ] |
⟨ | 0 | 1 | 0 | 1 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1207.1162, 1884.0784, 2747.9479]
TE Step Tunings (cents)
⟨186.90727, 146.80832, 9.53107]
TE Tuning Map (cents)
⟨1207.116, 1884.078, 2747.948, 3424.910]
TE Mistunings (cents)
⟨7.116, -17.877, -38.366, 56.084]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.049568 |
Adjusted Error |
40.923293 cents |
TE Error |
14.577171 cents/octave |
Ruyoyobi (10 & 8d & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 8 | 13 | 19 | 23 | ] |
⟨ | 7 | 11 | 16 | 20 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 3 | ] |
⟨ | 0 | 1 | 0 | -3 | ] |
⟨ | 0 | 0 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.1878, 1914.0437, 2769.0177]
TE Step Tunings (cents)
⟨67.97749, 38.42817, 29.71252]
TE Tuning Map (cents)
⟨1195.188, 1914.044, 2769.018, 3381.468]
TE Mistunings (cents)
⟨-4.812, 12.089, -17.296, 12.642]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.094538 |
Adjusted Error |
17.593379 cents |
TE Error |
6.266888 cents/octave |
Rym (270 & 224 & 118p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | 437 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 0 | 2 | 5 | 22 | ] |
⟨ | 0 | 1 | 0 | 7 | 5 | -9 | ] |
⟨ | 0 | 0 | 1 | -4 | -3 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9913, 1902.0079, 2786.2805]
TE Step Tunings (cents)
⟨2.60628, 1.85927, 0.67636]
TE Tuning Map (cents)
⟨1199.983, 1902.008, 2786.280, 3368.916, 4151.154, 4440.578]
TE Mistunings (cents)
⟨-0.017, 0.053, -0.033, 0.090, -0.163, 0.050]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.861463 |
Adjusted Error |
0.107604 cents |
TE Error |
0.029079 cents/octave |
Sagugu & Bizozogu (58 & 68)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 58 | 92 | 135 | 163 | ] |
⟨ | 68 | 108 | 158 | 191 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.4452, 123.6699]
TE Step Tunings (cents)
⟨8.66089, 10.24351]
TE Tuning Map (cents)
⟨1198.890, 1903.101, 2787.695, 3368.236]
TE Mistunings (cents)
⟨-1.110, 1.146, 1.381, -0.590]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.292516 |
Adjusted Error |
2.059237 cents |
TE Error |
0.733515 cents/octave |
Sagugu & Latrizo (10 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 46 | 73 | 107 | 129 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.7236, 234.8341]
TE Step Tunings (cents)
⟨3.67267, 25.27653]
TE Tuning Map (cents)
⟨1199.447, 1903.950, 2789.060, 3363.508]
TE Mistunings (cents)
⟨-0.553, 1.995, 2.747, -5.318]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.181494 |
Adjusted Error |
3.681176 cents |
TE Error |
1.311261 cents/octave |
Sagugu & Lulu (34 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 34 | 54 | 79 | 118 | ] |
⟨ | 24 | 38 | 56 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 2 | 4 | 3 | 9 | ] |
⟨ | 0 | -2 | 4 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.2099, 247.5951]
TE Step Tunings (cents)
⟨24.90786, 14.64802]
TE Tuning Map (cents)
⟨1198.420, 1901.649, 2788.010, 4154.913]
TE Mistunings (cents)
⟨-1.580, -0.306, 1.696, 3.595]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.534477 |
Adjusted Error |
3.522970 cents |
TE Error |
1.018367 cents/octave |
Sagugu & Rugu (12 & 2d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 2 | 3 | 5 | 5 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨598.3030, 97.8609]
TE Step Tunings (cents)
⟨97.86094, 11.13734]
TE Tuning Map (cents)
⟨1196.606, 1892.770, 2795.793, 3382.959]
TE Mistunings (cents)
⟨-3.394, -9.185, 9.479, 14.133]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.682089 |
Adjusted Error |
13.101165 cents |
TE Error |
4.666729 cents/octave |
Sagugu & Rurugu (12 & 8cd)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 8 | 13 | 18 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 4 | 6 | 10 | 11 | ] |
⟨ | 0 | 1 | -2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨298.9983, 101.5586]
TE Step Tunings (cents)
⟨95.88116, 5.67740]
TE Tuning Map (cents)
⟨1195.993, 1895.548, 2786.866, 3390.540]
TE Mistunings (cents)
⟨-4.007, -6.407, 0.552, 21.714]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.255115 |
Adjusted Error |
13.483705 cents |
TE Error |
4.802993 cents/octave |
Sagugu & Zozo (10 & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 24 | 38 | 56 | 67 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.2914, 247.0987]
TE Step Tunings (cents)
⟨36.27287, 34.91059]
TE Tuning Map (cents)
⟨1200.583, 1906.968, 2789.269, 3354.650]
TE Mistunings (cents)
⟨0.583, 5.013, 2.955, -14.176]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.163233 |
Adjusted Error |
8.591510 cents |
TE Error |
3.060358 cents/octave |
Salo (17 & 46)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 17 | 27 | 59 | ] |
⟨ | 46 | 73 | 159 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.1847, 494.8051]
TE Step Tunings (cents)
⟨23.47265, 17.39456]
TE Tuning Map (cents)
⟨1199.185, 1903.564, 4150.621]
TE Mistunings (cents)
⟨-0.815, 1.609, -0.697]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.375502 |
Adjusted Error |
2.631737 cents |
TE Error |
0.760743 cents/octave |
Salo & Thulo (17 & 29)
Equal Temperament Mappings
| 2 | 3 | 11 | 13 | |
[ ⟨ | 17 | 27 | 59 | 63 | ] |
⟨ | 29 | 46 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 11 | 13 | |
[ ⟨ | 1 | 2 | 8 | 7 | ] |
⟨ | 0 | -1 | -11 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2986, 494.7170]
TE Step Tunings (cents)
⟨44.78964, 15.09913]
TE Tuning Map (cents)
⟨1199.299, 1903.880, 4152.501, 4437.354]
TE Mistunings (cents)
⟨-0.701, 1.925, 1.184, -3.174]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.252195 |
Adjusted Error |
3.107017 cents |
TE Error |
0.839634 cents/octave |
Salolo (10 & 22)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 10 | 16 | 35 | ] |
⟨ | 22 | 35 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.0163, 110.3976]
TE Step Tunings (cents)
⟨16.34074, 47.02842]
TE Tuning Map (cents)
⟨1198.033, 1907.446, 4146.086]
TE Mistunings (cents)
⟨-1.967, 5.491, -5.232]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.185204 |
Adjusted Error |
8.512029 cents |
TE Error |
2.460528 cents/octave |
Saloyoyo (7 & 87 & 34)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 87 | 138 | 202 | 301 | ] |
⟨ | 34 | 54 | 79 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | 0 | -3 | ] |
⟨ | 0 | 1 | 0 | 7 | ] |
⟨ | 0 | 0 | 1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8142, 1903.0444, 2785.6457]
TE Step Tunings (cents)
⟨0.23228, 14.25451, -1.23395]
TE Tuning Map (cents)
⟨1199.814, 1903.044, 2785.646, 4150.577]
TE Mistunings (cents)
⟨-0.186, 1.089, -0.668, -0.741]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.126358 |
Adjusted Error |
1.379027 cents |
TE Error |
0.398628 cents/octave |
Salsa (41 & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 7 | -1 | 2 | ] |
⟨ | 0 | 2 | -16 | 13 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3938, 351.1289]
TE Step Tunings (cents)
⟨24.33627, 8.44195]
TE Tuning Map (cents)
⟨1200.394, 1902.651, 2784.695, 3364.281, 4156.432]
TE Mistunings (cents)
⟨0.394, 0.696, -1.619, -4.545, 5.114]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.808423 |
Adjusted Error |
3.674190 cents |
TE Error |
1.062079 cents/octave |
Salsa (41 & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 7 | -1 | 2 | 4 | ] |
⟨ | 0 | 2 | -16 | 13 | 5 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9459, 351.0089]
TE Step Tunings (cents)
⟨24.59242, 7.98569]
TE Tuning Map (cents)
⟨1199.946, 1901.964, 2783.479, 3363.170, 4154.936, 4448.775]
TE Mistunings (cents)
⟨-0.054, 0.009, -2.835, -5.656, 3.618, 8.247]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.480477 |
Adjusted Error |
5.148281 cents |
TE Error |
1.391262 cents/octave |
Salu (17 & 22)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 17 | 27 | 59 | ] |
⟨ | 22 | 35 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.2300, 492.4529]
TE Step Tunings (cents)
⟨49.89331, 15.91108]
TE Tuning Map (cents)
⟨1198.230, 1904.007, 4152.947]
TE Mistunings (cents)
⟨-1.770, 2.052, 1.629]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.001527 |
Adjusted Error |
4.479969 cents |
TE Error |
1.295001 cents/octave |
Salulugu (65 & 87 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 65 | 103 | 151 | 225 | ] |
⟨ | 87 | 138 | 202 | 301 | ] |
⟨ | 46 | 73 | 107 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | 0 | 7 | ] |
⟨ | 0 | 1 | 1 | -2 | ] |
⟨ | 0 | 0 | 2 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7330, 1902.0987, 442.1589]
TE Step Tunings (cents)
⟨9.11529, 6.71941, 0.49239]
TE Tuning Map (cents)
⟨1199.733, 1902.099, 2786.417, 4151.774]
TE Mistunings (cents)
⟨-0.267, 0.144, 0.103, 0.457]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.161890 |
Adjusted Error |
0.543971 cents |
TE Error |
0.157243 cents/octave |
Salururu (135 & 41 & 359)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 135 | 214 | 379 | 467 | ] |
⟨ | 41 | 65 | 115 | 142 | ] |
⟨ | 359 | 569 | 1008 | 1242 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 17 | ] |
⟨ | 0 | 1 | 0 | -5 | ] |
⟨ | 0 | 0 | 1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9460, 1901.9949, 3368.8760]
TE Step Tunings (cents)
⟨3.62439, 1.16867, 1.84607]
TE Tuning Map (cents)
⟨1199.946, 1901.995, 3368.876, 4151.356]
TE Mistunings (cents)
⟨-0.054, 0.040, 0.050, 0.038]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.161454 |
Adjusted Error |
0.109205 cents |
TE Error |
0.031567 cents/octave |
Saluzo (17 & 41 & 5)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 17 | 27 | 48 | 59 | ] |
⟨ | 41 | 65 | 115 | 142 | ] |
⟨ | 5 | 8 | 14 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 7 | ] |
⟨ | 0 | 1 | 0 | -4 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3781, 1902.8478, 3368.1257]
TE Step Tunings (cents)
⟨13.44403, 22.44727, 10.09828]
TE Tuning Map (cents)
⟨1199.378, 1902.848, 3368.126, 4152.381]
TE Mistunings (cents)
⟨-0.622, 0.893, -0.700, 1.063]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.084798 |
Adjusted Error |
1.604756 cents |
TE Error |
0.463879 cents/octave |
Sanjaab (29 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 29 | 46 | 67 | 81 | 100 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -1 | -3 | 0 | ] |
⟨ | 0 | -3 | 24 | 42 | 25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2016, 166.0021]
TE Step Tunings (cents)
⟨-1.57250, 13.25324]
TE Tuning Map (cents)
⟨1200.202, 1902.397, 2783.848, 3371.481, 4150.051]
TE Mistunings (cents)
⟨0.202, 0.442, -2.466, 2.656, -1.267]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.304782 |
Adjusted Error |
2.333627 cents |
TE Error |
0.674570 cents/octave |
Sanjaab (29 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -1 | -3 | 0 | -1 | ] |
⟨ | 0 | -3 | 24 | 42 | 25 | 34 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1249, 165.9803]
TE Step Tunings (cents)
⟨-0.52625, 12.92964]
TE Tuning Map (cents)
⟨1200.125, 1902.309, 2783.403, 3370.799, 4149.508, 4443.206]
TE Mistunings (cents)
⟨0.125, 0.354, -2.911, 1.973, -1.810, 2.678]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.867822 |
Adjusted Error |
2.585264 cents |
TE Error |
0.698637 cents/octave |
Saquadbizo (24 & 32)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 24 | 38 | 67 | ] |
⟨ | 32 | 51 | 90 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨149.9613, 43.3948]
TE Step Tunings (cents)
⟨23.61798, 19.77684]
TE Tuning Map (cents)
⟨1199.690, 1906.102, 3362.320]
TE Mistunings (cents)
⟨-0.310, 4.147, -6.505]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.547622 |
Adjusted Error |
5.687268 cents |
TE Error |
2.025846 cents/octave |
Saquadnu (12 & 32)
Equal Temperament Mappings
| 2 | 3 | 19 | |
[ ⟨ | 12 | 19 | 51 | ] |
⟨ | 32 | 51 | 136 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨299.9268, 102.3941]
TE Step Tunings (cents)
⟨80.62770, 7.25547]
TE Tuning Map (cents)
⟨1199.707, 1901.955, 5098.756]
TE Mistunings (cents)
⟨-0.293, -0.000, 1.243]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.189983 |
Adjusted Error |
1.015059 cents |
TE Error |
0.238954 cents/octave |
Saquadyobi (22 & 20c)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 22 | 35 | 51 | ] |
⟨ | 20 | 32 | 47 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨598.9751, 55.2876]
TE Step Tunings (cents)
⟨46.09946, 9.18811]
TE Tuning Map (cents)
⟨1197.950, 1907.500, 2782.913]
TE Mistunings (cents)
⟨-2.050, 5.545, -3.400]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.476599 |
Adjusted Error |
5.779649 cents |
TE Error |
2.489159 cents/octave |
Saquadzo (22 & 46)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 22 | 35 | 62 | ] |
⟨ | 46 | 73 | 129 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.6435, 52.6521]
TE Step Tunings (cents)
⟨11.71233, 20.46991]
TE Tuning Map (cents)
⟨1199.287, 1904.235, 3366.782]
TE Mistunings (cents)
⟨-0.713, 2.280, -2.043]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.037152 |
Adjusted Error |
2.857037 cents |
TE Error |
1.017697 cents/octave |
Saquadzogu (19 & 58 & 68)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 58 | 92 | 135 | 163 | ] |
⟨ | 68 | 108 | 158 | 191 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 0 | 1 | ] |
⟨ | 0 | 4 | 0 | 5 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6091, -124.1112, 2787.7188]
TE Step Tunings (cents)
⟨9.16869, 7.39574, 8.77134]
TE Tuning Map (cents)
⟨1199.609, 1902.773, 2787.719, 3366.772]
TE Mistunings (cents)
⟨-0.391, 0.818, 1.405, -2.054]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.213422 |
Adjusted Error |
1.613270 cents |
TE Error |
0.574658 cents/octave |
Saquinlo (7 & 46)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 7 | 11 | 24 | ] |
⟨ | 46 | 73 | 159 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.2286, 339.4016]
TE Step Tunings (cents)
⟨9.50008, 24.64626]
TE Tuning Map (cents)
⟨1200.229, 1903.678, 4146.758]
TE Mistunings (cents)
⟨0.229, 1.723, -4.560]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.375153 |
Adjusted Error |
3.443133 cents |
TE Error |
0.995289 cents/octave |
Saquinru (5 & 35d)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨239.7273, 15.0853]
TE Step Tunings (cents)
⟨134.13042, 15.08527]
TE Tuning Map (cents)
⟨1198.637, 1902.733, 3371.268]
TE Mistunings (cents)
⟨-1.363, 0.778, 2.442]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.043150 |
Adjusted Error |
2.739409 cents |
TE Error |
0.975797 cents/octave |
Saquinzo (41 & 22)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 41 | 65 | 115 | ] |
⟨ | 22 | 35 | 62 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.8230, 380.6045]
TE Step Tunings (cents)
⟨25.46245, 7.08467]
TE Tuning Map (cents)
⟨1199.823, 1903.022, 3367.431]
TE Mistunings (cents)
⟨-0.177, 1.067, -1.395]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.810026 |
Adjusted Error |
1.386579 cents |
TE Error |
0.493909 cents/octave |
Saruruyo (12 & 68 & 5)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 68 | 108 | 158 | 191 | ] |
⟨ | 5 | 8 | 12 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 8 | ] |
⟨ | 0 | 1 | 0 | -4 | ] |
⟨ | 0 | 0 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8354, 1903.4177, 1392.9607]
TE Step Tunings (cents)
⟨8.77891, 16.20397, -1.67624]
TE Tuning Map (cents)
⟨1198.835, 1903.418, 2785.921, 3369.973]
TE Mistunings (cents)
⟨-1.165, 1.463, -0.392, 1.147]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.257706 |
Adjusted Error |
2.176152 cents |
TE Error |
0.775161 cents/octave |
Sasa-Gugu (10 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 10 | 16 | 23 | ] |
⟨ | 27 | 43 | 63 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.4409, 354.8746]
TE Step Tunings (cents)
⟨10.08601, 40.57707]
TE Tuning Map (cents)
⟨1196.441, 1906.190, 2788.334]
TE Mistunings (cents)
⟨-3.559, 4.235, 2.020]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.192688 |
Adjusted Error |
6.079052 cents |
TE Error |
2.618105 cents/octave |
Sasa-Quadgubi (10 & 39)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 10 | 16 | 23 | ] |
⟨ | 39 | 62 | 91 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.2499, 122.3878]
TE Step Tunings (cents)
⟨15.87718, 26.62764]
TE Tuning Map (cents)
⟨1197.250, 1904.949, 2788.291]
TE Mistunings (cents)
⟨-2.750, 2.994, 1.977]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.402083 |
Adjusted Error |
4.615874 cents |
TE Error |
1.987949 cents/octave |
Sasa-Quinbiru (135 & 400)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 135 | 214 | 379 | ] |
⟨ | 400 | 634 | 1123 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨239.9934, 8.9904]
TE Step Tunings (cents)
⟨0.75008, 2.74676]
TE Tuning Map (cents)
⟨1199.967, 1901.967, 3368.898]
TE Mistunings (cents)
⟨-0.033, 0.012, 0.072]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.471132 |
Adjusted Error |
0.068770 cents |
TE Error |
0.024496 cents/octave |
Sasa-Sepru (94 & 5)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 94 | 149 | 264 | ] |
⟨ | 5 | 8 | 14 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.7547, 242.4592]
TE Step Tunings (cents)
⟨12.54129, 4.17475]
TE Tuning Map (cents)
⟨1199.755, 1902.050, 3369.346]
TE Mistunings (cents)
⟨-0.245, 0.095, 0.520]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.487293 |
Adjusted Error |
0.507632 cents |
TE Error |
0.180822 cents/octave |
Sasa-Trilo & Thulo (17 & 70)
Equal Temperament Mappings
| 2 | 3 | 11 | 13 | |
[ ⟨ | 17 | 27 | 59 | 63 | ] |
⟨ | 70 | 111 | 242 | 259 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 11 | 13 | |
[ ⟨ | 1 | 3 | 11 | 7 | ] |
⟨ | 0 | -3 | -16 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6871, 565.3743]
TE Step Tunings (cents)
⟨13.47213, 13.86658]
TE Tuning Map (cents)
⟨1199.687, 1902.938, 4150.569, 4440.189]
TE Mistunings (cents)
⟨-0.313, 0.983, -0.749, -0.338]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.649075 |
Adjusted Error |
1.357171 cents |
TE Error |
0.366759 cents/octave |
Sasa-Trizo (22 & 29)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 22 | 35 | 62 | ] |
⟨ | 29 | 46 | 81 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.7255, 164.1609]
TE Step Tunings (cents)
⟨34.23630, 15.36300]
TE Tuning Map (cents)
⟨1198.726, 1904.968, 3367.053]
TE Mistunings (cents)
⟨-1.274, 3.013, -1.773]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.372572 |
Adjusted Error |
3.848436 cents |
TE Error |
1.370840 cents/octave |
Sasagu (22 & 39)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 22 | 35 | 51 | ] |
⟨ | 39 | 62 | 91 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.8828, 490.8045]
TE Step Tunings (cents)
⟨24.74978, 16.75353]
TE Tuning Map (cents)
⟨1197.883, 1904.961, 2786.810]
TE Mistunings (cents)
⟨-2.117, 3.006, 0.496]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.804827 |
Adjusted Error |
3.821311 cents |
TE Error |
1.645749 cents/octave |
Sasaru (135 & 94)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 135 | 214 | 379 | ] |
⟨ | 94 | 149 | 264 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9155, 497.7571]
TE Step Tunings (cents)
⟨7.53915, 1.93756]
TE Tuning Map (cents)
⟨1199.915, 1902.074, 3368.853]
TE Mistunings (cents)
⟨-0.085, 0.119, 0.027]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.512972 |
Adjusted Error |
0.183807 cents |
TE Error |
0.065473 cents/octave |
Sasazo (17 & 46)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 17 | 27 | 48 | ] |
⟨ | 46 | 73 | 129 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.1820, 494.9413]
TE Step Tunings (cents)
⟨17.15933, 19.72768]
TE Tuning Map (cents)
⟨1199.182, 1903.423, 3368.519]
TE Mistunings (cents)
⟨-0.818, 1.468, -0.307]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.385635 |
Adjusted Error |
2.010491 cents |
TE Error |
0.716151 cents/octave |
Saseplo (7 & 70)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 7 | 11 | 24 | ] |
⟨ | 70 | 111 | 242 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨171.4370, 17.1829]
TE Step Tunings (cents)
⟨-0.39239, 17.18294]
TE Tuning Map (cents)
⟨1200.059, 1902.990, 4148.853]
TE Mistunings (cents)
⟨0.059, 1.035, -2.465]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.000446 |
Adjusted Error |
1.933561 cents |
TE Error |
0.558924 cents/octave |
Sasepzo (19 & 27)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 19 | 30 | 53 | ] |
⟨ | 27 | 43 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9306, 443.4505]
TE Step Tunings (cents)
⟨26.14291, 26.04501]
TE Tuning Map (cents)
⟨1199.931, 1904.223, 3364.995]
TE Mistunings (cents)
⟨-0.069, 2.268, -3.831]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.134358 |
Adjusted Error |
3.206650 cents |
TE Error |
1.142232 cents/octave |
Satho (17 & 12)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 17 | 27 | 63 | ] |
⟨ | 12 | 19 | 44 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.1232, 494.3336]
TE Step Tunings (cents)
⟨63.61278, 9.80883]
TE Tuning Map (cents)
⟨1199.123, 1903.913, 4439.194]
TE Mistunings (cents)
⟨-0.877, 1.958, -1.334]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.908395 |
Adjusted Error |
3.326660 cents |
TE Error |
0.898990 cents/octave |
Sathu (17 & 5f)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.6071, 493.5097]
TE Step Tunings (cents)
⟨70.33425, 0.58496]
TE Tuning Map (cents)
⟨1198.607, 1903.705, 4441.587]
TE Mistunings (cents)
⟨-1.393, 1.750, 1.060]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.322132 |
Adjusted Error |
3.845947 cents |
TE Error |
1.039322 cents/octave |
Satin (217 & 311)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 217 | 344 | 504 | ] |
⟨ | 311 | 493 | 722 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9009, 165.8930]
TE Step Tunings (cents)
⟨3.00499, 1.76147]
TE Tuning Map (cents)
⟨1199.901, 1902.123, 2786.298]
TE Mistunings (cents)
⟨-0.099, 0.168, -0.015]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
13.788277 |
Adjusted Error |
0.194539 cents |
TE Error |
0.083783 cents/octave |
Satin (311 & 217)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 311 | 493 | 722 | 873 | ] |
⟨ | 217 | 344 | 504 | 609 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 12 | -3 | ] |
⟨ | 0 | -3 | -70 | 42 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0199, 165.9161]
TE Step Tunings (cents)
⟨3.18941, 0.95905]
TE Tuning Map (cents)
⟨1200.020, 1902.292, 2786.114, 3368.415]
TE Mistunings (cents)
⟨0.020, 0.337, -0.200, -0.411]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
16.304189 |
Adjusted Error |
0.382611 cents |
TE Error |
0.136289 cents/octave |
Satin (311 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 311 | 493 | 722 | 873 | 1076 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 12 | -3 | 13 | ] |
⟨ | 0 | -3 | -70 | 42 | -69 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9932, 165.9145]
TE Step Tunings (cents)
⟨3.95038, -0.30398]
TE Tuning Map (cents)
⟨1199.993, 1902.243, 2785.905, 3368.428, 4151.812]
TE Mistunings (cents)
⟨-0.007, 0.288, -0.409, -0.397, 0.494]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
15.874104 |
Adjusted Error |
0.500215 cents |
TE Error |
0.144594 cents/octave |
Satin (311 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 311 | 493 | 722 | 873 | 1076 | 1151 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 12 | -3 | 13 | -1 | ] |
⟨ | 0 | -3 | -70 | 42 | -69 | 34 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9608, 165.9086]
TE Step Tunings (cents)
⟨4.08501, -0.74976]
TE Tuning Map (cents)
⟨1199.961, 1902.196, 2785.930, 3368.277, 4151.799, 4440.930]
TE Mistunings (cents)
⟨-0.039, 0.241, -0.384, -0.549, 0.481, 0.403]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
15.755744 |
Adjusted Error |
0.526237 cents |
TE Error |
0.142209 cents/octave |
Satin (94 & 217)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 94 | 149 | 218 | 264 | 325 | 348 | 384 | ] |
⟨ | 217 | 344 | 504 | 609 | 751 | 803 | 887 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 2 | 12 | -3 | 13 | -1 | 11 | ] |
⟨ | 0 | -3 | -70 | 42 | -69 | 34 | -50 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9844, 165.9110]
TE Step Tunings (cents)
⟨3.15225, 4.16439]
TE Tuning Map (cents)
⟨1199.984, 1902.236, 2786.044, 3368.308, 4151.939, 4440.989, 4904.279]
TE Mistunings (cents)
⟨-0.016, 0.281, -0.270, -0.518, 0.621, 0.462, -0.676]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.826721 |
Adjusted Error |
0.606929 cents |
TE Error |
0.148486 cents/octave |
Satin (217 & 311)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 217 | 344 | 504 | 609 | 751 | 803 | 887 | 922 | ] |
⟨ | 311 | 493 | 722 | 873 | 1076 | 1151 | 1271 | 1321 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 1 | 2 | 12 | -3 | 13 | -1 | 11 | 16 | ] |
⟨ | 0 | -3 | -70 | 42 | -69 | 34 | -50 | -85 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9877, 165.9111]
TE Step Tunings (cents)
⟨1.11682, 3.07922]
TE Tuning Map (cents)
⟨1199.988, 1902.242, 2786.075, 3368.303, 4151.974, 4440.990, 4904.309, 5097.359]
TE Mistunings (cents)
⟨-0.012, 0.287, -0.239, -0.523, 0.656, 0.462, -0.646, -0.154]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.651726 |
Adjusted Error |
0.593214 cents |
TE Error |
0.139648 cents/octave |
Satin (94 & 217)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 94 | 149 | 218 | 264 | 325 | 348 | 384 | 399 | 425 | ] |
⟨ | 217 | 344 | 504 | 609 | 751 | 803 | 887 | 922 | 982 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 1 | 2 | 12 | -3 | 13 | -1 | 11 | 16 | 16 | ] |
⟨ | 0 | -3 | -70 | 42 | -69 | 34 | -50 | -85 | -83 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9746, 165.9104]
TE Step Tunings (cents)
⟨3.30922, 4.09635]
TE Tuning Map (cents)
⟨1199.975, 1902.218, 2785.970, 3368.311, 4151.855, 4440.978, 4904.203, 5097.214, 5429.034]
TE Mistunings (cents)
⟨-0.025, 0.263, -0.343, -0.515, 0.537, 0.450, -0.752, -0.300, 0.760]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.227698 |
Adjusted Error |
0.656720 cents |
TE Error |
0.145178 cents/octave |
Satribigubi (8 & 6b)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨595.1616, 161.0371]
TE Step Tunings (cents)
⟨112.05042, 48.98664]
TE Tuning Map (cents)
⟨1190.323, 1897.535, 2814.771]
TE Mistunings (cents)
⟨-9.677, -4.420, 28.457]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.633218 |
Adjusted Error |
21.264885 cents |
TE Error |
9.158288 cents/octave |
Satribizo (27 & 24)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 27 | 43 | 76 | ] |
⟨ | 24 | 38 | 67 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.7827, 46.7245]
TE Step Tunings (cents)
⟨25.98689, 20.73759]
TE Tuning Map (cents)
⟨1199.348, 1905.464, 3364.422]
TE Mistunings (cents)
⟨-0.652, 3.509, -4.404]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.244854 |
Adjusted Error |
4.523507 cents |
TE Error |
1.611306 cents/octave |
Satrigu (15 & 2p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1194.1448, 558.5254]
TE Step Tunings (cents)
⟨77.09388, 18.86827]
TE Tuning Map (cents)
⟨1194.145, 1906.858, 2792.627]
TE Mistunings (cents)
⟨-5.855, 4.903, 6.314]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.661080 |
Adjusted Error |
9.596658 cents |
TE Error |
4.133056 cents/octave |
Satrilu (17 & 2)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.9188, 563.7885]
TE Step Tunings (cents)
⟨70.34170, 1.05496]
TE Tuning Map (cents)
⟨1197.919, 1902.391, 4157.545]
TE Mistunings (cents)
⟨-2.081, 0.436, 6.227]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.969306 |
Adjusted Error |
5.523190 cents |
TE Error |
1.596560 cents/octave |
Satritho (17 & 53)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 17 | 27 | 63 | ] |
⟨ | 53 | 84 | 196 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0000, 565.8271]
TE Step Tunings (cents)
⟨11.16560, 19.06009]
TE Tuning Map (cents)
⟨1200.000, 1902.519, 4439.211]
TE Mistunings (cents)
⟨0.000, 0.564, -1.317]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.892005 |
Adjusted Error |
1.075097 cents |
TE Error |
0.290532 cents/octave |
Satriyo (15 & 2c)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.7050, 559.6543]
TE Step Tunings (cents)
⟨77.39644, 17.87917]
TE Tuning Map (cents)
⟨1196.705, 1911.152, 2780.392]
TE Mistunings (cents)
⟨-3.295, 9.197, -5.922]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.767344 |
Adjusted Error |
9.576640 cents |
TE Error |
4.124434 cents/octave |
Sawa + La (5 & 10)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨238.8615, 90.6718]
TE Step Tunings (cents)
⟨57.51795, 90.67180]
TE Tuning Map (cents)
⟨1194.308, 1910.892, 4151.318]
TE Mistunings (cents)
⟨-5.692, 8.937, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.684572 |
Adjusted Error |
16.003200 cents |
TE Error |
4.625962 cents/octave |
Sawa + Za (5 & 5d)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨238.8615, 24.7644]
TE Step Tunings (cents)
⟨214.09716, 24.76437]
TE Tuning Map (cents)
⟨1194.308, 1910.892, 3368.826]
TE Mistunings (cents)
⟨-5.692, 8.937, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.843581 |
Adjusted Error |
12.986718 cents |
TE Error |
4.625962 cents/octave |
Sazoyo (5 & 22 & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 7 | 11 | 16 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -6 | ] |
⟨ | 0 | 1 | 0 | 7 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5570, 1906.1842, 2785.0171]
TE Step Tunings (cents)
⟨22.68722, 45.49180, 12.04303]
TE Tuning Map (cents)
⟨1198.557, 1906.184, 2785.017, 3366.930]
TE Mistunings (cents)
⟨-1.443, 4.229, -1.297, -1.895]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.158844 |
Adjusted Error |
4.432152 cents |
TE Error |
1.578764 cents/octave |
Schism (12 & 5c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 5 | 8 | 11 | 14 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.4210, 497.3726]
TE Step Tunings (cents)
⟨92.02105, 18.63367]
TE Tuning Map (cents)
⟨1197.421, 1897.469, 2781.560, 3389.587]
TE Mistunings (cents)
⟨-2.579, -4.486, -4.754, 20.761]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.557903 |
Adjusted Error |
12.037574 cents |
TE Error |
4.287870 cents/octave |
Schism (12 & 5cee)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 5 | 8 | 11 | 14 | 16 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | -1 | 2 | -4 | ] |
⟨ | 0 | -1 | 8 | 2 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.5730, 496.9605]
TE Step Tunings (cents)
⟨89.65665, 24.33864]
TE Tuning Map (cents)
⟨1197.573, 1898.185, 2778.111, 3389.067, 4154.998]
TE Mistunings (cents)
⟨-2.427, -3.770, -8.202, 20.241, 3.680]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.222882 |
Adjusted Error |
13.588312 cents |
TE Error |
3.927903 cents/octave |
Score (20 & 9)
Equal Temperament Mappings
| 2 | 7 | 11 | 13 | |
[ ⟨ | 20 | 56 | 69 | 74 | ] |
⟨ | 9 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.5566, 540.8000]
TE Step Tunings (cents)
⟨60.97318, -1.98965]
TE Tuning Map (cents)
⟨1201.557, 3364.757, 4145.470, 4446.356]
TE Mistunings (cents)
⟨1.557, -4.069, -5.848, 5.829]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.699383 |
Adjusted Error |
5.810729 cents |
TE Error |
1.570281 cents/octave |
Secant (58 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | 0 | 5 | 6 | ] |
⟨ | 0 | 7 | 15 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.5798, 185.8316]
TE Step Tunings (cents)
⟨17.49154, 7.10192]
TE Tuning Map (cents)
⟨1199.160, 1900.401, 2787.474, 3369.562, 4154.973]
TE Mistunings (cents)
⟨-0.840, -1.554, 1.160, 0.736, 3.655]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.020837 |
Adjusted Error |
2.725163 cents |
TE Error |
0.787749 cents/octave |
Secant (58 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 1 | 0 | 5 | 6 | 4 | ] |
⟨ | 0 | 7 | 15 | 2 | 3 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.5446, 185.8141]
TE Step Tunings (cents)
⟨17.40443, 7.29356]
TE Tuning Map (cents)
⟨1199.089, 1900.243, 2787.211, 3369.351, 4154.710, 4442.133]
TE Mistunings (cents)
⟨-0.911, -1.712, 0.897, 0.525, 3.392, 1.606]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.597687 |
Adjusted Error |
2.756800 cents |
TE Error |
0.744992 cents/octave |
Secund (9 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 3 | 2 | 3 | ] |
⟨ | 0 | 5 | -6 | 7 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.9865, 138.2429]
TE Step Tunings (cents)
⟨14.64397, 41.19964]
TE Tuning Map (cents)
⟨1202.986, 1894.201, 2779.502, 3373.673, 4161.931]
TE Mistunings (cents)
⟨2.986, -7.754, -6.812, 4.847, 10.613]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.025773 |
Adjusted Error |
11.353313 cents |
TE Error |
3.281843 cents/octave |
Secund (9 & 17ff)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 17 | 27 | 39 | 48 | 59 | 64 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 2 | 3 | 2 | ] |
⟨ | 0 | 5 | -6 | 7 | 4 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.5463, 137.2279]
TE Step Tunings (cents)
⟨72.21863, 32.50463]
TE Tuning Map (cents)
⟨1202.546, 1888.686, 2784.272, 3365.688, 4156.550, 4463.511]
TE Mistunings (cents)
⟨2.546, -13.269, -2.042, -3.138, 5.232, 22.983]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.201562 |
Adjusted Error |
16.511612 cents |
TE Error |
4.462067 cents/octave |
Secundly (9 & 26)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 2 | 3 | 3 | ] |
⟨ | 0 | 5 | -6 | 7 | 4 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.0647, 138.2694]
TE Step Tunings (cents)
⟨14.18983, 41.35985]
TE Tuning Map (cents)
⟨1203.065, 1894.412, 2779.578, 3374.015, 4162.272, 4438.810]
TE Mistunings (cents)
⟨3.065, -7.543, -6.736, 5.189, 10.954, -1.717]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.871592 |
Adjusted Error |
11.113360 cents |
TE Error |
3.003254 cents/octave |
Selenium (15 & 9 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 2 | 5 | ] |
⟨ | 0 | 2 | 0 | 1 | 1 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0823, 951.7943, 2790.8402]
TE Step Tunings (cents)
⟨36.48682, 41.35799, 28.05581]
TE Tuning Map (cents)
⟨1200.082, 1903.589, 2790.840, 3351.959, 4161.366]
TE Mistunings (cents)
⟨0.082, 1.634, 4.526, -16.867, 10.048]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.103154 |
Adjusted Error |
10.874175 cents |
TE Error |
3.143342 cents/octave |
Selenium (9 & 10p & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 2 | 5 | -1 | ] |
⟨ | 0 | 2 | 0 | 1 | 1 | 3 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1213, 951.3403, 2789.8776]
TE Step Tunings (cents)
⟨43.78390, 31.21612, 32.92700]
TE Tuning Map (cents)
⟨1200.121, 1902.681, 2789.878, 3351.583, 4162.069, 4443.777]
TE Mistunings (cents)
⟨0.121, 0.726, 3.564, -17.243, 10.751, 3.249]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.103136 |
Adjusted Error |
10.760475 cents |
TE Error |
2.907891 cents/octave |
Semafour (14c & 5p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |
⟨ | 5 | 8 | 12 | 14 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 3 | 3 | ] |
⟨ | 0 | -2 | -8 | -1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1207.0291, 255.5302]
TE Step Tunings (cents)
⟨70.62196, 43.66433]
TE Tuning Map (cents)
⟨1207.029, 1902.998, 2783.875, 3365.557, 4132.148]
TE Mistunings (cents)
⟨7.029, 1.043, -2.439, -3.269, -19.170]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.398962 |
Adjusted Error |
14.095456 cents |
TE Error |
4.074501 cents/octave |
Semaja (53 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 16 | 25 | 37 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.2745, 226.4553]
TE Step Tunings (cents)
⟨22.46091, 0.61540]
TE Tuning Map (cents)
⟨1200.275, 1902.101, 2785.462]
TE Mistunings (cents)
⟨0.275, 0.146, -0.852]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.090290 |
Adjusted Error |
0.626770 cents |
TE Error |
0.269935 cents/octave |
Semaja (53 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 37 | 59 | 86 | 104 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -2 | 1 | 3 | ] |
⟨ | 0 | 19 | 7 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4881, 226.3868]
TE Step Tunings (cents)
⟨20.10473, 3.61993]
TE Tuning Map (cents)
⟨1199.488, 1902.373, 2784.196, 3372.077]
TE Mistunings (cents)
⟨-0.512, 0.418, -2.118, 3.251]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.984390 |
Adjusted Error |
2.221710 cents |
TE Error |
0.791389 cents/octave |
Semaja (53 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -2 | 1 | 3 | 1 | ] |
⟨ | 0 | 19 | 7 | -1 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9882, 226.4833]
TE Step Tunings (cents)
⟨23.76870, -3.73457]
TE Tuning Map (cents)
⟨1199.988, 1903.207, 2785.371, 3373.481, 4144.271]
TE Mistunings (cents)
⟨-0.012, 1.252, -0.942, 4.655, -7.046]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.456480 |
Adjusted Error |
4.289530 cents |
TE Error |
1.239952 cents/octave |
Semaja (53 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -2 | 1 | 3 | 1 | 2 | ] |
⟨ | 0 | 19 | 7 | -1 | 13 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1086, 226.4999]
TE Step Tunings (cents)
⟨23.67276, -3.40923]
TE Tuning Map (cents)
⟨1200.109, 1903.281, 2785.608, 3373.826, 4144.608, 4438.717]
TE Mistunings (cents)
⟨0.109, 1.326, -0.706, 5.000, -6.710, -1.811]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.094310 |
Adjusted Error |
4.267172 cents |
TE Error |
1.153153 cents/octave |
Semaja (53 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 53 | 84 | 123 | 196 | ] |
⟨ | 16 | 25 | 37 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | -2 | 1 | 2 | ] |
⟨ | 0 | 19 | 7 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4532, 226.4772]
TE Step Tunings (cents)
⟨22.27493, 1.24263]
TE Tuning Map (cents)
⟨1200.453, 1902.160, 2785.793, 4439.201]
TE Mistunings (cents)
⟨0.453, 0.205, -0.520, -1.327]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.545734 |
Adjusted Error |
1.171431 cents |
TE Error |
0.316565 cents/octave |
Semaphore (5 & 9)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.8536, 250.9801]
TE Step Tunings (cents)
⟨146.88680, 52.04663]
TE Tuning Map (cents)
⟨1202.854, 1903.747, 3357.581]
TE Mistunings (cents)
⟨2.854, 1.792, -11.245]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.529918 |
Adjusted Error |
8.179376 cents |
TE Error |
2.913553 cents/octave |
Semaphore (5 & 9)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 5 | 8 | 14 | 17 | ] |
⟨ | 9 | 14 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | -2 | -1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1207.2576, 257.4565]
TE Step Tunings (cents)
⟨97.40706, 80.02470]
TE Tuning Map (cents)
⟨1207.258, 1899.602, 3364.316, 4136.686]
TE Mistunings (cents)
⟨7.258, -2.353, -4.510, -14.632]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.663634 |
Adjusted Error |
15.014348 cents |
TE Error |
4.340120 cents/octave |
Semiaug (27 & 3d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 27 | 43 | 63 | 76 | ] |
⟨ | 3 | 5 | 7 | 9 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨398.9339, 44.9980]
TE Step Tunings (cents)
⟨44.99803, -6.04840]
TE Tuning Map (cents)
⟨1196.802, 1904.673, 2792.537, 3365.415]
TE Mistunings (cents)
⟨-3.198, 2.718, 6.223, -3.411]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.353933 |
Adjusted Error |
6.558551 cents |
TE Error |
2.336203 cents/octave |
Semicanou (118 & 80 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | -2 | 1 | ] |
⟨ | 0 | 1 | 2 | 2 | 2 | ] |
⟨ | 0 | 0 | 4 | -3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0143, 1902.4304, -254.6228]
TE Step Tunings (cents)
⟨6.06440, 2.69151, 2.86285]
TE Tuning Map (cents)
⟨1200.029, 1902.430, 2786.369, 3368.701, 4150.252]
TE Mistunings (cents)
⟨0.029, 0.475, 0.056, -0.125, -1.066]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.506801 |
Adjusted Error |
0.671244 cents |
TE Error |
0.194033 cents/octave |
Semicanou (94 & 198 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | 733 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 0 | -2 | 1 | 11 | ] |
⟨ | 0 | 1 | 2 | 2 | 2 | -1 | ] |
⟨ | 0 | 0 | 4 | -3 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8579, 1902.4283, -254.6061]
TE Step Tunings (cents)
⟨2.02642, 5.12228, -0.06224]
TE Tuning Map (cents)
⟨1199.716, 1902.428, 2786.432, 3368.959, 4150.108, 4441.403]
TE Mistunings (cents)
⟨-0.284, 0.473, 0.118, 0.133, -1.210, 0.875]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.661485 |
Adjusted Error |
0.897481 cents |
TE Error |
0.242533 cents/octave |
Semicanousmic (31 & 118 & 80 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | 0 | 1 | ] |
⟨ | 0 | 1 | 2 | 0 | 2 | ] |
⟨ | 0 | 0 | 4 | 0 | 1 | ] |
⟨ | 0 | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0496, 1902.3290, -854.5774, 3368.8259]
TE Step Tunings (cents)
⟨1.11938, 5.75172, 2.72720, 2.85607]
TE Tuning Map (cents)
⟨1200.050, 1902.329, 2786.447, 3368.826, 4150.130]
TE Mistunings (cents)
⟨0.050, 0.374, 0.134, 0.000, -1.188]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.019102 |
Adjusted Error |
0.655184 cents |
TE Error |
0.189391 cents/octave |
Semidim (8d & 24p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |
⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |
⟨ | 0 | -1 | -1 | -2 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨149.7171, 43.2731]
TE Step Tunings (cents)
⟨19.89767, 43.27314]
TE Tuning Map (cents)
⟨1197.737, 1903.049, 2801.351, 3356.946, 4148.805]
TE Mistunings (cents)
⟨-2.263, 1.094, 15.038, -11.880, -2.513]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.038338 |
Adjusted Error |
12.566434 cents |
TE Error |
3.632514 cents/octave |
Semidim (24p & 8df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 29 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 29 | ] |
⟨ | 0 | -1 | -1 | -2 | -1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨149.8623, 45.7380]
TE Step Tunings (cents)
⟨45.73796, 12.64841]
TE Tuning Map (cents)
⟨1198.898, 1902.472, 2801.645, 3355.357, 4150.406, 4437.482]
TE Mistunings (cents)
⟨-1.102, 0.517, 15.332, -13.469, -0.912, -3.046]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.397799 |
Adjusted Error |
12.520232 cents |
TE Error |
3.383444 cents/octave |
Semidim (8 & 45)
Equal Temperament Mappings
| 2 | 5/3 | 7/3 | 11/3 | 13/3 | |
[ ⟨ | 8 | 6 | 10 | 15 | 17 | ] |
⟨ | 45 | 33 | 55 | 84 | 95 | ] ⟩ |
Reduced Mapping
| 2 | 5/3 | 7/3 | 11/3 | 13/3 | |
[ ⟨ | 1 | 3 | 5 | 3 | 4 | ] |
⟨ | 0 | -6 | -10 | -3 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.1274, 453.9933]
TE Step Tunings (cents)
⟨6.46928, 25.56385]
TE Tuning Map (cents)
⟨1202.127, 882.423, 1470.704, 2244.403, 2538.543]
TE Mistunings (cents)
⟨2.127, -1.936, 3.834, -4.960, -0.029]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
3.430456 |
Adjusted Error |
5.029829 cents |
TE Error |
2.377633 cents/octave |
Semidimfourth (99 & 91)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 91 | 144 | 211 | 255 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -10 | -13 | -17 | ] |
⟨ | 0 | 31 | 41 | 53 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9937, 448.4533]
TE Step Tunings (cents)
⟨9.46443, 2.89027]
TE Tuning Map (cents)
⟨1199.994, 1902.115, 2786.667, 3368.132]
TE Mistunings (cents)
⟨-0.006, 0.160, 0.353, -0.694]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.125338 |
Adjusted Error |
0.431594 cents |
TE Error |
0.153737 cents/octave |
Semidimi (171 & 863)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 863 | 1368 | 2004 | 2423 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -19 | -25 | -32 | ] |
⟨ | 0 | 55 | 73 | 93 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0018, 449.1277]
TE Step Tunings (cents)
⟨3.42105, 0.71263]
TE Tuning Map (cents)
⟨1200.002, 1901.986, 2786.273, 3368.814]
TE Mistunings (cents)
⟨0.002, 0.031, -0.040, -0.012]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.374402 |
Adjusted Error |
0.037628 cents |
TE Error |
0.013403 cents/octave |
Semiennealimmal (72 & 369)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 369 | 585 | 857 | 1036 | 1277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 15 | 22 | 26 | 32 | ] |
⟨ | 0 | -6 | -9 | -6 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3264, 16.3291]
TE Step Tunings (cents)
⟨2.86038, 2.69374]
TE Tuning Map (cents)
⟨1199.937, 1901.921, 2786.218, 3368.511, 4152.140]
TE Mistunings (cents)
⟨-0.063, -0.034, -0.096, -0.315, 0.822]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.768737 |
Adjusted Error |
0.424107 cents |
TE Error |
0.122594 cents/octave |
Semiennealimmal (72 & 441)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 441 | 699 | 1024 | 1238 | 1526 | 1632 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 15 | 22 | 26 | 32 | 36 | ] |
⟨ | 0 | -6 | -9 | -6 | -7 | -22 | ] ⟩ |
TE Generator Tunings (cents)
⟨133.3262, 16.3283]
TE Step Tunings (cents)
⟨0.13145, 2.69948]
TE Tuning Map (cents)
⟨1199.936, 1901.923, 2786.222, 3368.512, 4152.140, 4440.520]
TE Mistunings (cents)
⟨-0.064, -0.032, -0.092, -0.314, 0.823, -0.007]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
16.737059 |
Adjusted Error |
0.414155 cents |
TE Error |
0.111920 cents/octave |
Semigamera (198 & 125)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 198 | 314 | 460 | 556 | 685 | ] |
⟨ | 125 | 198 | 290 | 351 | 432 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 6 | 10 | 3 | 12 | ] |
⟨ | 0 | -46 | -80 | -2 | -89 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8847, 115.1532]
TE Step Tunings (cents)
⟨4.47027, 2.51817]
TE Tuning Map (cents)
⟨1199.885, 1902.263, 2786.594, 3369.348, 4149.985]
TE Mistunings (cents)
⟨-0.115, 0.308, 0.280, 0.522, -1.333]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
14.662934 |
Adjusted Error |
0.771371 cents |
TE Error |
0.222976 cents/octave |
Semihemi (58 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 140 | 222 | 325 | 393 | 484 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 15 | 11 | 21 | ] |
⟨ | 0 | -2 | -25 | -13 | -34 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8558, 248.4356]
TE Step Tunings (cents)
⟨5.32566, 6.36303]
TE Tuning Map (cents)
⟨1199.712, 1902.552, 2786.947, 3368.751, 4150.161]
TE Mistunings (cents)
⟨-0.288, 0.597, 0.633, -0.075, -1.157]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.730731 |
Adjusted Error |
0.992944 cents |
TE Error |
0.287025 cents/octave |
Semihemi (58 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 140 | 222 | 325 | 393 | 484 | 518 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 15 | 11 | 21 | 19 | ] |
⟨ | 0 | -2 | -25 | -13 | -34 | -28 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8515, 248.4366]
TE Step Tunings (cents)
⟨5.13325, 6.44268]
TE Tuning Map (cents)
⟨1199.703, 1902.533, 2786.858, 3368.691, 4150.038, 4440.955]
TE Mistunings (cents)
⟨-0.297, 0.578, 0.545, -0.135, -1.280, 0.427]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.147653 |
Adjusted Error |
0.989030 cents |
TE Error |
0.267274 cents/octave |
Semihemififths (41 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | -5 | -1 | 8 | ] |
⟨ | 0 | 4 | 50 | 26 | -31 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7522, 175.7016]
TE Step Tunings (cents)
⟨3.90603, 5.25053]
TE Tuning Map (cents)
⟨1199.752, 1902.558, 2786.317, 3368.488, 4151.269]
TE Mistunings (cents)
⟨-0.248, 0.603, 0.003, -0.338, -0.049]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.175460 |
Adjusted Error |
0.727329 cents |
TE Error |
0.210245 cents/octave |
Semihemisecordite (62 & 144g)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 62 | 98 | 144 | 174 | 214 | 229 | 253 | ] |
⟨ | 144 | 228 | 334 | 404 | 498 | 533 | 588 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 2 | 2 | 6 | 6 | 4 | 4 | 7 | ] |
⟨ | 0 | 12 | -14 | -4 | 30 | 35 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.3959, 58.3260]
TE Step Tunings (cents)
⟨3.29638, 6.91956]
TE Tuning Map (cents)
⟨1200.792, 1900.704, 2785.811, 3369.071, 4151.365, 4442.995, 4902.684]
TE Mistunings (cents)
⟨0.792, -1.251, -0.503, 0.245, 0.047, 2.467, -2.271]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.813118 |
Adjusted Error |
2.216199 cents |
TE Error |
0.542194 cents/octave |
Semihemisecordite (62 & 144gh)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 62 | 98 | 144 | 174 | 214 | 229 | 253 | 263 | ] |
⟨ | 144 | 228 | 334 | 404 | 498 | 533 | 588 | 611 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | |
[ ⟨ | 2 | 2 | 6 | 6 | 4 | 4 | 7 | 8 | ] |
⟨ | 0 | 12 | -14 | -4 | 30 | 35 | 12 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.4428, 58.3256]
TE Step Tunings (cents)
⟨3.65461, 6.76597]
TE Tuning Map (cents)
⟨1200.886, 1900.793, 2786.098, 3369.354, 4151.540, 4443.168, 4903.007, 5095.171]
TE Mistunings (cents)
⟨0.886, -1.162, -0.216, 0.529, 0.222, 2.641, -1.948, -2.342]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.187530 |
Adjusted Error |
2.331669 cents |
TE Error |
0.548896 cents/octave |
Semihemisecordite (62 & 144gh)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 62 | 98 | 144 | 174 | 214 | 229 | 253 | 263 | 280 | ] |
⟨ | 144 | 228 | 334 | 404 | 498 | 533 | 588 | 611 | 651 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
[ ⟨ | 2 | 2 | 6 | 6 | 4 | 4 | 7 | 8 | 7 | ] |
⟨ | 0 | 12 | -14 | -4 | 30 | 35 | 12 | 5 | 21 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.4461, 58.3265]
TE Step Tunings (cents)
⟨3.61295, 6.78396]
TE Tuning Map (cents)
⟨1200.892, 1900.810, 2786.105, 3369.370, 4151.580, 4443.213, 4903.041, 5095.201, 5427.980]
TE Mistunings (cents)
⟨0.892, -1.145, -0.208, 0.545, 0.262, 2.685, -1.914, -2.312, -0.295]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.674670 |
Adjusted Error |
2.343311 cents |
TE Error |
0.518023 cents/octave |
Semihemiwürschmidt (31 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 15 | 4 | 7 | 24 | ] |
⟨ | 0 | -32 | -4 | -10 | -49 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7363, 502.9299]
TE Step Tunings (cents)
⟨2.00408, 5.74550]
TE Tuning Map (cents)
⟨1199.736, 1902.288, 2787.226, 3368.855, 4150.107]
TE Mistunings (cents)
⟨-0.264, 0.333, 0.912, 0.029, -1.211]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.871426 |
Adjusted Error |
0.966976 cents |
TE Error |
0.279519 cents/octave |
Semiluna (118 & 292)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 118 | 187 | 274 | 331 | ] |
⟨ | 292 | 463 | 678 | 820 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 8 | 4 | 23 | ] |
⟨ | 0 | -15 | 2 | -54 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9685, 193.1624]
TE Step Tunings (cents)
⟨3.18538, 2.82213]
TE Tuning Map (cents)
⟨1199.937, 1902.313, 2786.199, 3368.508]
TE Mistunings (cents)
⟨-0.063, 0.358, -0.115, -0.318]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
16.327680 |
Adjusted Error |
0.371762 cents |
TE Error |
0.132424 cents/octave |
Semimiracle (72 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 2 | 6 | 6 | 4 | 7 | ] |
⟨ | 0 | 6 | -7 | -2 | 15 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.4854, 116.7184]
TE Step Tunings (cents)
⟨16.89324, -1.53429]
TE Tuning Map (cents)
⟨1200.971, 1901.281, 2785.883, 3369.475, 4152.718, 4436.834]
TE Mistunings (cents)
⟨0.971, -0.674, -0.431, 0.649, 1.400, -3.693]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.092330 |
Adjusted Error |
2.326065 cents |
TE Error |
0.628591 cents/octave |
Semimiracle (72 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | 294 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | 41 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 2 | 2 | 6 | 6 | 4 | 7 | 7 | ] |
⟨ | 0 | 6 | -7 | -2 | 15 | 2 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.5052, 116.7266]
TE Step Tunings (cents)
⟨16.87232, -1.37970]
TE Tuning Map (cents)
⟨1201.010, 1901.370, 2785.945, 3369.578, 4152.919, 4436.990, 4903.896]
TE Mistunings (cents)
⟨1.010, -0.585, -0.369, 0.752, 1.601, -3.538, -1.060]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.735980 |
Adjusted Error |
2.418113 cents |
TE Error |
0.591593 cents/octave |
Semiparakleismic (118 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | -3 | -2 | -11 | -4 | ] |
⟨ | 0 | 13 | 14 | 35 | 23 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9272, 284.7842]
TE Step Tunings (cents)
⟨7.24912, 4.30573]
TE Tuning Map (cents)
⟨1199.854, 1902.413, 2787.124, 3368.247, 4150.327]
TE Mistunings (cents)
⟨-0.146, 0.458, 0.810, -0.579, -0.991]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.043615 |
Adjusted Error |
0.916490 cents |
TE Error |
0.264925 cents/octave |
Semiparakleismic (80 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | 733 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | -3 | -2 | -11 | -4 | 15 | ] |
⟨ | 0 | 13 | 14 | 35 | 23 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8255, 284.7609]
TE Step Tunings (cents)
⟨-0.46881, 6.24826]
TE Tuning Map (cents)
⟨1199.651, 1902.415, 2787.001, 3368.551, 4150.199, 4441.208]
TE Mistunings (cents)
⟨-0.349, 0.460, 0.688, -0.275, -1.119, 0.680]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.005172 |
Adjusted Error |
1.004301 cents |
TE Error |
0.271400 cents/octave |
Semisept (31 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 80 | 127 | 186 | 225 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -5 | 0 | -3 | ] |
⟨ | 0 | 17 | 6 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2979, 464.5726]
TE Step Tunings (cents)
⟨12.42679, 10.17584]
TE Tuning Map (cents)
⟨1199.298, 1901.245, 2787.436, 3370.695]
TE Mistunings (cents)
⟨-0.702, -0.710, 1.122, 1.869]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.979944 |
Adjusted Error |
1.643351 cents |
TE Error |
0.585373 cents/octave |
Semisept (31 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -5 | 0 | -3 | -7 | ] |
⟨ | 0 | 17 | 6 | 15 | 27 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3088, 464.6069]
TE Step Tunings (cents)
⟨10.02142, 11.10806]
TE Tuning Map (cents)
⟨1199.309, 1901.773, 2787.641, 3371.177, 4149.225]
TE Mistunings (cents)
⟨-0.691, -0.182, 1.328, 2.351, -2.093]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.775261 |
Adjusted Error |
2.124334 cents |
TE Error |
0.614070 cents/octave |
Semiseptiquarter (94 & 198)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 94 | 149 | 218 | 264 | 325 | ] |
⟨ | 198 | 314 | 460 | 556 | 685 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 6 | 20 | 4 | 15 | ] |
⟨ | 0 | -7 | -38 | 4 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8954, 242.4088]
TE Step Tunings (cents)
⟨2.65456, 4.79931]
TE Tuning Map (cents)
⟨1199.791, 1902.511, 2786.374, 3369.217, 4150.255]
TE Mistunings (cents)
⟨-0.209, 0.556, 0.060, 0.391, -1.063]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.537090 |
Adjusted Error |
0.820396 cents |
TE Error |
0.237148 cents/octave |
Semishly (31 & 49f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 49 | 78 | 114 | 138 | 170 | 182 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -5 | 0 | -3 | -7 | 1 | ] |
⟨ | 0 | 17 | 6 | 15 | 27 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.3173, 464.3275]
TE Step Tunings (cents)
⟨15.98036, 14.34543]
TE Tuning Map (cents)
⟨1198.317, 1901.981, 2785.965, 3369.961, 4148.622, 4448.610]
TE Mistunings (cents)
⟨-1.683, 0.026, -0.349, 1.135, -2.696, 8.082]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.675154 |
Adjusted Error |
4.377260 cents |
TE Error |
1.182903 cents/octave |
Semisupermajor (342 & 764)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 764 | 1211 | 1774 | 2145 | 2643 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | -7 | -8 | -15 | -6 | ] |
⟨ | 0 | 37 | 46 | 75 | 47 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0103, 164.9205]
TE Step Tunings (cents)
⟨1.47186, 0.91184]
TE Tuning Map (cents)
⟨1200.021, 1901.984, 2786.258, 3368.879, 4151.199]
TE Mistunings (cents)
⟨0.021, 0.029, -0.056, 0.053, -0.119]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
18.819336 |
Adjusted Error |
0.082993 cents |
TE Error |
0.023990 cents/octave |
Semivalentine (46 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 2 | 4 | 6 | 6 | 7 | ] |
⟨ | 0 | 9 | 5 | -3 | 7 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.3527, 77.8849]
TE Step Tunings (cents)
⟨22.72647, 9.70549]
TE Tuning Map (cents)
⟨1200.705, 1901.669, 2790.835, 3368.461, 4147.310, 4436.124]
TE Mistunings (cents)
⟨0.705, -0.286, 4.522, -0.364, -4.008, -4.404]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.273242 |
Adjusted Error |
4.024639 cents |
TE Error |
1.087611 cents/octave |
Sengagen (99 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 50 | 79 | 116 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 2 | 2 | ] |
⟨ | 0 | 29 | 16 | 40 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8394, 24.2133]
TE Step Tunings (cents)
⟨10.82588, 2.56154]
TE Tuning Map (cents)
⟨1199.839, 1902.025, 2787.092, 3368.211]
TE Mistunings (cents)
⟨-0.161, 0.070, 0.778, -0.615]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.009415 |
Adjusted Error |
0.608607 cents |
TE Error |
0.216790 cents/octave |
Senior (2513 & 1171)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 2513 | 3983 | 5835 | ] |
⟨ | 1171 | 1856 | 2719 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | |
[ ⟨ | 1 | 11 | 19 | ] |
⟨ | 0 | -35 | -62 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0002, 322.8014]
TE Step Tunings (cents)
⟨0.39051, 0.18671]
TE Tuning Map (cents)
⟨1200.000, 1901.953, 2786.316]
TE Mistunings (cents)
⟨0.000, -0.002, 0.003]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.652102 |
Adjusted Error |
0.002397 cents |
TE Error |
0.001033 cents/octave |
Seniority (171 & 145)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 145 | 230 | 337 | 407 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 11 | 19 | 2 | ] |
⟨ | 0 | -35 | -62 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0745, 322.8245]
TE Step Tunings (cents)
⟨6.64430, 0.44068]
TE Tuning Map (cents)
⟨1200.075, 1901.963, 2786.298, 3368.622]
TE Mistunings (cents)
⟨0.075, 0.008, -0.016, -0.203]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.574727 |
Adjusted Error |
0.146373 cents |
TE Error |
0.052139 cents/octave |
Sensa (22 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 4 | 3 | ] |
⟨ | 0 | -9 | 7 | -26 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9497, 55.1242]
TE Step Tunings (cents)
⟨3.99499, 12.78230]
TE Tuning Map (cents)
⟨1199.950, 1903.782, 2785.769, 3366.570, 4151.091]
TE Mistunings (cents)
⟨-0.050, 1.827, -0.545, -2.256, -0.227]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.881549 |
Adjusted Error |
2.207548 cents |
TE Error |
0.638124 cents/octave |
Sensa (8d & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | -1 | -2 | -1 | ] |
⟨ | 0 | 7 | 9 | 13 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0940, 443.9222]
TE Step Tunings (cents)
⟨26.86455, 51.90408]
TE Tuning Map (cents)
⟨1201.094, 1906.362, 2794.206, 3368.801, 4125.973]
TE Mistunings (cents)
⟨1.094, 4.407, 7.892, -0.025, -25.345]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.687525 |
Adjusted Error |
13.322762 cents |
TE Error |
3.851142 cents/octave |
Sensa (8d & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | -1 | -2 | -1 | 0 | ] |
⟨ | 0 | 7 | 9 | 13 | 12 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.1899, 443.9460]
TE Step Tunings (cents)
⟨26.64578, 52.00124]
TE Tuning Map (cents)
⟨1201.190, 1906.432, 2794.325, 3368.919, 4126.163, 4439.460]
TE Mistunings (cents)
⟨1.190, 4.477, 8.011, 0.093, -25.155, -1.067]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.555230 |
Adjusted Error |
13.018169 cents |
TE Error |
3.518006 cents/octave |
Sensa (87 & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 4 | 3 | 2 | ] |
⟨ | 0 | -9 | 7 | -26 | 10 | 37 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9944, 55.1379]
TE Step Tunings (cents)
⟨13.03972, 2.97902]
TE Tuning Map (cents)
⟨1199.994, 1903.748, 2785.954, 3366.392, 4151.362, 4440.091]
TE Mistunings (cents)
⟨-0.006, 1.793, -0.360, -2.434, 0.044, -0.436]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.262121 |
Adjusted Error |
2.172957 cents |
TE Error |
0.587216 cents/octave |
Sensamagic (41 & 22 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 0 | 7 | ] |
⟨ | 0 | 1 | 1 | 2 | -2 | ] |
⟨ | 0 | 0 | 2 | -1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9684, 1903.7503, 440.9062]
TE Step Tunings (cents)
⟨13.52595, 3.84946, 12.18948]
TE Tuning Map (cents)
⟨1199.968, 1903.750, 2785.563, 3366.594, 4151.372]
TE Mistunings (cents)
⟨-0.032, 1.795, -0.751, -2.232, 0.054]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.202022 |
Adjusted Error |
2.199240 cents |
TE Error |
0.635723 cents/octave |
Sensawer (41 & 46 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 0 | -3 | ] |
⟨ | 0 | 1 | 1 | 2 | 5 | ] |
⟨ | 0 | 0 | 2 | -1 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1672, 1903.4553, 441.1974]
TE Step Tunings (cents)
⟨15.24067, 13.13902, -1.07760]
TE Tuning Map (cents)
⟨1200.167, 1903.455, 2785.850, 3365.713, 4151.985]
TE Mistunings (cents)
⟨0.167, 1.500, -0.464, -3.113, 0.667]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.205954 |
Adjusted Error |
2.310540 cents |
TE Error |
0.667896 cents/octave |
Sensawer (41 & 46 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 0 | -3 | 2 | ] |
⟨ | 0 | 1 | 1 | 2 | 5 | 2 | ] |
⟨ | 0 | 0 | 2 | -1 | -4 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9820, 1903.4299, 441.3712]
TE Step Tunings (cents)
⟨13.81349, 13.72996, 0.07595]
TE Tuning Map (cents)
⟨1199.982, 1903.430, 2786.172, 3365.489, 4151.719, 4441.339]
TE Mistunings (cents)
⟨-0.018, 1.475, -0.141, -3.337, 0.401, 0.811]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.241499 |
Adjusted Error |
2.313216 cents |
TE Error |
0.625119 cents/octave |
Sensei (19 & 84)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 84 | 133 | 195 | 236 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | -1 | -9 | ] |
⟨ | 0 | 7 | 9 | 32 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6436, 442.9925]
TE Step Tunings (cents)
⟨8.57793, 12.35313]
TE Tuning Map (cents)
⟨1200.644, 1900.304, 2786.289, 3369.969]
TE Mistunings (cents)
⟨0.644, -1.651, -0.024, 1.143]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.106393 |
Adjusted Error |
1.811191 cents |
TE Error |
0.645159 cents/octave |
Sensi (65 & 19)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 65 | 103 | 151 | ] |
⟨ | 19 | 30 | 44 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9432, 443.0366]
TE Step Tunings (cents)
⟨18.09230, 1.26018]
TE Tuning Map (cents)
⟨1199.943, 1901.313, 2787.386]
TE Mistunings (cents)
⟨-0.057, -0.642, 1.072]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.967089 |
Adjusted Error |
0.827081 cents |
TE Error |
0.356204 cents/octave |
Sensi (19 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | -1 | -2 | ] |
⟨ | 0 | 7 | 9 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7139, 443.2770]
TE Step Tunings (cents)
⟨28.65993, 24.26575]
TE Tuning Map (cents)
⟨1199.714, 1903.225, 2789.779, 3363.173]
TE Mistunings (cents)
⟨-0.286, 1.270, 3.465, -5.653]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.885921 |
Adjusted Error |
3.715310 cents |
TE Error |
1.323420 cents/octave |
Sensis (19p & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | -1 | -2 | 2 | ] |
⟨ | 0 | 7 | 9 | 13 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.8588, 442.8002]
TE Step Tunings (cents)
⟨48.17469, 35.19247]
TE Tuning Map (cents)
⟨1196.859, 1902.743, 2788.343, 3362.685, 4164.919]
TE Mistunings (cents)
⟨-3.141, 0.788, 2.030, -6.141, 13.601]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.884447 |
Adjusted Error |
8.630401 cents |
TE Error |
2.494745 cents/octave |
Sensis (8d & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | -1 | -2 | 2 | 0 | ] |
⟨ | 0 | 7 | 9 | 13 | 4 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.4675, 443.0086]
TE Step Tunings (cents)
⟨34.88983, 48.33415]
TE Tuning Map (cents)
⟨1197.468, 1903.592, 2789.609, 3364.176, 4166.969, 4430.086]
TE Mistunings (cents)
⟨-2.532, 1.637, 3.296, -4.650, 15.651, -10.442]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.719903 |
Adjusted Error |
9.634215 cents |
TE Error |
2.603532 cents/octave |
Sensis (19 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 70 | ] |
⟨ | 27 | 43 | 63 | 76 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 1 | -1 | -1 | -2 | 0 | ] |
⟨ | 0 | 7 | 9 | 13 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3226, 443.4411]
TE Step Tunings (cents)
⟨30.31521, 23.12347]
TE Tuning Map (cents)
⟨1200.323, 1903.765, 2790.648, 3364.090, 4434.411]
TE Mistunings (cents)
⟨0.323, 1.810, 4.334, -4.736, -6.116]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.699154 |
Adjusted Error |
5.355006 cents |
TE Error |
1.447127 cents/octave |
Sensor (46 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | -1 | -2 | 9 | ] |
⟨ | 0 | 7 | 9 | 13 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0427, 443.3096]
TE Step Tunings (cents)
⟨22.58382, 8.48353]
TE Tuning Map (cents)
⟨1200.043, 1903.125, 2789.744, 3362.940, 4150.740]
TE Mistunings (cents)
⟨0.043, 1.170, 3.430, -5.886, -0.578]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.464703 |
Adjusted Error |
4.137734 cents |
TE Error |
1.196074 cents/octave |
Sensor (19p & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | -1 | -2 | 9 | 0 | ] |
⟨ | 0 | 7 | 9 | 13 | -15 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3259, 443.4414]
TE Step Tunings (cents)
⟨7.23490, 23.10571]
TE Tuning Map (cents)
⟨1200.326, 1903.764, 2790.647, 3364.087, 4151.312, 4434.414]
TE Mistunings (cents)
⟨0.326, 1.809, 4.333, -4.739, -0.006, -6.114]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.183301 |
Adjusted Error |
4.888433 cents |
TE Error |
1.321041 cents/octave |
Sensus (27e & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | -1 | -2 | -8 | ] |
⟨ | 0 | 7 | 9 | 13 | 31 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0778, 443.2855]
TE Step Tunings (cents)
⟨6.81178, 22.06869]
TE Tuning Map (cents)
⟨1199.078, 1903.921, 2790.492, 3364.556, 4149.229]
TE Mistunings (cents)
⟨-0.922, 1.966, 4.178, -4.270, -2.089]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.847815 |
Adjusted Error |
4.458425 cents |
TE Error |
1.288774 cents/octave |
Sensus (19e & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | -1 | -2 | -8 | 0 | ] |
⟨ | 0 | 7 | 9 | 13 | 31 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6985, 443.4477]
TE Step Tunings (cents)
⟨23.89782, 27.61629]
TE Tuning Map (cents)
⟨1199.698, 1904.435, 2791.331, 3365.423, 4149.290, 4434.477]
TE Mistunings (cents)
⟨-0.302, 2.480, 5.017, -3.403, -2.028, -6.051]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.672265 |
Adjusted Error |
5.166281 cents |
TE Error |
1.396126 cents/octave |
Sentinel (31 & 17p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 17 | 27 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | -3 | 6 | ] |
⟨ | 0 | -4 | 15 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8673, 425.9034]
TE Step Tunings (cents)
⟨35.15366, 6.53552]
TE Tuning Map (cents)
⟨1200.867, 1898.988, 2785.949, 3372.073]
TE Mistunings (cents)
⟨0.867, -2.967, -0.365, 3.248]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.813222 |
Adjusted Error |
3.327161 cents |
TE Error |
1.185159 cents/octave |
Sentinel (31 & 17p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 17 | 27 | 39 | 48 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | -3 | 6 | 7 | ] |
⟨ | 0 | -4 | 15 | -9 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0949, 425.9378]
TE Step Tunings (cents)
⟨34.37413, 7.97040]
TE Tuning Map (cents)
⟨1201.095, 1899.533, 2785.783, 3373.129, 4148.286]
TE Mistunings (cents)
⟨1.095, -2.422, -0.531, 4.303, -3.032]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.624443 |
Adjusted Error |
4.005477 cents |
TE Error |
1.157842 cents/octave |
Sentinel (31 & 17p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 17 | 27 | 39 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | -3 | 6 | 7 | 3 | ] |
⟨ | 0 | -4 | 15 | -9 | -10 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4208, 425.6507]
TE Step Tunings (cents)
⟨33.53646, 9.45827]
TE Tuning Map (cents)
⟨1200.421, 1898.660, 2783.497, 3371.669, 4146.439, 4452.564]
TE Mistunings (cents)
⟨0.421, -3.295, -2.816, 2.843, -4.879, 12.036]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.330270 |
Adjusted Error |
6.682109 cents |
TE Error |
1.805761 cents/octave |
Sentry (11 & 8)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0000, 438.5743]
TE Step Tunings (cents)
⟨91.40525, 24.31778]
TE Tuning Map (cents)
⟨1200.000, 877.149, 438.574]
TE Mistunings (cents)
⟨-0.000, -7.210, 3.490]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.289786 |
Adjusted Error |
7.924279 cents |
TE Error |
7.924279 cents/octave |
Sepgubi (12 & 1b)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.4374, 100.2775]
TE Step Tunings (cents)
⟨100.27751, -5.89276]
TE Tuning Map (cents)
⟨1197.437, 1899.380, 2795.985]
TE Mistunings (cents)
⟨-2.563, -2.575, 9.671]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.821379 |
Adjusted Error |
6.908108 cents |
TE Error |
2.975160 cents/octave |
Sephiroth (13 & 3)
Equal Temperament Mappings
| 2 | 5 | 11 | 13 | 17 | |
[ ⟨ | 13 | 30 | 45 | 48 | 53 | ] |
⟨ | 3 | 7 | 10 | 11 | 12 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 11 | 13 | 17 | |
[ ⟨ | 1 | 2 | 5 | 4 | 5 | ] |
⟨ | 0 | 1 | -5 | -1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.6925, 373.3812]
TE Step Tunings (cents)
⟨83.54895, 39.18541]
TE Tuning Map (cents)
⟨1203.693, 2780.766, 4151.557, 4441.389, 4898.319]
TE Mistunings (cents)
⟨3.693, -5.547, 0.239, 0.861, -6.636]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.641611 |
Adjusted Error |
8.581302 cents |
TE Error |
2.099420 cents/octave |
Sepru (22 & 31)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 22 | 35 | 62 | ] |
⟨ | 31 | 49 | 87 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.6023, 271.5447]
TE Step Tunings (cents)
⟨20.67099, 24.02711]
TE Tuning Map (cents)
⟨1199.602, 1900.813, 3371.960]
TE Mistunings (cents)
⟨-0.398, -1.142, 3.134]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.828813 |
Adjusted Error |
2.248017 cents |
TE Error |
0.800760 cents/octave |
Sepruyo (41 & 84 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 84 | 133 | 195 | 236 | ] |
⟨ | 80 | 127 | 186 | 225 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 5 | 0 | 0 | ] |
⟨ | 0 | 7 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8491, -585.3164, 2785.1747]
TE Step Tunings (cents)
⟨8.53927, 5.66406, 4.67448]
TE Tuning Map (cents)
⟨1199.849, 1902.031, 2785.175, 3370.491]
TE Mistunings (cents)
⟨-0.151, 0.076, -1.139, 1.665]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.315005 |
Adjusted Error |
1.103043 cents |
TE Error |
0.392912 cents/octave |
Septhu (17 & 33)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 17 | 27 | 63 | ] |
⟨ | 33 | 52 | 122 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.5562, 71.0667]
TE Step Tunings (cents)
⟨53.91052, 8.57810]
TE Tuning Map (cents)
⟨1199.556, 1901.645, 4442.891]
TE Mistunings (cents)
⟨-0.444, -0.310, 2.363]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.848428 |
Adjusted Error |
1.713275 cents |
TE Error |
0.462992 cents/octave |
Septidiasemi (171 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 10 | 16 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | 6 | 4 | ] |
⟨ | 0 | 26 | -37 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1043, 119.3076]
TE Step Tunings (cents)
⟨7.02807, -0.16964]
TE Tuning Map (cents)
⟨1200.104, 1901.894, 2786.244, 3368.726]
TE Mistunings (cents)
⟨0.104, -0.061, -0.070, -0.100]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.592883 |
Adjusted Error |
0.169294 cents |
TE Error |
0.060304 cents/octave |
Septimal (7p & 7df)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | 25 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |
⟨ | 0 | 0 | 0 | -1 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨172.9012, 76.6691]
TE Step Tunings (cents)
⟨96.23207, 76.66908]
TE Tuning Map (cents)
⟨1210.308, 1901.913, 2766.418, 3381.354, 4149.628, 4418.761]
TE Mistunings (cents)
⟨10.308, -0.042, -19.895, 12.528, -1.690, -21.767]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.039132 |
Adjusted Error |
23.130401 cents |
TE Error |
6.250717 cents/octave |
Septimin (41 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 50 | 79 | 116 | 140 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 4 | 1 | 5 | ] |
⟨ | 0 | -11 | 6 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2472, 263.9063]
TE Step Tunings (cents)
⟨18.40573, 8.93224]
TE Tuning Map (cents)
⟨1201.247, 1902.020, 2784.685, 3367.173]
TE Mistunings (cents)
⟨1.247, 0.065, -1.629, -1.653]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.596880 |
Adjusted Error |
2.172688 cents |
TE Error |
0.773927 cents/octave |
Septimin (41 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | 1 | 5 | 5 | ] |
⟨ | 0 | -11 | 6 | -10 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8111, 263.8118]
TE Step Tunings (cents)
⟨27.31582, 8.98474]
TE Tuning Map (cents)
⟨1200.811, 1901.314, 2783.682, 3365.937, 4157.373]
TE Mistunings (cents)
⟨0.811, -0.641, -2.632, -2.889, 6.055]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.218363 |
Adjusted Error |
3.860921 cents |
TE Error |
1.116056 cents/octave |
Septimin (41 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 1 | 5 | 5 | 7 | ] |
⟨ | 0 | -11 | 6 | -10 | -7 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6072, 263.8338]
TE Step Tunings (cents)
⟨26.71018, 11.72107]
TE Tuning Map (cents)
⟨1200.607, 1900.257, 2783.610, 3364.698, 4156.199, 4446.743]
TE Mistunings (cents)
⟨0.607, -1.698, -2.704, -4.128, 4.881, 6.216]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.037476 |
Adjusted Error |
4.740543 cents |
TE Error |
1.281076 cents/octave |
Septiquarter (99 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 94 | 149 | 218 | 264 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 10 | 2 | ] |
⟨ | 0 | -7 | -38 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7213, 242.3962]
TE Step Tunings (cents)
⟨9.45886, 2.80100]
TE Tuning Map (cents)
⟨1199.721, 1902.390, 2786.156, 3369.028]
TE Mistunings (cents)
⟨-0.279, 0.435, -0.158, 0.202]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.996176 |
Adjusted Error |
0.566458 cents |
TE Error |
0.201777 cents/octave |
Septisuperfourth (130 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 130 | 206 | 302 | 365 | ] |
⟨ | 152 | 241 | 353 | 427 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 4 | 4 | 7 | ] |
⟨ | 0 | -9 | 7 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8763, 55.3089]
TE Step Tunings (cents)
⟨4.34279, 4.17888]
TE Tuning Map (cents)
⟨1199.753, 1901.725, 2786.667, 3369.500]
TE Mistunings (cents)
⟨-0.247, -0.230, 0.354, 0.674]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.340064 |
Adjusted Error |
0.567095 cents |
TE Error |
0.202003 cents/octave |
Septisuperfourth (152 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 4 | 7 | 6 | ] |
⟨ | 0 | -9 | 7 | -15 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8384, 55.2895]
TE Step Tunings (cents)
⟨5.21478, 3.13100]
TE Tuning Map (cents)
⟨1199.677, 1901.748, 2786.380, 3369.527, 4151.925]
TE Mistunings (cents)
⟨-0.323, -0.207, 0.066, 0.701, 0.607]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.644167 |
Adjusted Error |
0.718018 cents |
TE Error |
0.207554 cents/octave |
Septisuperfourth (130 & 152f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | 563 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 4 | 7 | 6 | 11 | ] |
⟨ | 0 | -9 | 7 | -15 | 10 | -39 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8332, 55.3093]
TE Step Tunings (cents)
⟨4.67239, 3.89642]
TE Tuning Map (cents)
⟨1199.666, 1901.549, 2786.498, 3369.193, 4152.092, 4441.103]
TE Mistunings (cents)
⟨-0.334, -0.406, 0.184, 0.367, 0.774, 0.576]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.951477 |
Adjusted Error |
0.791464 cents |
TE Error |
0.213884 cents/octave |
Septisuperquad (130 & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 4 | 7 | 6 | 5 | ] |
⟨ | 0 | -9 | 7 | -15 | 10 | 26 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9155, 55.3510]
TE Step Tunings (cents)
⟨8.94509, 1.68040]
TE Tuning Map (cents)
⟨1199.831, 1901.503, 2787.119, 3369.144, 4153.002, 4438.702]
TE Mistunings (cents)
⟨-0.169, -0.452, 0.805, 0.318, 1.684, -1.825]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.202616 |
Adjusted Error |
1.284746 cents |
TE Error |
0.347187 cents/octave |
Sesesix (171 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 171 | 271 | 397 | ] |
⟨ | 22 | 35 | 51 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0899, 491.2641]
TE Step Tunings (cents)
⟨7.00036, 0.13765]
TE Tuning Map (cents)
⟨1200.090, 1901.915, 2786.163]
TE Mistunings (cents)
⟨0.090, -0.040, -0.151]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.473811 |
Adjusted Error |
0.152325 cents |
TE Error |
0.065603 cents/octave |
Sesquart (41 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 7 | 5 | 2 | ] |
⟨ | 0 | 4 | -32 | -15 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8176, 175.3794]
TE Step Tunings (cents)
⟨2.78791, 8.35010]
TE Tuning Map (cents)
⟨1199.818, 1901.335, 2786.582, 3368.397, 4153.429]
TE Mistunings (cents)
⟨-0.182, -0.620, 0.268, -0.429, 2.111]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.255752 |
Adjusted Error |
1.193756 cents |
TE Error |
0.345073 cents/octave |
Sesquart (130 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 7 | 5 | 2 | -2 | ] |
⟨ | 0 | 4 | -32 | -15 | 10 | 39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8357, 175.3853]
TE Step Tunings (cents)
⟨8.21910, 3.20372]
TE Tuning Map (cents)
⟨1199.836, 1901.377, 2786.522, 3368.400, 4153.524, 4440.353]
TE Mistunings (cents)
⟨-0.164, -0.578, 0.208, -0.426, 2.206, -0.174]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.557580 |
Adjusted Error |
1.170221 cents |
TE Error |
0.316238 cents/octave |
Sesquiquartififths (171 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 130 | 206 | 302 | 365 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 7 | 5 | ] |
⟨ | 0 | 4 | -32 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0847, 175.4460]
TE Step Tunings (cents)
⟨6.37268, 0.84890]
TE Tuning Map (cents)
⟨1200.085, 1901.869, 2786.320, 3368.733]
TE Mistunings (cents)
⟨0.085, -0.086, 0.007, -0.093]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.243621 |
Adjusted Error |
0.148762 cents |
TE Error |
0.052990 cents/octave |
Sesquiquartififths (342 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 342 | 542 | 794 | 960 | ] |
⟨ | 130 | 206 | 302 | 365 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 2 | 14 | 10 | ] |
⟨ | 0 | 4 | -32 | -15 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0423, 175.4460]
TE Step Tunings (cents)
⟨3.18634, 0.84890]
TE Tuning Map (cents)
⟨1200.085, 1901.869, 2786.320, 3368.733]
TE Mistunings (cents)
⟨0.085, -0.086, 0.007, -0.093]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.487242 |
Adjusted Error |
0.148762 cents |
TE Error |
0.052990 cents/octave |
Sevond (7 & 42)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨171.3455, 20.5638]
TE Step Tunings (cents)
⟨47.96243, 20.56384]
TE Tuning Map (cents)
⟨1199.418, 1905.364, 2782.655]
TE Mistunings (cents)
⟨-0.582, 3.409, -3.658]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.549905 |
Adjusted Error |
3.658333 cents |
TE Error |
1.575558 cents/octave |
Sextile (270 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 6 | 10 | 11 | 10 | 10 | ] |
⟨ | 0 | -1 | 6 | 14 | 22 | ] ⟩ |
TE Generator Tunings (cents)
⟨199.9818, 97.7887]
TE Step Tunings (cents)
⟨4.40430, 0.89402]
TE Tuning Map (cents)
⟨1199.891, 1902.029, 2786.532, 3368.860, 4151.169]
TE Mistunings (cents)
⟨-0.109, 0.074, 0.218, 0.034, -0.149]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
16.325858 |
Adjusted Error |
0.244371 cents |
TE Error |
0.070639 cents/octave |
Sextilififths (130 & 159)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 159 | 252 | 369 | 446 | 550 | 588 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | -1 | -1 | 0 | 1 | ] |
⟨ | 0 | -6 | 48 | 55 | 50 | 39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1059, 83.0566]
TE Step Tunings (cents)
⟨4.83577, 3.59406]
TE Tuning Map (cents)
⟨1200.106, 1901.872, 2786.611, 3368.008, 4152.831, 4439.314]
TE Mistunings (cents)
⟨0.106, -0.083, 0.298, -0.818, 1.513, -1.214]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.270107 |
Adjusted Error |
0.972177 cents |
TE Error |
0.262719 cents/octave |
Sfourth (46 & 183)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 46 | 73 | 107 | ] |
⟨ | 183 | 290 | 425 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0235, 26.2347]
TE Step Tunings (cents)
⟨-0.84993, 6.77115]
TE Tuning Map (cents)
⟨1200.024, 1901.588, 2786.796]
TE Mistunings (cents)
⟨0.024, -0.367, 0.482]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.998134 |
Adjusted Error |
0.417914 cents |
TE Error |
0.179986 cents/octave |
Sfourth (46 & 91)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 46 | 73 | 107 | 129 | ] |
⟨ | 91 | 144 | 211 | 255 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | -19 | -31 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8348, 26.3054]
TE Step Tunings (cents)
⟨7.88132, 9.21202]
TE Tuning Map (cents)
⟨1200.835, 1901.868, 2787.038, 3365.756]
TE Mistunings (cents)
⟨0.835, -0.087, 0.724, -3.070]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.664676 |
Adjusted Error |
1.981600 cents |
TE Error |
0.705860 cents/octave |
Sfourth (46 & 45e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 45 | 71 | 104 | 126 | 155 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -19 | -31 | -9 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.1520, 26.3113]
TE Step Tunings (cents)
⟨17.14339, 9.16792]
TE Tuning Map (cents)
⟨1201.152, 1902.389, 2787.806, 3366.654, 4146.826]
TE Mistunings (cents)
⟨1.152, 0.434, 1.492, -2.171, -4.492]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.065430 |
Adjusted Error |
3.132580 cents |
TE Error |
0.905519 cents/octave |
Sfourth (46 & 45ef)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 45 | 71 | 104 | 126 | 155 | 166 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |
⟨ | 0 | -19 | -31 | -9 | -25 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.4999, 26.3424]
TE Step Tunings (cents)
⟨16.09107, 10.25135]
TE Tuning Map (cents)
⟨1201.500, 1902.494, 2787.885, 3367.418, 4147.439, 4437.206]
TE Mistunings (cents)
⟨1.500, 0.539, 1.571, -1.408, -3.879, -3.322]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.789991 |
Adjusted Error |
3.424200 cents |
TE Error |
0.925350 cents/octave |
Sharp (3d & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | 5 | 7 | 9 | ] |
⟨ | 10 | 16 | 23 | 28 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.7003, 358.7434]
TE Step Tunings (cents)
⟨-20.66706, 126.47015]
TE Tuning Map (cents)
⟨1202.700, 1920.187, 2764.144, 3355.161]
TE Mistunings (cents)
⟨2.700, 18.232, -22.170, -13.665]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.816468 |
Adjusted Error |
22.391733 cents |
TE Error |
7.976096 cents/octave |
Sharp (3de & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 2 | 1 | 2 | ] |
⟨ | 0 | 2 | 1 | 6 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.8487, 356.6548]
TE Step Tunings (cents)
⟨92.88622, 131.88429]
TE Tuning Map (cents)
⟨1201.849, 1915.158, 2760.352, 3341.777, 4186.971]
TE Mistunings (cents)
⟨1.849, 13.203, -25.962, -27.048, 35.653]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.756296 |
Adjusted Error |
30.820978 cents |
TE Error |
8.909261 cents/octave |
Sharptone (5 & 2cd)
Equal Temperament Mappings
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 4 | 4 | ] |
⟨ | 0 | -1 | -4 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1204.7503, 501.8390]
TE Step Tunings (cents)
⟨201.07232, 99.69436]
TE Tuning Map (cents)
⟨1204.750, 1907.662, 2811.645, 3313.484]
TE Mistunings (cents)
⟨4.750, 5.707, 25.332, -55.342]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.625884 |
Adjusted Error |
32.713714 cents |
TE Error |
11.652860 cents/octave |
Shibboleth (15 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 15 | 24 | 35 | ] |
⟨ | 41 | 65 | 95 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.4017, 321.9593]
TE Step Tunings (cents)
⟨4.08778, 27.78256]
TE Tuning Map (cents)
⟨1200.402, 1903.973, 2782.416]
TE Mistunings (cents)
⟨0.402, 2.018, -3.898]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.418401 |
Adjusted Error |
2.875570 cents |
TE Error |
1.238440 cents/octave |
Shibi (72 & 41 & 111)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 111 | 176 | 258 | 312 | 384 | 411 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 0 | 2 | -3 | ] |
⟨ | 0 | 1 | 3 | 3 | 0 | 3 | ] |
⟨ | 0 | 0 | 5 | 4 | -3 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9764, 1901.6997, -583.8446]
TE Step Tunings (cents)
⟨5.72090, 4.19814, 5.54908]
TE Tuning Map (cents)
⟨1199.976, 1901.700, 2785.876, 3369.721, 4151.487, 4440.548]
TE Mistunings (cents)
⟨-0.024, -0.255, -0.438, 0.895, 0.169, 0.021]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.412622 |
Adjusted Error |
0.615545 cents |
TE Error |
0.166344 cents/octave |
Shoe (37 & 21)
Equal Temperament Mappings
| 2 | 5 | 7 | 11 | 13 | |
[ ⟨ | 37 | 86 | 104 | 128 | 137 | ] |
⟨ | 21 | 49 | 59 | 73 | 78 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 3 | 1 | 2 | ] |
⟨ | 0 | 7 | -1 | 13 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1658, 226.9498]
TE Step Tunings (cents)
⟨30.71806, 2.98084]
TE Tuning Map (cents)
⟨1199.166, 2787.814, 3370.548, 4149.513, 4440.879]
TE Mistunings (cents)
⟨-0.834, 1.500, 1.722, -1.805, 0.352]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.649963 |
Adjusted Error |
2.202264 cents |
TE Error |
0.595136 cents/octave |
Shrusus (22 & 27e & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 0 | -4 | ] |
⟨ | 0 | 1 | 1 | 2 | 4 | ] |
⟨ | 0 | 0 | 2 | -1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.9162, 1904.6484, 441.7154]
TE Step Tunings (cents)
⟨11.55654, 6.67425, 16.61886]
TE Tuning Map (cents)
⟨1198.916, 1904.648, 2788.079, 3367.581, 4148.075]
TE Mistunings (cents)
⟨-1.084, 2.693, 1.766, -1.245, -3.243]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.177319 |
Adjusted Error |
3.698781 cents |
TE Error |
1.069188 cents/octave |
Shrutar (22 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 46 | 73 | 107 | 129 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.5414, 52.7709]
TE Step Tunings (cents)
⟨14.64693, 19.06196]
TE Tuning Map (cents)
⟨1199.083, 1904.166, 2786.623, 3367.103]
TE Mistunings (cents)
⟨-0.917, 2.211, 0.310, -1.723]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.123994 |
Adjusted Error |
2.503721 cents |
TE Error |
0.891843 cents/octave |
Shrutar (22 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 5 | 7 | ] |
⟨ | 0 | 2 | -4 | 7 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.7749, 52.6602]
TE Step Tunings (cents)
⟨11.63501, 20.51260]
TE Tuning Map (cents)
⟨1199.550, 1904.645, 2788.234, 3367.496, 4145.764]
TE Mistunings (cents)
⟨-0.450, 2.690, 1.920, -1.330, -5.554]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.865039 |
Adjusted Error |
3.965226 cents |
TE Error |
1.146207 cents/octave |
Shrutar (46 & 22f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 82 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 5 | 5 | 7 | 6 | ] |
⟨ | 0 | 2 | -4 | 7 | -1 | 16 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.7727, 52.6338]
TE Step Tunings (cents)
⟨20.80047, 11.03289]
TE Tuning Map (cents)
⟨1199.545, 1904.586, 2788.328, 3367.300, 4145.775, 4440.778]
TE Mistunings (cents)
⟨-0.455, 2.631, 2.014, -1.526, -5.543, 0.250]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.952929 |
Adjusted Error |
3.875597 cents |
TE Error |
1.047334 cents/octave |
Sidi (3d & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | 5 | 7 | 9 | ] |
⟨ | 14 | 22 | 32 | 39 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 3 | 6 | ] |
⟨ | 0 | -4 | -2 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1207.3172, 429.8134]
TE Step Tunings (cents)
⟨19.19829, 82.12303]
TE Tuning Map (cents)
⟨1207.317, 1902.698, 2762.325, 3375.583]
TE Mistunings (cents)
⟨7.317, 0.743, -23.989, 6.757]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.269759 |
Adjusted Error |
18.101067 cents |
TE Error |
6.447730 cents/octave |
Sidi (3de & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 3 | 6 | 7 | ] |
⟨ | 0 | -4 | -2 | -9 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1207.3392, 429.8867]
TE Step Tunings (cents)
⟨18.28256, 82.32082]
TE Tuning Map (cents)
⟨1207.339, 1902.471, 2762.244, 3375.055, 4152.508]
TE Mistunings (cents)
⟨7.339, 0.516, -24.069, 6.229, 1.190]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.238524 |
Adjusted Error |
19.961172 cents |
TE Error |
5.770073 cents/octave |
Siegfried (6691 & 1848 & 342)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 6691 | 10605 | 15536 | 18784 | 23147 | ] |
⟨ | 1848 | 2929 | 4291 | 5188 | 6393 | ] |
⟨ | 342 | 542 | 794 | 960 | 1183 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 11 | 4 | 2 | ] |
⟨ | 0 | 1 | 7 | 4 | 3 | ] |
⟨ | 0 | 0 | 42 | 16 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0001, 1901.9583, -564.9380]
TE Step Tunings (cents)
⟨0.17064, 0.03393, -0.01298]
TE Tuning Map (cents)
⟨1200.000, 1901.958, 2786.314, 3368.826, 4151.309]
TE Mistunings (cents)
⟨0.000, 0.003, 0.001, 0.000, -0.009]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.592098 |
Adjusted Error |
0.005054 cents |
TE Error |
0.001461 cents/octave |
Silver (47 & 10)
Equal Temperament Mappings
| 2 | 5 | 7 | 13 | 17 | |
[ ⟨ | 47 | 109 | 132 | 174 | 192 | ] |
⟨ | 10 | 23 | 28 | 37 | 41 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 7 | 13 | 17 | |
[ ⟨ | 1 | 5 | 4 | 4 | 2 | ] |
⟨ | 0 | -9 | -4 | -1 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0953, 357.3175]
TE Step Tunings (cents)
⟨27.11089, -7.41167]
TE Tuning Map (cents)
⟨1200.095, 2784.619, 3371.111, 4443.064, 4901.413]
TE Mistunings (cents)
⟨0.095, -1.695, 2.285, 2.536, -3.542]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.848220 |
Adjusted Error |
2.846696 cents |
TE Error |
0.696446 cents/octave |
Sirius (b13 & b6)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1902.4482, 293.7397]
TE Step Tunings (cents)
⟨140.00974, 13.72027]
TE Tuning Map (cents)
⟨1902.448, 2783.667, 3371.147]
TE Mistunings (cents)
⟨0.493, -2.646, 2.321]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.473917 |
Adjusted Error |
2.337175 cents |
TE Error |
0.832518 cents/octave |
Sixix (7 & 11b)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.0456, 338.6603]
TE Step Tunings (cents)
⟨122.12692, 31.46883]
TE Tuning Map (cents)
⟨1201.046, 1909.835, 2772.220]
TE Mistunings (cents)
⟨1.046, 7.880, -14.093]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.371314 |
Adjusted Error |
10.611063 cents |
TE Error |
4.569936 cents/octave |
Skadi (342 & 152 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 5 | 8 | 1 | ] |
⟨ | 0 | 1 | 1 | 3 | 2 | ] |
⟨ | 0 | 0 | 6 | 14 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0399, 1901.9513, -852.6616]
TE Step Tunings (cents)
⟨3.01279, 1.12912, -0.06319]
TE Tuning Map (cents)
⟨1200.040, 1901.951, 2786.181, 3368.911, 4151.281]
TE Mistunings (cents)
⟨0.040, -0.004, -0.132, 0.085, -0.037]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.485531 |
Adjusted Error |
0.118648 cents |
TE Error |
0.034297 cents/octave |
Skateboard (4 & 19p)
Equal Temperament Mappings
| 2 | 5/3 | 7/3 | 11 | 13/9 | |
[ ⟨ | 4 | 3 | 5 | 14 | 2 | ] |
⟨ | 19 | 14 | 23 | 66 | 10 | ] ⟩ |
Reduced Mapping
| 2 | 5/3 | 7/3 | 11 | 13/9 | |
[ ⟨ | 1 | 1 | 2 | 4 | 0 | ] |
⟨ | 0 | -1 | -3 | -2 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.3236, 317.1946]
TE Step Tunings (cents)
⟨-10.07908, 65.45473]
TE Tuning Map (cents)
⟨1203.324, 886.129, 1455.063, 4178.905, 634.389]
TE Mistunings (cents)
⟨3.324, 1.770, -11.807, 27.587, -2.228]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
2.107623 |
Adjusted Error |
21.401381 cents |
TE Error |
6.186386 cents/octave |
Skidoo (17 & 46)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | 23 | |
[ ⟨ | 17 | 27 | 48 | 59 | 63 | 77 | ] |
⟨ | 46 | 73 | 129 | 159 | 170 | 208 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | 23 | |
[ ⟨ | 1 | 2 | 9 | 8 | 7 | 7 | ] |
⟨ | 0 | -1 | -15 | -11 | -8 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6669, 495.1336]
TE Step Tunings (cents)
⟨17.52483, 19.60315]
TE Tuning Map (cents)
⟨1199.667, 1904.200, 3369.998, 4150.865, 4436.599, 5426.866]
TE Mistunings (cents)
⟨-0.333, 2.245, 1.172, -0.453, -3.928, -1.408]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.773140 |
Adjusted Error |
3.471052 cents |
TE Error |
0.767327 cents/octave |
Skwairs (17 & 31p)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 48 | 59 | 63 | ] |
⟨ | 31 | 49 | 87 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 6 | 7 | 3 | ] |
⟨ | 0 | -4 | -9 | -10 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.8895, 424.3094]
TE Step Tunings (cents)
⟨34.19408, 19.92226]
TE Tuning Map (cents)
⟨1198.890, 1899.431, 3374.553, 4149.133, 4445.287]
TE Mistunings (cents)
⟨-1.110, -2.524, 5.727, -2.185, 4.760]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.565940 |
Adjusted Error |
5.228948 cents |
TE Error |
1.413061 cents/octave |
Skwares (17 & 31)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 17 | 27 | 48 | 59 | ] |
⟨ | 31 | 49 | 87 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 3 | 6 | 7 | ] |
⟨ | 0 | -4 | -9 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3776, 425.3774]
TE Step Tunings (cents)
⟨17.45416, 29.15022]
TE Tuning Map (cents)
⟨1200.378, 1899.623, 3373.869, 4148.869]
TE Mistunings (cents)
⟨0.378, -2.332, 5.043, -2.449]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.267025 |
Adjusted Error |
4.249284 cents |
TE Error |
1.228319 cents/octave |
Slender (31 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 94 | 149 | 218 | 264 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 2 | 3 | ] |
⟨ | 0 | -13 | 10 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3825, 38.4256]
TE Step Tunings (cents)
⟨10.86203, 9.18787]
TE Tuning Map (cents)
⟨1200.382, 1901.232, 2785.021, 3370.594]
TE Mistunings (cents)
⟨0.382, -0.723, -1.292, 1.768]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.506676 |
Adjusted Error |
1.445753 cents |
TE Error |
0.514988 cents/octave |
Slender (31 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 2 | 3 | 4 | ] |
⟨ | 0 | -13 | 10 | -6 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4996, 38.4031]
TE Step Tunings (cents)
⟨8.38999, 10.00436]
TE Tuning Map (cents)
⟨1200.500, 1901.759, 2785.030, 3371.080, 4149.146]
TE Mistunings (cents)
⟨0.500, -0.196, -1.284, 2.255, -2.172]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.254347 |
Adjusted Error |
1.962786 cents |
TE Error |
0.567372 cents/octave |
Slender (31 & 63)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 63 | 100 | 146 | 177 | 218 | 233 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 3 | 4 | 3 | ] |
⟨ | 0 | -13 | 10 | -6 | -17 | 22 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1752, 38.3193]
TE Step Tunings (cents)
⟨13.76576, 12.27677]
TE Tuning Map (cents)
⟨1200.175, 1902.200, 2783.544, 3370.610, 4149.273, 4443.550]
TE Mistunings (cents)
⟨0.175, 0.245, -2.770, 1.784, -2.045, 3.023]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.927354 |
Adjusted Error |
2.571951 cents |
TE Error |
0.695039 cents/octave |
Slendi (41 & 42eeff)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 42 | 67 | 98 | 118 | 144 | 154 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 2 | 2 | ] |
⟨ | 0 | -17 | -28 | -8 | 60 | 70 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1274, 29.1662]
TE Step Tunings (cents)
⟨24.85441, 4.31182]
TE Tuning Map (cents)
⟨1200.127, 1904.429, 2783.728, 3367.052, 4150.229, 4441.891]
TE Mistunings (cents)
⟨0.127, 2.474, -2.586, -1.774, -1.089, 1.364]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.303252 |
Adjusted Error |
3.142403 cents |
TE Error |
0.849197 cents/octave |
Slendric (36 & 41)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 36 | 57 | 101 | ] |
⟨ | 41 | 65 | 115 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.4862, 233.7822]
TE Step Tunings (cents)
⟨18.81842, 12.75666]
TE Tuning Map (cents)
⟨1200.486, 1901.833, 3367.676]
TE Mistunings (cents)
⟨0.486, -0.122, -1.150]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.986600 |
Adjusted Error |
1.037829 cents |
TE Error |
0.369682 cents/octave |
Slithy (27e & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 5 | 4 | 8 | ] |
⟨ | 0 | -19 | -36 | -16 | -61 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5895, 89.2608]
TE Step Tunings (cents)
⟨6.60815, 10.86350]
TE Tuning Map (cents)
⟨1199.589, 1902.813, 2784.557, 3370.185, 4151.805]
TE Mistunings (cents)
⟨-0.411, 0.858, -1.756, 1.359, 0.487]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.496383 |
Adjusted Error |
1.755471 cents |
TE Error |
0.507445 cents/octave |
Slithy (27e & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 5 | 4 | 8 | 4 | ] |
⟨ | 0 | -19 | -36 | -16 | -61 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5043, 89.2487]
TE Step Tunings (cents)
⟨7.14882, 10.70730]
TE Tuning Map (cents)
⟨1199.504, 1902.787, 2784.567, 3370.037, 4151.861, 4441.022]
TE Mistunings (cents)
⟨-0.496, 0.832, -1.747, 1.211, 0.543, 0.494]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.829669 |
Adjusted Error |
1.732971 cents |
TE Error |
0.468315 cents/octave |
Slurpee (17c & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 17 | 27 | 40 | 48 | 59 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |
⟨ | 0 | -7 | -11 | -3 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5083, 72.2067]
TE Step Tunings (cents)
⟨43.20042, 29.00633]
TE Tuning Map (cents)
⟨1198.508, 1891.569, 2801.251, 3378.905, 4144.173]
TE Mistunings (cents)
⟨-1.492, -10.386, 14.937, 10.079, -7.145]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.844388 |
Adjusted Error |
15.754708 cents |
TE Error |
4.554132 cents/octave |
Slurpee (17c & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |
⟨ | 0 | -7 | -11 | -3 | -9 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.1129, 72.3560]
TE Step Tunings (cents)
⟨41.41748, 30.93849]
TE Tuning Map (cents)
⟨1199.113, 1891.734, 2801.423, 3380.271, 4145.248, 4434.672]
TE Mistunings (cents)
⟨-0.887, -10.221, 15.109, 11.445, -6.070, -5.856]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.742652 |
Adjusted Error |
15.620940 cents |
TE Error |
4.221374 cents/octave |
Smate (3de & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 2 | 6 | 7 | ] |
⟨ | 0 | -4 | 1 | -9 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1192.0234, 419.4104]
TE Step Tunings (cents)
⟨22.16451, 66.20764]
TE Tuning Map (cents)
⟨1192.023, 1898.429, 2803.457, 3377.447, 4150.060]
TE Mistunings (cents)
⟨-7.977, -3.526, 17.143, 8.621, -1.258]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.544793 |
Adjusted Error |
17.818705 cents |
TE Error |
5.150761 cents/octave |
Smate (3de & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 2 | 6 | 7 | 3 | ] |
⟨ | 0 | -4 | 1 | -9 | -10 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1194.1802, 420.9682]
TE Step Tunings (cents)
⟨8.62120, 68.72451]
TE Tuning Map (cents)
⟨1194.180, 1898.668, 2809.329, 3376.367, 4149.579, 4424.477]
TE Mistunings (cents)
⟨-5.820, -3.287, 23.015, 7.541, -1.739, -16.050]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.626959 |
Adjusted Error |
19.269639 cents |
TE Error |
5.207392 cents/octave |
Snape (72 & 58 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -2 | -7 | ] |
⟨ | 0 | 2 | 0 | 9 | 22 | ] |
⟨ | 0 | 0 | 1 | -1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2227, 950.6273, 2786.7879]
TE Step Tunings (cents)
⟨10.78067, 6.55904, 2.29424]
TE Tuning Map (cents)
⟨1200.223, 1901.255, 2786.788, 3368.412, 4151.878]
TE Mistunings (cents)
⟨0.223, -0.700, 0.474, -0.413, 0.560]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.328066 |
Adjusted Error |
0.894763 cents |
TE Error |
0.258645 cents/octave |
Snape (72 & 58 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -2 | -7 | -1 | ] |
⟨ | 0 | 2 | 0 | 9 | 22 | 3 | ] |
⟨ | 0 | 0 | 1 | -1 | -3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1736, 950.6938, 2787.3813]
TE Step Tunings (cents)
⟨9.32052, 8.15398, 2.95607]
TE Tuning Map (cents)
⟨1200.174, 1901.388, 2787.381, 3368.516, 4151.904, 4439.289]
TE Mistunings (cents)
⟨0.174, -0.567, 1.068, -0.310, 0.586, -1.239]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.323445 |
Adjusted Error |
1.092186 cents |
TE Error |
0.295150 cents/octave |
Sodium (4 & 3ccd)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1208.6821, 322.4986]
TE Step Tunings (cents)
⟨241.18615, 81.31249]
TE Tuning Map (cents)
⟨1208.682, 1853.679, 2821.175, 3384.860]
TE Mistunings (cents)
⟨8.682, -48.276, 34.862, 16.034]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.759915 |
Adjusted Error |
49.848224 cents |
TE Error |
17.756296 cents/octave |
Sogu (12 & 22 & 7g)
Equal Temperament Mappings
| 2 | 3 | 5 | 17 | |
[ ⟨ | 12 | 19 | 28 | 49 | ] |
⟨ | 22 | 35 | 51 | 90 | ] |
⟨ | 7 | 11 | 16 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 17 | |
[ ⟨ | 1 | 0 | 0 | -3 | ] |
⟨ | 0 | 1 | 0 | 3 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2863, 1903.7478, 2787.5963]
TE Step Tunings (cents)
⟨43.33596, 30.24980, 1.96560]
TE Tuning Map (cents)
⟨1199.286, 1903.748, 2787.596, 4900.981]
TE Mistunings (cents)
⟨-0.714, 1.793, 1.283, -3.975]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.060898 |
Adjusted Error |
3.563069 cents |
TE Error |
0.871707 cents/octave |
Sonic (22 & 15 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 0 | 4 | ] |
⟨ | 0 | 3 | 5 | 0 | 4 | ] |
⟨ | 0 | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3508, -164.1256, 3368.8259]
TE Step Tunings (cents)
⟨27.92382, 23.54750, 16.62960]
TE Tuning Map (cents)
⟨1200.351, 1908.325, 2780.424, 3368.826, 4144.901]
TE Mistunings (cents)
⟨0.351, 6.370, -5.889, -0.000, -6.417]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.106408 |
Adjusted Error |
7.911255 cents |
TE Error |
2.286866 cents/octave |
Soothsaying (22p & 60p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 60 | 95 | 139 | 168 | 208 | 222 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 5 | 5 | 10 | 4 | 3 | ] |
⟨ | 0 | -5 | -1 | -12 | 8 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2961, 219.6006]
TE Step Tunings (cents)
⟨15.23917, 14.42217]
TE Tuning Map (cents)
⟨1200.592, 1903.477, 2781.880, 3367.754, 4157.989, 4436.095]
TE Mistunings (cents)
⟨0.592, 1.522, -4.434, -1.072, 6.671, -4.433]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.375530 |
Adjusted Error |
4.829280 cents |
TE Error |
1.305056 cents/octave |
Sorcery (19p & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | 6 | 4 | ] |
⟨ | 0 | 5 | 1 | 12 | -8 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2666, 380.8783]
TE Step Tunings (cents)
⟨29.54247, 29.08907]
TE Tuning Map (cents)
⟨1201.267, 1904.392, 2783.412, 3369.274, 4160.573, 4424.188]
TE Mistunings (cents)
⟨1.267, 2.437, -2.902, 0.448, 9.255, -16.340]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.203272 |
Adjusted Error |
8.573792 cents |
TE Error |
2.316966 cents/octave |
Soso (12 & 22)
Equal Temperament Mappings
| 2 | 3 | 17 | |
[ ⟨ | 12 | 19 | 49 | ] |
⟨ | 22 | 35 | 90 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.1473, 101.8092]
TE Step Tunings (cents)
⟨80.39362, 10.70778]
TE Tuning Map (cents)
⟨1200.295, 1902.251, 4902.987]
TE Mistunings (cents)
⟨0.295, 0.296, -1.968]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.519333 |
Adjusted Error |
1.403020 cents |
TE Error |
0.343250 cents/octave |
Spartan (5p & 21p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |
⟨ | 21 | 33 | 49 | 59 | 73 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | 3 | 5 | ] |
⟨ | 0 | 3 | 7 | -1 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0653, 229.3566]
TE Step Tunings (cents)
⟨20.22844, 52.28205]
TE Tuning Map (cents)
⟨1199.065, 1887.135, 2804.562, 3367.839, 4160.473]
TE Mistunings (cents)
⟨-0.935, -14.820, 18.248, -0.987, 9.155]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.853095 |
Adjusted Error |
19.397038 cents |
TE Error |
5.607002 cents/octave |
Spectacle (31 & 41 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 0 | -3 | 2 | ] |
⟨ | 0 | 2 | 0 | 4 | 5 | ] |
⟨ | 0 | 0 | 1 | 2 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.5494, 350.2173, 2785.2070]
TE Step Tunings (cents)
⟨17.35924, 14.33446, 2.19706]
TE Tuning Map (cents)
⟨1200.549, 1900.984, 2785.207, 3369.635, 4152.185]
TE Mistunings (cents)
⟨0.549, -0.971, -1.107, 0.809, 0.868]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.198553 |
Adjusted Error |
1.585511 cents |
TE Error |
0.458315 cents/octave |
Spell (19 & 25)
Contorted
Magic (order 2)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 25 | 40 | 58 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.2480, 190.2269]
TE Step Tunings (cents)
⟨49.32059, 10.56627]
TE Tuning Map (cents)
⟨1201.248, 1902.269, 2782.950]
TE Mistunings (cents)
⟨1.248, 0.314, -3.364]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.790526 |
Adjusted Error |
2.577115 cents |
TE Error |
1.109903 cents/octave |
Spell (19 & 6)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 6 | 10 | 14 | 17 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.8302, 190.3746]
TE Step Tunings (cents)
⟨60.58268, 8.62653]
TE Tuning Map (cents)
⟨1202.830, 1903.746, 2786.410, 3357.533]
TE Mistunings (cents)
⟨2.830, 1.791, 0.096, -11.293]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.427784 |
Adjusted Error |
7.083901 cents |
TE Error |
2.523336 cents/octave |
Spell (19p & 6)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 6 | 10 | 14 | 17 | 21 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | 2 | 3 | ] |
⟨ | 0 | 10 | 2 | 5 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4793, 190.3611]
TE Step Tunings (cents)
⟨58.31256, 15.42344]
TE Tuning Map (cents)
⟨1200.479, 1903.611, 2781.681, 3352.764, 4172.521]
TE Mistunings (cents)
⟨0.479, 1.656, -4.633, -16.062, 21.203]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.243685 |
Adjusted Error |
13.452007 cents |
TE Error |
3.888502 cents/octave |
Spell (19p & 6p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 6 | 10 | 14 | 17 | 21 | 22 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | 2 | 3 | 4 | ] |
⟨ | 0 | 10 | 2 | 5 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.9028, 190.2288]
TE Step Tunings (cents)
⟨60.53010, 8.63847]
TE Tuning Map (cents)
⟨1201.903, 1902.288, 2784.263, 3354.949, 4176.395, 4427.154]
TE Mistunings (cents)
⟨1.903, 0.333, -2.051, -13.876, 25.077, -13.374]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.247982 |
Adjusted Error |
14.684444 cents |
TE Error |
3.968297 cents/octave |
Sqrtphi (72 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 12 | 11 | 16 | 17 | ] |
⟨ | 0 | -30 | -25 | -38 | -39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0518, 416.6221]
TE Step Tunings (cents)
⟨9.10167, 4.50191]
TE Tuning Map (cents)
⟨1200.052, 1901.958, 2785.017, 3369.188, 4152.618]
TE Mistunings (cents)
⟨0.052, 0.003, -1.297, 0.362, 1.300]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.170018 |
Adjusted Error |
1.063495 cents |
TE Error |
0.307419 cents/octave |
Sqrtphi (72 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 12 | 11 | 16 | 17 | 28 | ] |
⟨ | 0 | -30 | -25 | -38 | -39 | -70 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9320, 416.5611]
TE Step Tunings (cents)
⟨6.74759, 5.90170]
TE Tuning Map (cents)
⟨1199.932, 1902.351, 2785.225, 3369.591, 4152.962, 4438.820]
TE Mistunings (cents)
⟨-0.068, 0.396, -1.089, 0.765, 1.644, -1.708]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.376183 |
Adjusted Error |
1.351238 cents |
TE Error |
0.365156 cents/octave |
Squares (31 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 14 | 22 | 32 | 39 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 8 | 6 | ] |
⟨ | 0 | -4 | -16 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2552, 426.3871]
TE Step Tunings (cents)
⟨36.85725, 4.19146]
TE Tuning Map (cents)
⟨1201.255, 1898.217, 2787.849, 3370.048]
TE Mistunings (cents)
⟨1.255, -3.738, 1.535, 1.222]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.462755 |
Adjusted Error |
3.910942 cents |
TE Error |
1.393106 cents/octave |
Squares (31 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 8 | 6 | 7 | ] |
⟨ | 0 | -4 | -16 | -9 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.6744, 426.5516]
TE Step Tunings (cents)
⟨36.64916, 4.68219]
TE Tuning Map (cents)
⟨1201.674, 1898.817, 2788.569, 3371.082, 4146.205]
TE Mistunings (cents)
⟨1.674, -3.138, 2.255, 2.256, -5.113]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.204518 |
Adjusted Error |
5.012782 cents |
TE Error |
1.449019 cents/octave |
Squares (31 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 8 | 6 | 7 | 3 | ] |
⟨ | 0 | -4 | -16 | -9 | -10 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8615, 425.5004]
TE Step Tunings (cents)
⟨34.33847, 7.96288]
TE Tuning Map (cents)
⟨1199.861, 1897.583, 2790.885, 3369.665, 4144.026, 4450.585]
TE Mistunings (cents)
⟨-0.139, -4.372, 4.571, 0.839, -7.292, 10.058]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.430127 |
Adjusted Error |
7.311612 cents |
TE Error |
1.975877 cents/octave |
Squares (17 & 31)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 17 | 27 | 48 | ] |
⟨ | 31 | 49 | 87 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.3747, 425.4983]
TE Step Tunings (cents)
⟨13.67460, 31.22279]
TE Tuning Map (cents)
⟨1200.375, 1899.131, 3372.764]
TE Mistunings (cents)
⟨0.375, -2.824, 3.938]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.378457 |
Adjusted Error |
3.725269 cents |
TE Error |
1.326968 cents/octave |
Squarschmidt (118 & 357)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 118 | 187 | 274 | ] |
⟨ | 357 | 566 | 829 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9653, 396.6094]
TE Step Tunings (cents)
⟨6.36042, 1.25892]
TE Tuning Map (cents)
⟨1199.965, 1901.949, 2786.403]
TE Mistunings (cents)
⟨-0.035, -0.006, 0.089]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.249498 |
Adjusted Error |
0.069506 cents |
TE Error |
0.029935 cents/octave |
Srutal (12 & 34)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 12 | 19 | 28 | ] |
⟨ | 34 | 54 | 79 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.4116, 104.7953]
TE Step Tunings (cents)
⟨16.71470, 29.36020]
TE Tuning Map (cents)
⟨1198.823, 1903.030, 2787.467]
TE Mistunings (cents)
⟨-1.177, 1.075, 1.154]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.224477 |
Adjusted Error |
1.938887 cents |
TE Error |
0.835033 cents/octave |
Srutal (46 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 3 | 5 | 3 | 5 | ] |
⟨ | 0 | 1 | -2 | 15 | 11 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.4423, 104.7588]
TE Step Tunings (cents)
⟨5.74523, 11.68255]
TE Tuning Map (cents)
⟨1198.885, 1903.086, 2787.694, 3369.708, 4149.558]
TE Mistunings (cents)
⟨-1.115, 1.131, 1.380, 0.883, -1.760]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.569033 |
Adjusted Error |
2.428524 cents |
TE Error |
0.702001 cents/octave |
Srutar (22p & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 3 | 5 | 5 | 7 | 8 | ] |
⟨ | 0 | 2 | -4 | 7 | -1 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0164, 52.2985]
TE Step Tunings (cents)
⟨2.83365, 24.73245]
TE Tuning Map (cents)
⟨1200.033, 1904.646, 2790.888, 3366.172, 4147.816, 4434.041]
TE Mistunings (cents)
⟨0.033, 2.691, 4.574, -2.654, -3.502, -6.486]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.102128 |
Adjusted Error |
5.179710 cents |
TE Error |
1.399755 cents/octave |
Sruti (58 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 3 | 11 | 9 | ] |
⟨ | 0 | -2 | 4 | -13 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.1970, 247.8046]
TE Step Tunings (cents)
⟨18.29947, 4.03014]
TE Tuning Map (cents)
⟨1198.394, 1901.179, 2788.810, 3369.707, 4153.750]
TE Mistunings (cents)
⟨-1.606, -0.776, 2.496, 0.881, 2.432]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.180399 |
Adjusted Error |
3.306292 cents |
TE Error |
0.955733 cents/octave |
Sruti (58 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 3 | 11 | 9 | 7 | ] |
⟨ | 0 | -2 | 4 | -13 | -5 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.1499, 247.7629]
TE Step Tunings (cents)
⟨17.92053, 4.67379]
TE Tuning Map (cents)
⟨1198.300, 1901.074, 2788.501, 3369.731, 4153.534, 4441.812]
TE Mistunings (cents)
⟨-1.700, -0.881, 2.188, 0.905, 2.216, 1.285]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.955619 |
Adjusted Error |
3.282939 cents |
TE Error |
0.887175 cents/octave |
Stacks (11 & 30)
Equal Temperament Mappings
| 2 | 9 | 15 | 7 | 11 | 13 | |
[ ⟨ | 11 | 35 | 43 | 31 | 38 | 41 | ] |
⟨ | 30 | 95 | 117 | 84 | 104 | 111 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 15 | 7 | 11 | 13 | |
[ ⟨ | 1 | 5 | 5 | 5 | 2 | 7 | ] |
⟨ | 0 | -5 | -3 | -6 | 4 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7048, 438.8691]
TE Step Tunings (cents)
⟨30.67912, 28.74115]
TE Tuning Map (cents)
⟨1199.705, 3804.178, 4681.917, 3365.309, 4154.886, 4448.112]
TE Mistunings (cents)
⟨-0.295, 0.268, -6.352, -3.517, 3.568, 7.584]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.250057 |
Adjusted Error |
4.934385 cents |
TE Error |
1.262995 cents/octave |
Starling (19 & 12 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -1 | ] |
⟨ | 0 | 1 | 0 | -2 | ] |
⟨ | 0 | 0 | 1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7955, 1900.9275, 2789.6215]
TE Step Tunings (cents)
⟨29.70386, 19.41227, 14.90647]
TE Tuning Map (cents)
⟨1199.795, 1900.927, 2789.622, 3367.214]
TE Mistunings (cents)
⟨-0.205, -1.028, 3.308, -1.612]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.099367 |
Adjusted Error |
2.357680 cents |
TE Error |
0.839823 cents/octave |
Starling (31 & 15 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -1 | 8 | ] |
⟨ | 0 | 1 | 0 | -2 | 3 | ] |
⟨ | 0 | 0 | 1 | 3 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6166, 1901.0499, 2789.5578]
TE Step Tunings (cents)
⟨28.39796, 12.17549, 7.24460]
TE Tuning Map (cents)
⟨1200.617, 1901.050, 2789.558, 3365.957, 4149.851]
TE Mistunings (cents)
⟨0.617, -0.905, 3.244, -2.869, -1.467]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.172733 |
Adjusted Error |
3.048386 cents |
TE Error |
0.881181 cents/octave |
Starlingtet (4 & 19)
Equal Temperament Mappings
| 2 | 5/3 | 7/3 | |
[ ⟨ | 4 | 3 | 5 | ] |
⟨ | 19 | 14 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 5/3 | 7/3 | |
[ ⟨ | 1 | 1 | 2 | ] |
⟨ | 0 | -1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.1314, 310.7280]
TE Step Tunings (cents)
⟨86.82472, 44.78066]
TE Tuning Map (cents)
⟨1198.131, 887.403, 1464.079]
TE Mistunings (cents)
⟨-1.869, 3.045, -2.792]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.005349 |
Adjusted Error |
3.583177 cents |
TE Error |
2.931282 cents/octave |
Stearnscape (72 & 210e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 210 | 333 | 488 | 590 | 727 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 6 | 9 | 13 | 16 | 20 | ] |
⟨ | 0 | 6 | 11 | 10 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨199.9835, 16.9487]
TE Step Tunings (cents)
⟨6.74735, 3.40044]
TE Tuning Map (cents)
⟨1199.901, 1901.543, 2786.221, 3369.223, 4152.208]
TE Mistunings (cents)
⟨-0.099, -0.412, -0.093, 0.397, 0.890]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.709262 |
Adjusted Error |
0.628393 cents |
TE Error |
0.181646 cents/octave |
Stones (5 & 14d)
Contorted
Archy (order 2)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.9667, 244.7192]
TE Step Tunings (cents)
⟨164.83114, 26.62936]
TE Tuning Map (cents)
⟨1196.967, 1904.495, 3372.810]
TE Mistunings (cents)
⟨-3.033, 2.540, 3.984]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.100288 |
Adjusted Error |
6.017469 cents |
TE Error |
2.143466 cents/octave |
Stützel (12 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 19 | |
[ ⟨ | 12 | 19 | 28 | 51 | ] |
⟨ | 19 | 30 | 44 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 19 | |
[ ⟨ | 1 | 2 | 4 | 3 | ] |
⟨ | 0 | -1 | -4 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5640, 501.9508]
TE Step Tunings (cents)
⟨59.44686, 25.58956]
TE Tuning Map (cents)
⟨1199.564, 1897.177, 2790.453, 5104.544]
TE Mistunings (cents)
⟨-0.436, -4.778, 4.139, 7.031]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.892799 |
Adjusted Error |
8.279261 cents |
TE Error |
1.949012 cents/octave |
Su (2 & 5g)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.4348, 687.6079]
TE Step Tunings (cents)
⟨151.26482, 178.78104]
TE Tuning Map (cents)
⟨1196.435, 1884.043, 4964.520]
TE Mistunings (cents)
⟨-3.565, -17.912, 59.565]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.271071 |
Adjusted Error |
44.325378 cents |
TE Error |
10.844228 cents/octave |
Subfourth (58 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 17 | 4 | 11 | ] |
⟨ | 0 | 4 | -37 | -3 | -19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0811, 475.6307]
TE Step Tunings (cents)
⟨4.58102, 7.71390]
TE Tuning Map (cents)
⟨1199.081, 1902.523, 2786.044, 3369.432, 4152.909]
TE Mistunings (cents)
⟨-0.919, 0.568, -0.270, 0.606, 1.591]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.513804 |
Adjusted Error |
1.725876 cents |
TE Error |
0.498890 cents/octave |
Subfourth (58 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 17 | 4 | 11 | 16 | ] |
⟨ | 0 | 4 | -37 | -3 | -19 | -31 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0757, 475.6295]
TE Step Tunings (cents)
⟨4.46623, 7.76888]
TE Tuning Map (cents)
⟨1199.076, 1902.518, 2785.996, 3369.414, 4152.873, 4440.697]
TE Mistunings (cents)
⟨-0.924, 0.563, -0.318, 0.588, 1.555, 0.170]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.166892 |
Adjusted Error |
1.687098 cents |
TE Error |
0.455918 cents/octave |
Submajor (53 & 10)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 10 | 16 | 23 | 28 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 4 | -1 | 1 | ] |
⟨ | 0 | -8 | 11 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7423, 362.1769]
TE Step Tunings (cents)
⟨22.54208, 0.50119]
TE Tuning Map (cents)
⟨1199.742, 1901.554, 2784.204, 3372.804]
TE Mistunings (cents)
⟨-0.258, -0.401, -2.110, 3.978]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.594275 |
Adjusted Error |
2.416590 cents |
TE Error |
0.860807 cents/octave |
Submajor (53 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | -1 | 1 | 11 | ] |
⟨ | 0 | -8 | 11 | 6 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0712, 362.1220]
TE Step Tunings (cents)
⟨21.00675, 8.67134]
TE Tuning Map (cents)
⟨1200.071, 1903.309, 2783.271, 3372.804, 4147.732]
TE Mistunings (cents)
⟨0.071, 1.354, -3.042, 3.978, -3.585]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.446783 |
Adjusted Error |
3.639150 cents |
TE Error |
1.051950 cents/octave |
Submajor (53 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | -1 | 1 | 11 | 4 | ] |
⟨ | 0 | -8 | 11 | 6 | -25 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1818, 362.1597]
TE Step Tunings (cents)
⟨21.05203, 8.44243]
TE Tuning Map (cents)
⟨1200.182, 1903.449, 2783.575, 3373.140, 4148.006, 4438.568]
TE Mistunings (cents)
⟨0.182, 1.494, -2.738, 4.314, -3.312, -1.960]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.070161 |
Adjusted Error |
3.660600 cents |
TE Error |
0.989234 cents/octave |
Subneutral (441 & 472)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 441 | 699 | 1024 | 1238 | ] |
⟨ | 472 | 748 | 1096 | 1325 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 19 | 0 | 6 | ] |
⟨ | 0 | -60 | 8 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9998, 348.3005]
TE Step Tunings (cents)
⟨2.15274, 0.53102]
TE Tuning Map (cents)
⟨1200.000, 1901.968, 2786.404, 3368.694]
TE Mistunings (cents)
⟨-0.000, 0.013, 0.090, -0.132]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
16.530375 |
Adjusted Error |
0.086429 cents |
TE Error |
0.030787 cents/octave |
Subpental (19 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 130 | 206 | 302 | 365 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 6 | 8 | 17 | ] |
⟨ | 0 | -14 | -18 | -45 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9264, 378.4439]
TE Step Tunings (cents)
⟨0.72107, 9.12482]
TE Tuning Map (cents)
⟨1199.926, 1901.344, 2787.421, 3368.774]
TE Mistunings (cents)
⟨-0.074, -0.611, 1.108, -0.051]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.682138 |
Adjusted Error |
0.867435 cents |
TE Error |
0.308987 cents/octave |
Subpental (130 & 111)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |
⟨ | 111 | 176 | 258 | 312 | 384 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 6 | 8 | 17 | -6 | ] |
⟨ | 0 | -14 | -18 | -45 | 30 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6575, 378.3324]
TE Step Tunings (cents)
⟨6.88107, 2.74882]
TE Tuning Map (cents)
⟨1199.658, 1901.292, 2787.277, 3369.221, 4152.026]
TE Mistunings (cents)
⟨-0.342, -0.663, 0.964, 0.395, 0.708]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.435804 |
Adjusted Error |
1.122383 cents |
TE Error |
0.324441 cents/octave |
Subpental (130 & 111)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 111 | 176 | 258 | 312 | 384 | 411 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 6 | 8 | 17 | -6 | 16 | ] |
⟨ | 0 | -14 | -18 | -45 | 30 | -39 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6824, 378.3369]
TE Step Tunings (cents)
⟨6.51717, 3.17523]
TE Tuning Map (cents)
⟨1199.682, 1901.377, 2787.394, 3369.438, 4152.014, 4439.777]
TE Mistunings (cents)
⟨-0.318, -0.578, 1.080, 0.612, 0.696, -0.750]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.993469 |
Adjusted Error |
1.149987 cents |
TE Error |
0.310770 cents/octave |
Subsemifourth (152 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -8 | -4 | -8 | -10 | ] |
⟨ | 0 | 47 | 31 | 53 | 66 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9231, 244.7033]
TE Step Tunings (cents)
⟨6.05854, 2.70898]
TE Tuning Map (cents)
⟨1199.923, 1901.672, 2786.111, 3369.892, 4151.189]
TE Mistunings (cents)
⟨-0.077, -0.283, -0.203, 1.066, -0.129]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.665194 |
Adjusted Error |
0.676167 cents |
TE Error |
0.195456 cents/octave |
Subsemifourth (103 & 152f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | 563 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -8 | -4 | -8 | -10 | -12 | ] |
⟨ | 0 | 47 | 31 | 53 | 66 | 77 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9007, 244.6933]
TE Step Tunings (cents)
⟨3.53903, 5.49593]
TE Tuning Map (cents)
⟨1199.901, 1901.380, 2785.890, 3369.540, 4150.751, 4442.576]
TE Mistunings (cents)
⟨-0.099, -0.575, -0.424, 0.714, -0.567, 2.049]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.989401 |
Adjusted Error |
1.143399 cents |
TE Error |
0.308990 cents/octave |
Sugu (12 & 34 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 17 | |
[ ⟨ | 12 | 19 | 28 | 49 | ] |
⟨ | 34 | 54 | 79 | 139 | ] |
⟨ | 31 | 49 | 72 | 127 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 17 | |
[ ⟨ | 1 | 0 | 0 | 8 | ] |
⟨ | 0 | 1 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3883, 1902.1471, 2786.7260]
TE Step Tunings (cents)
⟨2.06036, 24.30938, 11.23049]
TE Tuning Map (cents)
⟨1199.388, 1902.147, 2786.726, 4906.233]
TE Mistunings (cents)
⟨-0.612, 0.192, 0.412, 1.278]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.078223 |
Adjusted Error |
1.471113 cents |
TE Error |
0.359908 cents/octave |
Suhajira (17 & 10)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 17 | 27 | 48 | 59 | ] |
⟨ | 10 | 16 | 28 | 35 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.3657, 352.8857]
TE Step Tunings (cents)
⟨60.24063, 17.22750]
TE Tuning Map (cents)
⟨1196.366, 1902.137, 3373.920, 4157.160]
TE Mistunings (cents)
⟨-3.634, 0.182, 5.094, 5.842]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.154612 |
Adjusted Error |
7.611862 cents |
TE Error |
2.200322 cents/octave |
Sulis (3p & 28p)
Equal Temperament Mappings
| 2 | 5 | 9/7 | 11/9 | |
[ ⟨ | 3 | 7 | 1 | 1 | ] |
⟨ | 28 | 65 | 10 | 8 | ] ⟩ |
Reduced Mapping
| 2 | 5 | 9/7 | 11/9 | |
[ ⟨ | 1 | 2 | 1 | -1 | ] |
⟨ | 0 | 1 | -2 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1207.9997, 388.5075]
TE Step Tunings (cents)
⟨6.21327, 42.47714]
TE Tuning Map (cents)
⟨1208.000, 2804.507, 430.985, 346.030]
TE Mistunings (cents)
⟨8.000, 18.193, -4.099, -1.378]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
7.067024 |
Adjusted Error |
19.282812 cents |
TE Error |
8.304655 cents/octave |
Superkleismic (41 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 15 | 24 | 35 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 4 | 5 | 2 | ] |
⟨ | 0 | -9 | -10 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7680, 322.1361]
TE Step Tunings (cents)
⟨28.96998, 0.86659]
TE Tuning Map (cents)
⟨1200.768, 1903.847, 2782.479, 3367.944]
TE Mistunings (cents)
⟨0.768, 1.892, -3.835, -0.881]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.829176 |
Adjusted Error |
3.088435 cents |
TE Error |
1.100123 cents/octave |
Superkleismic (41 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | 5 | 2 | 4 | ] |
⟨ | 0 | -9 | -10 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1761, 321.8938]
TE Step Tunings (cents)
⟨27.70243, 4.29175]
TE Tuning Map (cents)
⟨1200.176, 1903.660, 2781.943, 3366.033, 4156.917]
TE Mistunings (cents)
⟨0.176, 1.705, -4.371, -2.792, 5.599]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.616430 |
Adjusted Error |
4.468221 cents |
TE Error |
1.291606 cents/octave |
Superkleismic (15 & 41)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 5 | 2 | 4 | 8 | ] |
⟨ | 0 | -9 | -10 | 3 | -2 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0380, 322.0041]
TE Step Tunings (cents)
⟨-1.74855, 29.90893]
TE Tuning Map (cents)
⟨1200.038, 1902.115, 2780.149, 3366.088, 4156.144, 4448.239]
TE Mistunings (cents)
⟨0.038, 0.160, -6.164, -2.738, 4.826, 7.711]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.553954 |
Adjusted Error |
5.712662 cents |
TE Error |
1.543779 cents/octave |
Supermagic (19 & 22 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 15 | 24 | 35 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 5 | ] |
⟨ | 0 | 1 | 0 | 3 | ] |
⟨ | 0 | 0 | 1 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0529, 1903.5419, 2782.9079]
TE Step Tunings (cents)
⟨32.06694, 26.57931, 0.46908]
TE Tuning Map (cents)
⟨1201.053, 1903.542, 2782.908, 3367.166]
TE Mistunings (cents)
⟨1.053, 1.587, -3.406, -1.660]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.123392 |
Adjusted Error |
3.014460 cents |
TE Error |
1.073772 cents/octave |
Supermagic (22 & 41 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 5 | 2 | ] |
⟨ | 0 | 1 | 0 | 3 | -2 | ] |
⟨ | 0 | 0 | 1 | -3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9929, 1904.1873, 2781.5229]
TE Step Tunings (cents)
⟨8.13071, 23.62539, 3.49842]
TE Tuning Map (cents)
⟨1199.993, 1904.187, 2781.523, 3367.957, 4154.657]
TE Mistunings (cents)
⟨-0.007, 2.232, -4.791, -0.868, 3.339]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.149078 |
Adjusted Error |
4.170916 cents |
TE Error |
1.205665 cents/octave |
Supermajor (171 & 593)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 593 | 940 | 1377 | 1665 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 15 | 19 | 30 | ] |
⟨ | 0 | -37 | -46 | -75 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0067, 435.0845]
TE Step Tunings (cents)
⟨3.67232, 0.96465]
TE Tuning Map (cents)
⟨1200.007, 1901.974, 2786.240, 3368.863]
TE Mistunings (cents)
⟨0.007, 0.019, -0.074, 0.037]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.376241 |
Adjusted Error |
0.051908 cents |
TE Error |
0.018490 cents/octave |
Supernatural (22 & 19p & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | -1 | 0 | ] |
⟨ | 0 | 5 | 1 | 12 | 0 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0824, 380.6951, 4151.3179]
TE Step Tunings (cents)
⟨26.71269, 22.66877, 9.61561]
TE Tuning Map (cents)
⟨1201.082, 1903.476, 2782.860, 3367.259, 4151.318]
TE Mistunings (cents)
⟨1.082, 1.521, -3.454, -1.567, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.186018 |
Adjusted Error |
3.323969 cents |
TE Error |
0.960842 cents/octave |
Supernatural (41 & 19p & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | 0 | -2 | ] |
⟨ | 0 | 5 | 1 | 12 | 0 | 18 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3459, 380.4663, 4151.3179]
TE Step Tunings (cents)
⟨20.78533, 5.34965, 13.02652]
TE Tuning Map (cents)
⟨1201.346, 1902.332, 2783.158, 3364.250, 4151.318, 4445.702]
TE Mistunings (cents)
⟨1.346, 0.377, -3.156, -4.576, 0.000, 5.175]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.194931 |
Adjusted Error |
4.359350 cents |
TE Error |
1.178063 cents/octave |
Superpelog (9 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 9 | 14 | 21 | 25 | ] |
⟨ | 14 | 22 | 32 | 39 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1208.9172, 261.8837]
TE Step Tunings (cents)
⟨39.62049, 60.88091]
TE Tuning Map (cents)
⟨1208.917, 1894.067, 2780.219, 3364.868]
TE Mistunings (cents)
⟨8.917, -7.888, -6.094, -3.958]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.418018 |
Adjusted Error |
14.931949 cents |
TE Error |
5.318868 cents/octave |
Superpelog (9 & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 1 | 3 | 3 | ] |
⟨ | 0 | -2 | 6 | -1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1208.9613, 261.9008]
TE Step Tunings (cents)
⟨39.72747, 60.81529]
TE Tuning Map (cents)
⟨1208.961, 1894.121, 2780.366, 3364.983, 4150.686]
TE Mistunings (cents)
⟨8.961, -7.834, -5.947, -3.843, -0.632]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.275293 |
Adjusted Error |
16.460761 cents |
TE Error |
4.758227 cents/octave |
Superpyth (22 & 5)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.6631, 488.9683]
TE Step Tunings (cents)
⟨49.51537, 21.66501]
TE Tuning Map (cents)
⟨1197.663, 1906.358, 2785.264]
TE Mistunings (cents)
⟨-2.337, 4.403, -1.050]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.701451 |
Adjusted Error |
4.904046 cents |
TE Error |
2.112058 cents/octave |
Superpyth (22 & 27)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 22 | 35 | 51 | 62 | ] |
⟨ | 27 | 43 | 63 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.0671, 488.5121]
TE Step Tunings (cents)
⟨22.08828, 26.33796]
TE Tuning Map (cents)
⟨1197.067, 1905.622, 2785.794, 3371.158]
TE Mistunings (cents)
⟨-2.933, 3.667, -0.520, 2.332]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.759998 |
Adjusted Error |
5.380956 cents |
TE Error |
1.916735 cents/octave |
Superpyth (22 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 6 | 2 | 10 | ] |
⟨ | 0 | -1 | -9 | 2 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.0798, 488.6333]
TE Step Tunings (cents)
⟨25.22198, 23.78504]
TE Tuning Map (cents)
⟨1197.080, 1905.526, 2784.779, 3371.426, 4152.665]
TE Mistunings (cents)
⟨-2.920, 3.571, -1.535, 2.600, 1.347]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.156643 |
Adjusted Error |
6.002102 cents |
TE Error |
1.734997 cents/octave |
Superpyth (22p & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 6 | 2 | 10 | 9 | ] |
⟨ | 0 | -1 | -9 | 2 | -16 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.3300, 488.4316]
TE Step Tunings (cents)
⟨17.02389, 30.47424]
TE Tuning Map (cents)
⟨1197.330, 1906.228, 2788.095, 3371.523, 4158.394, 4426.359]
TE Mistunings (cents)
⟨-2.670, 4.273, 1.782, 2.697, 7.076, -14.169]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.083521 |
Adjusted Error |
8.906073 cents |
TE Error |
2.406761 cents/octave |
Supers (152 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 11 | 7 | 13 | ] |
⟨ | 0 | -3 | -23 | -5 | -22 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8052, 165.7296]
TE Step Tunings (cents)
⟨7.71663, 0.46003]
TE Tuning Map (cents)
⟨1199.610, 1902.032, 2786.077, 3369.989, 4151.417]
TE Mistunings (cents)
⟨-0.390, 0.077, -0.237, 1.163, 0.099]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.258026 |
Adjusted Error |
0.897952 cents |
TE Error |
0.259566 cents/octave |
Supers (58 & 94)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 11 | 7 | 13 | 11 | ] |
⟨ | 0 | -3 | -23 | -5 | -22 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.7321, 165.7048]
TE Step Tunings (cents)
⟨8.39337, 7.58137]
TE Tuning Map (cents)
⟨1199.464, 1901.814, 2785.844, 3369.601, 4151.013, 4442.891]
TE Mistunings (cents)
⟨-0.536, -0.141, -0.470, 0.775, -0.305, 2.364]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.635894 |
Adjusted Error |
1.374602 cents |
TE Error |
0.371470 cents/octave |
Supersharp (10 & 8)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨597.0639, 128.4648]
TE Step Tunings (cents)
⟨83.20462, 45.26021]
TE Tuning Map (cents)
⟨1194.128, 1919.657, 2773.650]
TE Mistunings (cents)
⟨-5.872, 17.702, -12.663]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.060164 |
Adjusted Error |
18.427864 cents |
TE Error |
7.936449 cents/octave |
Supra (17 & 5)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 17 | 27 | 48 | 59 | ] |
⟨ | 5 | 8 | 14 | 17 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.2813, 491.6914]
TE Step Tunings (cents)
⟨63.89426, 22.21578]
TE Tuning Map (cents)
⟨1197.281, 1902.871, 3377.945, 4147.429]
TE Mistunings (cents)
⟨-2.719, 0.916, 9.119, -3.888]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.880823 |
Adjusted Error |
7.646253 cents |
TE Error |
2.210263 cents/octave |
Supraphon (17 & 5f)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 17 | 27 | 48 | 59 | 63 | ] |
⟨ | 5 | 8 | 14 | 17 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 2 | 1 | 0 | ] |
⟨ | 0 | -1 | 2 | 6 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.2128, 492.7163]
TE Step Tunings (cents)
⟨69.15594, 4.31237]
TE Tuning Map (cents)
⟨1197.213, 1901.709, 3379.858, 4153.511, 4434.447]
TE Mistunings (cents)
⟨-2.787, -0.246, 11.032, 2.193, -6.081]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.117932 |
Adjusted Error |
8.492955 cents |
TE Error |
2.295121 cents/octave |
Suprapyth (22 & 5p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 5 | 8 | 12 | 14 | 17 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 6 | 2 | 1 | ] |
⟨ | 0 | -1 | -9 | 2 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.7287, 489.9858]
TE Step Tunings (cents)
⟨52.47178, 8.86988]
TE Tuning Map (cents)
⟨1198.729, 1907.472, 2782.500, 3377.429, 4138.644]
TE Mistunings (cents)
⟨-1.271, 5.517, -3.814, 8.603, -12.674]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.904057 |
Adjusted Error |
9.691650 cents |
TE Error |
2.801515 cents/octave |
Suprapyth (22p & 5f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 5 | 8 | 12 | 14 | 17 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 6 | 2 | 1 | 0 | ] |
⟨ | 0 | -1 | -9 | 2 | 6 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0546, 491.3195]
TE Step Tunings (cents)
⟨56.48849, -8.53843]
TE Tuning Map (cents)
⟨1200.055, 1908.790, 2778.452, 3382.748, 4147.972, 4421.876]
TE Mistunings (cents)
⟨0.055, 6.835, -7.862, 13.922, -3.346, -18.652]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.034189 |
Adjusted Error |
13.596147 cents |
TE Error |
3.674198 cents/octave |
Swetneus (58 & 149)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 149 | 236 | 346 | 418 | 515 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | 8 | 8 | 13 | ] |
⟨ | 0 | -20 | -47 | -43 | -79 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1556, 144.9595]
TE Step Tunings (cents)
⟨3.83285, 6.56275]
TE Tuning Map (cents)
⟨1200.156, 1901.432, 2788.148, 3367.986, 4150.221]
TE Mistunings (cents)
⟨0.156, -0.523, 1.834, -0.840, -1.097]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.954772 |
Adjusted Error |
1.505516 cents |
TE Error |
0.435192 cents/octave |
Swetneus (58 & 149)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 149 | 236 | 346 | 418 | 515 | 551 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 8 | 8 | 13 | 13 | ] |
⟨ | 0 | -20 | -47 | -43 | -79 | -77 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1481, 144.9570]
TE Step Tunings (cents)
⟨4.07629, 6.46794]
TE Tuning Map (cents)
⟨1200.148, 1901.453, 2788.207, 3368.035, 4150.324, 4440.238]
TE Mistunings (cents)
⟨0.148, -0.502, 1.893, -0.791, -0.994, -0.290]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.667563 |
Adjusted Error |
1.476437 cents |
TE Error |
0.398990 cents/octave |
Sycamore (19 & 56)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 56 | 89 | 130 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.6043, 63.8109]
TE Step Tunings (cents)
⟨28.40200, 11.80297]
TE Tuning Map (cents)
⟨1200.604, 1902.524, 2784.074]
TE Mistunings (cents)
⟨0.604, 0.569, -2.240]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.862516 |
Adjusted Error |
1.600047 cents |
TE Error |
0.689103 cents/octave |
Sycamore (19 & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 37 | 59 | 86 | 104 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.7296, 64.0338]
TE Step Tunings (cents)
⟨32.20693, 15.91346]
TE Tuning Map (cents)
⟨1200.730, 1905.102, 2785.662, 3361.967]
TE Mistunings (cents)
⟨0.730, 3.147, -0.651, -6.859]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.650412 |
Adjusted Error |
4.553310 cents |
TE Error |
1.621922 cents/octave |
Sycamore (19p & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 2 | 2 | 4 | ] |
⟨ | 0 | 11 | 6 | 15 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4246, 64.2370]
TE Step Tunings (cents)
⟨22.08170, 21.07763]
TE Tuning Map (cents)
⟨1199.425, 1906.031, 2784.271, 3362.403, 4155.329]
TE Mistunings (cents)
⟨-0.575, 4.076, -2.043, -6.422, 4.011]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.553044 |
Adjusted Error |
5.849759 cents |
TE Error |
1.690960 cents/octave |
Sycamore (19p & 37)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 37 | 59 | 86 | 104 | 128 | 137 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 2 | 2 | 4 | 3 | ] |
⟨ | 0 | 11 | 6 | 15 | -10 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6742, 64.2786]
TE Step Tunings (cents)
⟨21.03999, 21.61931]
TE Tuning Map (cents)
⟨1199.674, 1906.739, 2785.020, 3363.527, 4155.911, 4434.644]
TE Mistunings (cents)
⟨-0.326, 4.784, -1.294, -5.299, 4.593, -5.883]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.269455 |
Adjusted Error |
6.297791 cents |
TE Error |
1.701903 cents/octave |
Symbolic (3 & 17c)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1191.9881, 418.0449]
TE Step Tunings (cents)
⟨45.16553, 62.14656]
TE Tuning Map (cents)
⟨1191.988, 1903.785, 2802.021]
TE Mistunings (cents)
⟨-8.012, 1.830, 15.707]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.311857 |
Adjusted Error |
14.141906 cents |
TE Error |
6.090587 cents/octave |
Tannic (72 & 46 & 31 & 29g)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | 294 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 0 | 0 | -3 | 11 | 7 | ] |
⟨ | 0 | 1 | 0 | 0 | 2 | -4 | -3 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | 2 | 2 | ] |
⟨ | 0 | 0 | 0 | 1 | 2 | -2 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7328, 1901.4706, 2786.6961, 3368.3032]
TE Step Tunings (cents)
⟨10.94112, 4.36642, 5.95586, 0.94778]
TE Tuning Map (cents)
⟨1200.733, 1901.471, 2786.696, 3368.303, 4150.653, 4438.964, 4905.807]
TE Mistunings (cents)
⟨0.733, -0.484, 0.382, -0.523, -0.665, -1.564, 0.851]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.015394 |
Adjusted Error |
1.506607 cents |
TE Error |
0.368592 cents/octave |
Taylor (53 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 53 | 84 | 123 | 196 | ] |
⟨ | 77 | 122 | 179 | 285 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 2 | -1 | 1 | ] |
⟨ | 0 | -2 | 16 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1498, 249.1757]
TE Step Tunings (cents)
⟨15.86668, 4.66514]
TE Tuning Map (cents)
⟨1200.150, 1901.948, 2786.662, 4439.434]
TE Mistunings (cents)
⟨0.150, -0.007, 0.348, -1.093]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.182497 |
Adjusted Error |
0.672844 cents |
TE Error |
0.181828 cents/octave |
Telepathy (22 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | -1 | -1 | ] |
⟨ | 0 | 5 | 1 | 12 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7988, 381.2725]
TE Step Tunings (cents)
⟨39.38523, 17.59599]
TE Tuning Map (cents)
⟨1200.799, 1906.363, 2782.870, 3374.472, 4137.017]
TE Mistunings (cents)
⟨0.799, 4.408, -3.444, 5.646, -14.301]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.811626 |
Adjusted Error |
8.711358 cents |
TE Error |
2.518147 cents/octave |
Telepathy (19e & 22p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | -1 | 4 | ] |
⟨ | 0 | 5 | 1 | 12 | 14 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.6029, 381.3473]
TE Step Tunings (cents)
⟨28.57873, 29.98214]
TE Tuning Map (cents)
⟨1202.603, 1906.737, 2786.553, 3373.565, 4136.260, 4429.064]
TE Mistunings (cents)
⟨2.603, 4.782, 0.239, 4.739, -15.058, -11.463]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.923297 |
Adjusted Error |
10.387695 cents |
TE Error |
2.807152 cents/octave |
Term (171 & 183)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 183 | 290 | 425 | 514 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨400.0257, 98.2641]
TE Step Tunings (cents)
⟨6.27431, 0.69492]
TE Tuning Map (cents)
⟨1200.077, 1901.864, 2786.242, 3368.857]
TE Mistunings (cents)
⟨0.077, -0.091, -0.072, 0.031]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.497780 |
Adjusted Error |
0.142486 cents |
TE Error |
0.050755 cents/octave |
Ternary (3d & 3p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨392.4069, 162.8358]
TE Step Tunings (cents)
⟨229.57102, 162.83584]
TE Tuning Map (cents)
⟨1177.221, 1962.034, 2746.848, 3368.826]
TE Mistunings (cents)
⟨-22.779, 60.079, -39.466, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.471558 |
Adjusted Error |
66.503051 cents |
TE Error |
23.688865 cents/octave |
Terrain (171 & 138)
Equal Temperament Mappings
| 2 | 9/5 | 9/7 | |
[ ⟨ | 171 | 145 | 62 | ] |
⟨ | 138 | 117 | 50 | ] ⟩ |
Reduced Mapping
| 2 | 9/5 | 9/7 | |
[ ⟨ | 3 | 3 | 2 | ] |
⟨ | 0 | -1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0101, 182.4665]
TE Step Tunings (cents)
⟨6.75086, 0.33067]
TE Tuning Map (cents)
⟨1200.030, 1017.564, 435.087]
TE Mistunings (cents)
⟨0.030, -0.033, 0.003]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
7.115138 |
Adjusted Error |
0.028630 cents |
TE Error |
0.028630 cents/octave |
Terrapyth (46 & 121 & 29g)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | 495 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | -31 | 0 | 7 | 12 | -13 | ] |
⟨ | 0 | 1 | 21 | 0 | -4 | -7 | 9 | ] |
⟨ | 0 | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3793, 1903.1779, 3368.9186]
TE Step Tunings (cents)
⟨4.27871, 8.21583, 0.29116]
TE Tuning Map (cents)
⟨1199.379, 1903.178, 2785.977, 3368.919, 4151.862, 4439.225, 4905.588]
TE Mistunings (cents)
⟨-0.621, 1.223, -0.337, 0.093, 0.544, -1.303, 0.633]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.430568 |
Adjusted Error |
1.674878 cents |
TE Error |
0.409760 cents/octave |
Tertia (31 & 140)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 140 | 222 | 325 | 393 | 484 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 2 | 3 | 5 | ] |
⟨ | 0 | -22 | 5 | -3 | -24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2342, 77.1882]
TE Step Tunings (cents)
⟨4.24382, 7.63340]
TE Tuning Map (cents)
⟨1200.234, 1902.562, 2786.410, 3369.138, 4148.654]
TE Mistunings (cents)
⟨0.234, 0.607, 0.096, 0.312, -2.664]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.807403 |
Adjusted Error |
1.391159 cents |
TE Error |
0.402135 cents/octave |
Tertiaseptal (171 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 31 | 49 | 72 | 87 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 2 | 3 | ] |
⟨ | 0 | -22 | 5 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1004, 77.1979]
TE Step Tunings (cents)
⟨7.06553, -0.26144]
TE Tuning Map (cents)
⟨1200.100, 1901.947, 2786.190, 3368.707]
TE Mistunings (cents)
⟨0.100, -0.008, -0.123, -0.119]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.274696 |
Adjusted Error |
0.170228 cents |
TE Error |
0.060636 cents/octave |
Tertiaseptal (31 & 171p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 171 | 271 | 397 | 480 | 592 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 2 | 3 | 7 | ] |
⟨ | 0 | -22 | 5 | -3 | -55 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1038, 77.2340]
TE Step Tunings (cents)
⟨5.87076, 5.95386]
TE Tuning Map (cents)
⟨1200.104, 1901.164, 2786.377, 3368.609, 4152.857]
TE Mistunings (cents)
⟨0.104, -0.791, 0.064, -0.217, 1.539]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.569528 |
Adjusted Error |
1.054697 cents |
TE Error |
0.304876 cents/octave |
Tertiaseptal (31 & 171)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 171 | 271 | 397 | 480 | 592 | 633 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 2 | 3 | 7 | 1 | ] |
⟨ | 0 | -22 | 5 | -3 | -55 | 42 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8790, 77.1948]
TE Step Tunings (cents)
⟨1.64316, 6.71895]
TE Tuning Map (cents)
⟨1199.879, 1901.351, 2785.732, 3368.053, 4153.438, 4442.061]
TE Mistunings (cents)
⟨-0.121, -0.604, -0.582, -0.773, 2.121, 1.533]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.398605 |
Adjusted Error |
1.389386 cents |
TE Error |
0.375465 cents/octave |
Tertiosec (171 & 75)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 171 | 271 | 397 | ] |
⟨ | 75 | 119 | 174 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨400.0308, 112.2894]
TE Step Tunings (cents)
⟨7.01924, -0.00265]
TE Tuning Map (cents)
⟨1200.092, 1901.900, 2786.180]
TE Mistunings (cents)
⟨0.092, -0.055, -0.134]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.977404 |
Adjusted Error |
0.153146 cents |
TE Error |
0.065956 cents/octave |
Tetracot (34 & 7)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.5606, 176.0953]
TE Step Tunings (cents)
⟨33.10668, 10.56191]
TE Tuning Map (cents)
⟨1199.561, 1903.942, 2784.419]
TE Mistunings (cents)
⟨-0.439, 1.987, -1.895]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.606899 |
Adjusted Error |
2.090068 cents |
TE Error |
0.900143 cents/octave |
Tho (2 & 3)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1213.7164, 705.4671]
TE Step Tunings (cents)
⟨311.03145, 197.21784]
TE Tuning Map (cents)
⟨1213.716, 1919.184, 4346.616]
TE Mistunings (cents)
⟨13.716, 17.229, -93.911]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.255470 |
Adjusted Error |
65.862311 cents |
TE Error |
17.798509 cents/octave |
Thogugu (5 & 3 & 12p)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 5 | 8 | 12 | 19 | ] |
⟨ | 3 | 5 | 7 | 11 | ] |
⟨ | 12 | 19 | 28 | 44 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 1 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.1273, 1901.9550, 2806.5061]
TE Step Tunings (cents)
⟨32.62687, 8.80458, 84.04827]
TE Tuning Map (cents)
⟨1198.127, 1901.955, 2806.506, 4414.885]
TE Mistunings (cents)
⟨-1.873, -0.000, 20.192, -25.643]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.055271 |
Adjusted Error |
20.863577 cents |
TE Error |
5.638135 cents/octave |
Thogugu Nowa (3 & 2f)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1198.1273, 410.2514]
TE Step Tunings (cents)
⟨377.62453, 32.62687]
TE Tuning Map (cents)
⟨1198.127, 2806.506, 4414.885]
TE Mistunings (cents)
⟨-1.873, 20.192, -25.643]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.233605 |
Adjusted Error |
24.091184 cents |
TE Error |
6.510357 cents/octave |
Thomas (27e & 44p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 44 | 70 | 102 | 124 | 152 | 163 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | -3 | 4 | -6 | 4 | ] |
⟨ | 0 | 2 | 18 | -4 | 32 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.5086, 354.2993]
TE Step Tunings (cents)
⟨21.55693, 13.98799]
TE Tuning Map (cents)
⟨1197.509, 1906.107, 2784.861, 3372.837, 4152.526, 4435.735]
TE Mistunings (cents)
⟨-2.491, 4.152, -1.452, 4.011, 1.208, -4.793]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.163958 |
Adjusted Error |
6.283885 cents |
TE Error |
1.698146 cents/octave |
Thor (342 & 270 & 494)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 494 | 783 | 1147 | 1387 | 1709 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | 2 | 5 | ] |
⟨ | 0 | 1 | 0 | 7 | 5 | ] |
⟨ | 0 | 0 | 1 | -4 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0103, 1901.9875, 2786.2657]
TE Step Tunings (cents)
⟨1.47984, 0.99663, 0.85997]
TE Tuning Map (cents)
⟨1200.021, 1901.988, 2786.266, 3368.871, 4151.192]
TE Mistunings (cents)
⟨0.021, 0.033, -0.048, 0.045, -0.126]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.324696 |
Adjusted Error |
0.082592 cents |
TE Error |
0.023874 cents/octave |
Thotho (2 & 10)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨600.3816, 108.4786]
TE Step Tunings (cents)
⟨57.98866, 108.47858]
TE Tuning Map (cents)
⟨1200.763, 1909.623, 4419.628]
TE Mistunings (cents)
⟨0.763, 7.668, -20.900]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.556758 |
Adjusted Error |
15.971767 cents |
TE Error |
4.316181 cents/octave |
Thothoru (17 & 36 & 10)
Equal Temperament Mappings
| 2 | 3 | 7 | 13 | |
[ ⟨ | 17 | 27 | 48 | 63 | ] |
⟨ | 36 | 57 | 101 | 133 | ] |
⟨ | 10 | 16 | 28 | 37 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 13 | |
[ ⟨ | 1 | 0 | 1 | 2 | ] |
⟨ | 0 | 1 | 1 | 1 | ] |
⟨ | 0 | 0 | 2 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4156, 1902.3030, 133.5996]
TE Step Tunings (cents)
⟨7.90018, 27.96985, 5.91980]
TE Tuning Map (cents)
⟨1200.416, 1902.303, 3369.918, 4436.734]
TE Mistunings (cents)
⟨0.416, 0.348, 1.092, -3.794]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.065380 |
Adjusted Error |
2.207379 cents |
TE Error |
0.596518 cents/octave |
Thoyo (7 & 19 & 3)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 7 | 11 | 16 | 26 | ] |
⟨ | 19 | 30 | 44 | 70 | ] |
⟨ | 3 | 5 | 7 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 0 | 0 | 6 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.9237, 1901.9550, 2783.6866]
TE Step Tunings (cents)
⟨12.75832, 56.64732, 12.43875]
TE Tuning Map (cents)
⟨1202.924, 1901.955, 2783.687, 4433.855]
TE Mistunings (cents)
⟨2.924, -0.000, -2.627, -6.672]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.068125 |
Adjusted Error |
6.691338 cents |
TE Error |
1.808255 cents/octave |
Thoyoyo (19 & 34 & 7)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 19 | 30 | 44 | 70 | ] |
⟨ | 34 | 54 | 79 | 126 | ] |
⟨ | 7 | 11 | 16 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 0 | 4 | ] |
⟨ | 0 | 0 | 1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1343, 1902.6297, 2785.5897]
TE Step Tunings (cents)
⟨19.36257, 24.39208, 0.41641]
TE Tuning Map (cents)
⟨1200.134, 1902.630, 2785.590, 4439.608]
TE Mistunings (cents)
⟨0.134, 0.675, -0.724, -0.919]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.081817 |
Adjusted Error |
1.107418 cents |
TE Error |
0.299266 cents/octave |
Thrasher (12 & 15 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -1 | 2 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | ] |
⟨ | 0 | 0 | 1 | 3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.9440, 1903.1386, 2788.4188]
TE Step Tunings (cents)
⟨33.15604, 36.35928, 13.35170]
TE Tuning Map (cents)
⟨1196.944, 1903.139, 2788.419, 3362.035, 4164.449]
TE Mistunings (cents)
⟨-3.056, 1.184, 2.105, -6.791, 13.131]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.099396 |
Adjusted Error |
8.610585 cents |
TE Error |
2.489017 cents/octave |
Thrasher (15 & 8d & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | 2 | 2 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | 4 | ] |
⟨ | 0 | 0 | 1 | 3 | 2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.5010, 1904.9025, 2789.2153]
TE Step Tunings (cents)
⟨14.61726, 25.77371, 40.63434]
TE Tuning Map (cents)
⟨1197.501, 1904.903, 2789.215, 3360.340, 4163.628, 4436.181]
TE Mistunings (cents)
⟨-2.499, 2.948, 2.902, -8.486, 12.310, -4.346]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.119870 |
Adjusted Error |
8.866019 cents |
TE Error |
2.395937 cents/octave |
Thrush (31 & 46 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -1 | -5 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | ] |
⟨ | 0 | 0 | 1 | 3 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4769, 1901.1163, 2789.9739]
TE Step Tunings (cents)
⟨9.83278, 16.58382, 10.98373]
TE Tuning Map (cents)
⟨1199.477, 1901.116, 2789.974, 3368.212, 4150.252]
TE Mistunings (cents)
⟨-0.523, -0.839, 3.660, -0.614, -1.066]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.138485 |
Adjusted Error |
2.759405 cents |
TE Error |
0.797647 cents/octave |
Thrush (31 & 58 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | -5 | 0 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | -5 | ] |
⟨ | 0 | 0 | 1 | 3 | 5 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.2756, 1901.5631, 2789.9088]
TE Step Tunings (cents)
⟨5.96145, 10.78121, 8.46000]
TE Tuning Map (cents)
⟨1199.276, 1901.563, 2789.909, 3367.325, 4150.040, 4441.729]
TE Mistunings (cents)
⟨-0.724, -0.392, 3.595, -1.501, -1.278, 1.201]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.186407 |
Adjusted Error |
2.830689 cents |
TE Error |
0.764960 cents/octave |
Thu (7 & 2)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.7516, 514.7485]
TE Step Tunings (cents)
⟨172.25456, -2.01517]
TE Tuning Map (cents)
⟨1201.752, 1888.755, 4464.512]
TE Mistunings (cents)
⟨1.752, -13.200, 23.985]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.347115 |
Adjusted Error |
22.855298 cents |
TE Error |
6.176373 cents/octave |
Thuja (15 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -4 | 0 | 7 | 3 | ] |
⟨ | 0 | 12 | 5 | -9 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5511, 557.9453]
TE Step Tunings (cents)
⟨-0.05414, 20.67868]
TE Tuning Map (cents)
⟨1198.551, 1901.139, 2789.726, 3368.350, 4153.599]
TE Mistunings (cents)
⟨-1.449, -0.816, 3.413, -0.476, 2.281]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.555391 |
Adjusted Error |
3.455254 cents |
TE Error |
0.998792 cents/octave |
Thuja (58 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -4 | 0 | 7 | 3 | -7 | ] |
⟨ | 0 | 12 | 5 | -9 | 1 | 23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1198.5126, 557.8962]
TE Step Tunings (cents)
⟨21.14509, -1.86016]
TE Tuning Map (cents)
⟨1198.513, 1900.704, 2789.481, 3368.522, 4153.434, 4442.025]
TE Mistunings (cents)
⟨-1.487, -1.251, 3.167, -0.304, 2.116, 1.497]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.716869 |
Adjusted Error |
3.459956 cents |
TE Error |
0.935012 cents/octave |
Thulo (17 & 7 & 29)
Equal Temperament Mappings
| 2 | 3 | 11 | 13 | |
[ ⟨ | 17 | 27 | 59 | 63 | ] |
⟨ | 7 | 11 | 24 | 26 | ] |
⟨ | 29 | 46 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 5 | ] |
⟨ | 0 | 1 | 0 | -3 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6639, 1902.4616, 4150.5135]
TE Step Tunings (cents)
⟨43.03841, 18.73039, 11.61718]
TE Tuning Map (cents)
⟨1199.664, 1902.462, 4150.513, 4441.448]
TE Mistunings (cents)
⟨-0.336, 0.507, -0.804, 0.920]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.052735 |
Adjusted Error |
1.064612 cents |
TE Error |
0.287699 cents/octave |
Thulu (17 & 7 & 2)
Equal Temperament Mappings
| 2 | 3 | 11 | 13 | |
[ ⟨ | 17 | 27 | 59 | 63 | ] |
⟨ | 7 | 11 | 24 | 26 | ] |
⟨ | 2 | 3 | 7 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 4 | ] |
⟨ | 0 | 1 | 0 | 2 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0668, 1900.7828, 4154.1101]
TE Step Tunings (cents)
⟨59.55917, 25.68782, 3.37307]
TE Tuning Map (cents)
⟨1199.067, 1900.783, 4154.110, 4443.722]
TE Mistunings (cents)
⟨-0.933, -1.172, 2.792, 3.195]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.044301 |
Adjusted Error |
3.104163 cents |
TE Error |
0.838863 cents/octave |
Thulugu Noca (b15 & b6 & b17)
Equal Temperament Mappings
| 3 | 5 | 11 | 13 | |
[ ⟨ | 15 | 22 | 33 | 35 | ] |
⟨ | 6 | 9 | 13 | 14 | ] |
⟨ | 17 | 25 | 37 | 40 | ] ⟩ |
Reduced Mapping
| 3 | 5 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 6 | ] |
⟨ | 0 | 1 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1897.7900, 2787.8035, 4154.6250]
TE Step Tunings (cents)
⟨69.35842, 5.75603, 48.40456]
TE Tuning Map (cents)
⟨1897.790, 2787.804, 4154.625, 4444.312]
TE Mistunings (cents)
⟨-4.165, 1.490, 3.307, 3.784]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.029245 |
Adjusted Error |
5.635296 cents |
TE Error |
1.522872 cents/octave |
Thunor (270 & 72 & 224)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 0 | 2 | 5 | -3 | ] |
⟨ | 0 | 1 | 0 | 7 | 5 | 15 | ] |
⟨ | 0 | 0 | 1 | -4 | -3 | -8 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9809, 1902.0266, 2786.2665]
TE Step Tunings (cents)
⟨2.86764, -0.18372, 1.95949]
TE Tuning Map (cents)
⟨1199.962, 1902.027, 2786.267, 3369.082, 4151.238, 4440.324]
TE Mistunings (cents)
⟨-0.038, 0.072, -0.047, 0.256, -0.080, -0.203]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.511278 |
Adjusted Error |
0.189826 cents |
TE Error |
0.051298 cents/octave |
Thuyo (7 & 5 & 3)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 7 | 11 | 16 | 26 | ] |
⟨ | 5 | 8 | 12 | 19 | ] |
⟨ | 3 | 5 | 7 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 1 | 0 | 0 | 3 | ] |
⟨ | 0 | 1 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.7024, 1905.5537, 2778.5904]
TE Step Tunings (cents)
⟨98.66543, 64.51994, 60.81490]
TE Tuning Map (cents)
⟨1195.702, 1905.554, 2778.590, 4460.144]
TE Mistunings (cents)
⟨-4.298, 3.599, -7.723, 19.616]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.050772 |
Adjusted Error |
14.661144 cents |
TE Error |
3.962000 cents/octave |
Tinia (9 & 15 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 4 | 2 | 2 | ] |
⟨ | 0 | 1 | 1 | -1 | 1 | 1 | ] |
⟨ | 0 | 0 | 2 | -3 | 1 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9446, 1899.2543, -155.3594]
TE Step Tunings (cents)
⟨0.38491, 9.14373, 34.17176]
TE Tuning Map (cents)
⟨1199.945, 1899.254, 2788.480, 3366.602, 4143.784, 4454.503]
TE Mistunings (cents)
⟨-0.055, -2.701, 2.166, -2.224, -7.534, 13.975]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.126787 |
Adjusted Error |
7.309361 cents |
TE Error |
1.975268 cents/octave |
Tobago (24 & 34)
Equal Temperament Mappings
| 2 | 3 | 11 | 13/5 | |
[ ⟨ | 24 | 38 | 83 | 33 | ] |
⟨ | 34 | 54 | 118 | 47 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 11 | 13/5 | |
[ ⟨ | 2 | 4 | 9 | 4 | ] |
⟨ | 0 | -2 | -5 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.8234, 248.6812]
TE Step Tunings (cents)
⟨28.81618, 14.94290]
TE Tuning Map (cents)
⟨1199.647, 1901.931, 4155.005, 1653.250]
TE Mistunings (cents)
⟨-0.353, -0.024, 3.687, -0.964]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
1.567417 |
Adjusted Error |
2.287957 cents |
TE Error |
0.661368 cents/octave |
Tokko (171 & 5)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 5 | 8 | 12 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | -11 | 4 | ] |
⟨ | 0 | 13 | 67 | -6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0850, 238.6157]
TE Step Tunings (cents)
⟨7.00646, 0.39623]
TE Tuning Map (cents)
⟨1200.085, 1901.919, 2786.318, 3368.646]
TE Mistunings (cents)
⟨0.085, -0.036, 0.004, -0.180]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.242676 |
Adjusted Error |
0.152838 cents |
TE Error |
0.054442 cents/octave |
Tolerant (41 & 46 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | -10 | -3 | ] |
⟨ | 0 | 1 | 0 | 11 | 7 | ] |
⟨ | 0 | 0 | 1 | -2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4404, 1903.1533, 2785.9929]
TE Step Tunings (cents)
⟨9.24546, 12.79405, 6.81912]
TE Tuning Map (cents)
⟨1199.440, 1903.153, 2785.993, 3368.296, 4151.766]
TE Mistunings (cents)
⟨-0.560, 1.198, -0.321, -0.530, 0.448]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.271387 |
Adjusted Error |
1.512833 cents |
TE Error |
0.437307 cents/octave |
Tolerant (41 & 46 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -10 | -3 | 2 | ] |
⟨ | 0 | 1 | 0 | 11 | 7 | 4 | ] |
⟨ | 0 | 0 | 1 | -2 | -2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5170, 1903.1941, 2785.8612]
TE Step Tunings (cents)
⟨10.18772, 12.28287, 6.37672]
TE Tuning Map (cents)
⟨1199.517, 1903.194, 2785.861, 3368.243, 4152.085, 4440.088]
TE Mistunings (cents)
⟨-0.483, 1.239, -0.452, -0.583, 0.767, -0.440]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.314313 |
Adjusted Error |
1.502315 cents |
TE Error |
0.405983 cents/octave |
Toliman (b17 & b6)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1898.4178, 333.2980]
TE Step Tunings (cents)
⟨101.37008, 29.18774]
TE Tuning Map (cents)
⟨1898.418, 2796.942, 3362.168]
TE Mistunings (cents)
⟨-3.537, 10.628, -6.658]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.643585 |
Adjusted Error |
9.105047 cents |
TE Error |
3.243283 cents/octave |
Tremka (111 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 111 | 176 | 258 | 384 | 411 | ] |
⟨ | 50 | 79 | 116 | 173 | 185 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | 13 | |
[ ⟨ | 1 | -4 | -2 | 4 | 1 | ] |
⟨ | 0 | 31 | 24 | -3 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7105, 216.1336]
TE Step Tunings (cents)
⟨9.28699, 3.37708]
TE Tuning Map (cents)
⟨1199.711, 1901.301, 2787.786, 4150.441, 4441.715]
TE Mistunings (cents)
⟨-0.289, -0.654, 1.473, -0.877, 1.187]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.587243 |
Adjusted Error |
1.501874 cents |
TE Error |
0.405864 cents/octave |
Tribilo (159 & 24)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 159 | 252 | 550 | ] |
⟨ | 24 | 38 | 83 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨400.0154, 150.9576]
TE Step Tunings (cents)
⟨7.61504, -0.44770]
TE Tuning Map (cents)
⟨1200.046, 1901.977, 4151.111]
TE Mistunings (cents)
⟨0.046, 0.022, -0.207]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.619252 |
Adjusted Error |
0.153172 cents |
TE Error |
0.044277 cents/octave |
Tribiru (17 & 4)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1197.9618, 282.4625]
TE Step Tunings (cents)
⟨68.11184, 10.01514]
TE Tuning Map (cents)
⟨1197.962, 1899.110, 3379.535]
TE Mistunings (cents)
⟨-2.038, -2.845, 10.709]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.548975 |
Adjusted Error |
7.589582 cents |
TE Error |
2.703464 cents/octave |
Tribithu (24 & 15)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 24 | 38 | 89 | ] |
⟨ | 15 | 24 | 56 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.7390, 150.3931]
TE Step Tunings (cents)
⟨47.51267, 3.92754]
TE Tuning Map (cents)
⟨1199.217, 1899.742, 4448.569]
TE Mistunings (cents)
⟨-0.783, -2.213, 8.041]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.567250 |
Adjusted Error |
5.766380 cents |
TE Error |
1.558296 cents/octave |
Tricot (441 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 441 | 699 | 1024 | ] |
⟨ | 53 | 84 | 123 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9762, 565.9764]
TE Step Tunings (cents)
⟨2.65621, 0.53939]
TE Tuning Map (cents)
⟨1199.976, 1901.999, 2786.304]
TE Mistunings (cents)
⟨-0.024, 0.044, -0.010]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.496230 |
Adjusted Error |
0.049621 cents |
TE Error |
0.021371 cents/octave |
Tricot (53 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 16 | 8 | 11 | ] |
⟨ | 0 | -3 | -29 | -11 | -16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9494, 565.9489]
TE Step Tunings (cents)
⟨21.53538, 3.44554]
TE Tuning Map (cents)
⟨1199.949, 1902.002, 2786.674, 3374.158, 4144.262]
TE Mistunings (cents)
⟨-0.051, 0.047, 0.360, 5.332, -7.056]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.270991 |
Adjusted Error |
4.319451 cents |
TE Error |
1.248601 cents/octave |
Tricot (53 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 17 | 27 | 40 | 48 | 59 | 63 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 16 | 8 | 11 | 7 | ] |
⟨ | 0 | -3 | -29 | -11 | -16 | -7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1281, 566.0489]
TE Step Tunings (cents)
⟨21.80602, 2.61229]
TE Tuning Map (cents)
⟨1200.128, 1902.238, 2786.632, 3374.487, 4144.627, 4438.555]
TE Mistunings (cents)
⟨0.128, 0.283, 0.319, 5.661, -6.691, -1.973]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.025421 |
Adjusted Error |
4.315059 cents |
TE Error |
1.166094 cents/octave |
Tridec (66 & 37)
Equal Temperament Mappings
| 2 | 7/5 | 11/5 | 13/5 | |
[ ⟨ | 66 | 32 | 75 | 91 | ] |
⟨ | 37 | 18 | 42 | 51 | ] ⟩ |
Reduced Mapping
| 2 | 7/5 | 11/5 | 13/5 | |
[ ⟨ | 1 | 2 | 0 | 1 | ] |
⟨ | 0 | -4 | 3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4947, 454.6483]
TE Step Tunings (cents)
⟨15.06049, 5.58114]
TE Tuning Map (cents)
⟨1200.495, 582.396, 1363.945, 1655.143]
TE Mistunings (cents)
⟨0.495, -0.116, -1.059, 0.929]
These calculations use inharmonic TE. You can also use
subgroup TE
Complexity |
4.164667 |
Adjusted Error |
0.878175 cents |
TE Error |
0.637046 cents/octave |
Triforce (15 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 9 | 14 | 21 | 25 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.7677, 152.8623]
TE Step Tunings (cents)
⟨58.81912, 35.22403]
TE Tuning Map (cents)
⟨1199.303, 1904.795, 2798.374, 3351.004]
TE Mistunings (cents)
⟨-0.697, 2.840, 12.060, -17.822]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.548603 |
Adjusted Error |
11.825644 cents |
TE Error |
4.212379 cents/octave |
Triforce (15 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 4 | 7 | 8 | 10 | ] |
⟨ | 0 | 2 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.7852, 152.8496]
TE Step Tunings (cents)
⟨58.76372, 35.32219]
TE Tuning Map (cents)
⟨1199.355, 1904.840, 2798.496, 3351.131, 4150.701]
TE Mistunings (cents)
⟨-0.645, 2.885, 12.182, -17.695, -0.617]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.391974 |
Adjusted Error |
13.037670 cents |
TE Error |
3.768732 cents/octave |
Triforce (9 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 4 | 7 | 8 | 10 | 10 | ] |
⟨ | 0 | 2 | 0 | 1 | 1 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.7342, 151.5857]
TE Step Tunings (cents)
⟨41.53977, 55.02298]
TE Tuning Map (cents)
⟨1199.203, 1902.108, 2798.139, 3349.459, 4148.928, 4452.099]
TE Mistunings (cents)
⟨-0.797, 0.153, 11.826, -19.367, -2.390, 11.571]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.358576 |
Adjusted Error |
13.881150 cents |
TE Error |
3.751216 cents/octave |
Triforce (15 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 15 | 24 | 35 | 52 | ] |
⟨ | 24 | 38 | 56 | 83 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.2424, 152.8119]
TE Step Tunings (cents)
⟨24.76807, 34.42526]
TE Tuning Map (cents)
⟨1197.727, 1902.593, 2794.697, 4145.236]
TE Mistunings (cents)
⟨-2.273, 0.638, 8.383, -6.082]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.557822 |
Adjusted Error |
8.011734 cents |
TE Error |
2.315910 cents/octave |
Triglav (31 & 87 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | 2 | 1 | ] |
⟨ | 0 | 1 | 2 | 5 | 2 | ] |
⟨ | 0 | 0 | 4 | 10 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8767, 1902.3071, -854.2909]
TE Step Tunings (cents)
⟨8.08774, 6.91999, 4.33897]
TE Tuning Map (cents)
⟨1199.877, 1902.307, 2787.204, 3368.379, 4150.200]
TE Mistunings (cents)
⟨-0.123, 0.352, 0.890, -0.447, -1.118]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.303183 |
Adjusted Error |
0.903752 cents |
TE Error |
0.261243 cents/octave |
Trigu & Latrizo (15 & 21)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 21 | 33 | 49 | 59 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.5279, 165.3284]
TE Step Tunings (cents)
⟨41.28484, 27.58624]
TE Tuning Map (cents)
⟨1198.584, 1901.182, 2796.695, 3361.551]
TE Mistunings (cents)
⟨-1.416, -0.773, 10.381, -7.274]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.652338 |
Adjusted Error |
7.552325 cents |
TE Error |
2.690192 cents/octave |
Trigu + La (15 & 12 & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 15 | 24 | 35 | 52 | ] |
⟨ | 12 | 19 | 28 | 42 | ] |
⟨ | 24 | 38 | 56 | 83 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 3 | 0 | 7 | 0 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.0176, 1901.9550, 4151.3179]
TE Step Tunings (cents)
⟨26.48526, 16.39900, 25.12442]
TE Tuning Map (cents)
⟨1197.053, 1901.955, 2793.123, 4151.318]
TE Mistunings (cents)
⟨-2.947, -0.000, 6.810, -0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.096959 |
Adjusted Error |
7.191674 cents |
TE Error |
2.078860 cents/octave |
Trigu + Tha (15 & 12p & 24)
Equal Temperament Mappings
| 2 | 3 | 5 | 13 | |
[ ⟨ | 15 | 24 | 35 | 56 | ] |
⟨ | 12 | 19 | 28 | 44 | ] |
⟨ | 24 | 38 | 56 | 89 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 13 | |
[ ⟨ | 3 | 0 | 7 | 0 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.0176, 1901.9550, 4440.5277]
TE Step Tunings (cents)
⟨26.48526, 16.95062, 24.84860]
TE Tuning Map (cents)
⟨1197.053, 1901.955, 2793.123, 4440.528]
TE Mistunings (cents)
⟨-2.947, -0.000, 6.810, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.090644 |
Adjusted Error |
7.692696 cents |
TE Error |
2.078860 cents/octave |
Trigu + Za (12 & 15 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 9 | 14 | 21 | 25 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 3 | 0 | 7 | 0 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.0176, 1901.9550, 3368.8259]
TE Step Tunings (cents)
⟨47.48540, 36.06648, 9.58122]
TE Tuning Map (cents)
⟨1197.053, 1901.955, 2793.123, 3368.826]
TE Mistunings (cents)
⟨-2.947, 0.000, 6.810, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.119480 |
Adjusted Error |
5.836098 cents |
TE Error |
2.078860 cents/octave |
Trigu Nowa + Za (6 & 9)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨399.0176, 222.3327]
TE Step Tunings (cents)
⟨131.03727, 45.64769]
TE Tuning Map (cents)
⟨1197.053, 2793.123, 3368.826]
TE Mistunings (cents)
⟨-2.947, 6.810, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.504992 |
Adjusted Error |
6.738945 cents |
TE Error |
2.400461 cents/octave |
Trila-Quadtriru (36 & 56d)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 36 | 57 | 101 | ] |
⟨ | 56 | 89 | 158 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨300.0390, 66.3517]
TE Step Tunings (cents)
⟨28.80662, 2.91282]
TE Tuning Map (cents)
⟨1200.156, 1901.218, 3369.693]
TE Mistunings (cents)
⟨0.156, -0.737, 0.867]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.735777 |
Adjusted Error |
0.939662 cents |
TE Error |
0.334714 cents/octave |
Trila-Quadzo (171 & 130)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 171 | 271 | 480 | ] |
⟨ | 130 | 206 | 365 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0845, 175.4449]
TE Step Tunings (cents)
⟨6.22582, 1.04207]
TE Tuning Map (cents)
⟨1200.085, 1901.864, 3368.750]
TE Mistunings (cents)
⟨0.085, -0.091, -0.076]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.279419 |
Adjusted Error |
0.171378 cents |
TE Error |
0.061046 cents/octave |
Trila-Tribizo (36 & 2p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨600.3423, 33.4369]
TE Step Tunings (cents)
⟨33.43688, -1.52150]
TE Tuning Map (cents)
⟨1200.685, 1901.338, 3367.996]
TE Mistunings (cents)
⟨0.685, -0.617, -0.830]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.590477 |
Adjusted Error |
1.363723 cents |
TE Error |
0.485768 cents/octave |
Trilagu (19 & 12cc)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 12 | 19 | 29 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1202.1661, 506.0581]
TE Step Tunings (cents)
⟨61.86651, 2.22520]
TE Tuning Map (cents)
⟨1202.166, 1898.274, 2786.657]
TE Mistunings (cents)
⟨2.166, -3.681, 0.343]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.519979 |
Adjusted Error |
4.261930 cents |
TE Error |
1.835514 cents/octave |
Trilo (7 & 22)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 7 | 11 | 24 | ] |
⟨ | 22 | 35 | 76 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.1259, 165.8228]
TE Step Tunings (cents)
⟨44.72415, 40.36622]
TE Tuning Map (cents)
⟨1201.126, 1904.783, 4141.212]
TE Mistunings (cents)
⟨1.126, 2.828, -10.106]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.778302 |
Adjusted Error |
7.197315 cents |
TE Error |
2.080491 cents/octave |
Trilu-Ayoyo (7 & 34 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 7 | 11 | 16 | 24 | ] |
⟨ | 34 | 54 | 79 | 118 | ] |
⟨ | 9 | 14 | 21 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | 1 | 1 | ] |
⟨ | 0 | 1 | 0 | 1 | ] |
⟨ | 0 | 0 | 3 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8395, 1900.7454, 528.2478]
TE Step Tunings (cents)
⟨15.81313, 29.31424, 10.27372]
TE Tuning Map (cents)
⟨1199.839, 1900.745, 2784.583, 4157.081]
TE Mistunings (cents)
⟨-0.161, -1.210, -1.731, 5.763]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.121400 |
Adjusted Error |
3.432768 cents |
TE Error |
0.992293 cents/octave |
Trilu-Azo (17 & 41 & 9)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 17 | 27 | 48 | 59 | ] |
⟨ | 41 | 65 | 115 | 142 | ] |
⟨ | 9 | 14 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 2 | 1 | ] |
⟨ | 0 | 0 | 3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.3448, 1901.6807, -145.1320]
TE Step Tunings (cents)
⟨13.54636, 23.32425, 1.41805]
TE Tuning Map (cents)
⟨1199.345, 1901.681, 3367.965, 4155.238]
TE Mistunings (cents)
⟨-0.655, -0.274, -0.861, 3.920]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.100808 |
Adjusted Error |
2.344655 cents |
TE Error |
0.677757 cents/octave |
Triluzo (9 & 24 & 12)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 9 | 14 | 25 | 31 | ] |
⟨ | 24 | 38 | 67 | 83 | ] |
⟨ | 12 | 19 | 34 | 42 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 3 | 0 | 0 | 2 | ] |
⟨ | 0 | 1 | 0 | 0 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨399.8083, 1901.9550, 3362.0264]
TE Step Tunings (cents)
⟨-11.46270, 42.07531, 24.39848]
TE Tuning Map (cents)
⟨1199.425, 1901.955, 3362.026, 4161.643]
TE Mistunings (cents)
⟨-0.575, -0.000, -6.799, 10.325]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.109746 |
Adjusted Error |
6.722542 cents |
TE Error |
1.943250 cents/octave |
Triluzo Nowa (6 & 15)
Equal Temperament Mappings
| 2 | 7 | 11 | |
[ ⟨ | 6 | 17 | 21 | ] |
⟨ | 15 | 42 | 52 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.8083, 236.2481]
TE Step Tunings (cents)
⟨18.18435, 72.68792]
TE Tuning Map (cents)
⟨1199.425, 3362.026, 4161.643]
TE Mistunings (cents)
⟨-0.575, -6.799, 10.325]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.463847 |
Adjusted Error |
7.762522 cents |
TE Error |
2.243872 cents/octave |
Trimot (53 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 17 | 27 | 40 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | 16 | 8 | ] |
⟨ | 0 | -3 | -29 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.4469, 565.7132]
TE Step Tunings (cents)
⟨21.54901, 3.37350]
TE Tuning Map (cents)
⟨1199.447, 1901.201, 2785.468, 3372.730]
TE Mistunings (cents)
⟨-0.553, -0.754, -0.846, 3.904]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.777065 |
Adjusted Error |
2.262888 cents |
TE Error |
0.806057 cents/octave |
Trimyna (31 & 58 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | 0 | 0 | 5 | ] |
⟨ | 0 | 5 | 0 | -1 | 8 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0914, -579.6644, 2787.6194]
TE Step Tunings (cents)
⟨0.38350, 2.98093, 8.60431]
TE Tuning Map (cents)
⟨1200.091, 1902.044, 2787.619, 3367.284, 4150.761]
TE Mistunings (cents)
⟨0.091, 0.089, 1.306, -1.542, -0.557]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.233691 |
Adjusted Error |
1.252422 cents |
TE Error |
0.362031 cents/octave |
Trimyna (58 & 31 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | 0 | 0 | 5 | -2 | ] |
⟨ | 0 | 5 | 0 | -1 | 8 | -7 | ] |
⟨ | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6811, -579.2748, 2787.1219]
TE Step Tunings (cents)
⟨4.72946, 3.43468, 9.41261]
TE Tuning Map (cents)
⟨1199.681, 1902.350, 2787.122, 3366.397, 4151.329, 4442.683]
TE Mistunings (cents)
⟨-0.319, 0.395, 0.808, -2.429, 0.011, 2.156]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.258545 |
Adjusted Error |
1.770282 cents |
TE Error |
0.478398 cents/octave |
Trinealimmal (270 & 783)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 783 | 1241 | 1818 | 2198 | 2709 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 27 | 43 | 63 | 76 | 93 | ] |
⟨ | 0 | -2 | -3 | -2 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨44.4437, 4.5333]
TE Step Tunings (cents)
⟨1.86665, 0.88887]
TE Tuning Map (cents)
⟨1199.981, 1902.014, 2786.356, 3368.657, 4151.400]
TE Mistunings (cents)
⟨-0.019, 0.059, 0.042, -0.169, 0.083]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
24.792344 |
Adjusted Error |
0.122351 cents |
TE Error |
0.035367 cents/octave |
Trinu (12 & 15)
Equal Temperament Mappings
| 2 | 3 | 19 | |
[ ⟨ | 12 | 19 | 51 | ] |
⟨ | 15 | 24 | 64 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨399.8573, 97.7348]
TE Step Tunings (cents)
⟨88.81656, 8.91821]
TE Tuning Map (cents)
⟨1199.572, 1901.552, 5100.410]
TE Mistunings (cents)
⟨-0.428, -0.403, 2.897]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.781256 |
Adjusted Error |
2.071113 cents |
TE Error |
0.487558 cents/octave |
Tripod (31 & 41 & 19p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | -8 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | 3 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4862, 1900.0030, 2784.1052]
TE Step Tunings (cents)
⟨15.66047, 13.96203, 7.50359]
TE Tuning Map (cents)
⟨1200.486, 1900.003, 2784.105, 3365.785, 4153.516, 4448.435]
TE Mistunings (cents)
⟨0.486, -1.952, -2.209, -3.041, 2.198, 7.907]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.155499 |
Adjusted Error |
4.481630 cents |
TE Error |
1.211107 cents/octave |
Tripod (10 & 31 & 22f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | 41 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 82 | 90 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
[ ⟨ | 1 | 0 | 0 | -5 | 12 | -8 | 8 | ] |
⟨ | 0 | 1 | 0 | 2 | -1 | 3 | -1 | ] |
⟨ | 0 | 0 | 1 | 2 | -3 | 3 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6249, 1900.3295, 2781.7001]
TE Step Tunings (cents)
⟨19.23394, 31.15570, 1.88449]
TE Tuning Map (cents)
⟨1199.625, 1900.330, 2781.700, 3365.935, 4150.069, 4449.090, 4914.970]
TE Mistunings (cents)
⟨-0.375, -1.625, -4.614, -2.891, -1.249, 8.562, 10.014]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.150146 |
Adjusted Error |
6.497364 cents |
TE Error |
1.589584 cents/octave |
Triru (12 & 9)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨400.2161, 108.8960]
TE Step Tunings (cents)
⟨73.52798, 35.36806]
TE Tuning Map (cents)
⟨1200.648, 1892.184, 3384.153]
TE Mistunings (cents)
⟨0.648, -9.771, 15.327]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.954578 |
Adjusted Error |
13.388113 cents |
TE Error |
4.768942 cents/octave |
Triru-Agugu (31 & 5 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 1 | 0 | ] |
⟨ | 0 | 1 | 2 | 1 | ] |
⟨ | 0 | 0 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6851, 1899.1858, -736.6817]
TE Step Tunings (cents)
⟨37.18088, -6.57079, 9.99147]
TE Tuning Map (cents)
⟨1199.685, 1899.186, 2788.012, 3372.549]
TE Mistunings (cents)
⟨-0.315, -2.769, 1.698, 3.723]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.179288 |
Adjusted Error |
3.275552 cents |
TE Error |
1.166775 cents/octave |
Triru-Agugubi (5 & 7p & 2b)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 7 | 11 | 16 | 20 | ] |
⟨ | 2 | 4 | 5 | 6 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 2 | 2 | ] |
⟨ | 0 | 1 | 1 | 0 | ] |
⟨ | 0 | 0 | 3 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1193.8382, 1898.8592, -497.8592]
TE Step Tunings (cents)
⟨105.54200, 92.57772, 9.04205]
TE Tuning Map (cents)
⟨1193.838, 1898.859, 2792.958, 3383.395]
TE Mistunings (cents)
⟨-6.162, -3.096, 6.644, 14.569]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.172189 |
Adjusted Error |
12.309433 cents |
TE Error |
4.384708 cents/octave |
Triru-Aquinyo (12 & 41 & 4)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 41 | 65 | 95 | 115 | ] |
⟨ | 4 | 6 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 0 | ] |
⟨ | 0 | 1 | 1 | 1 | ] |
⟨ | 0 | 0 | 3 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0000, 1902.4482, 293.7397]
TE Step Tunings (cents)
⟨14.80465, 25.04102, -1.08438]
TE Tuning Map (cents)
⟨1200.000, 1902.448, 2783.667, 3371.147]
TE Mistunings (cents)
⟨-0.000, 0.493, -2.646, 2.321]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.177719 |
Adjusted Error |
2.024053 cents |
TE Error |
0.720982 cents/octave |
Trisa-Tritrilu (65 & 87)
Equal Temperament Mappings
| 2 | 3 | 11 | |
[ ⟨ | 65 | 103 | 225 | ] |
⟨ | 87 | 138 | 301 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.7453, 55.2666]
TE Step Tunings (cents)
⟨9.21277, 6.90707]
TE Tuning Map (cents)
⟨1199.745, 1902.091, 4151.902]
TE Mistunings (cents)
⟨-0.255, 0.136, 0.584]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.560215 |
Adjusted Error |
0.633968 cents |
TE Error |
0.183258 cents/octave |
Trisayo (46 & 75)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 46 | 73 | 107 | ] |
⟨ | 75 | 119 | 174 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.3236, 495.5411]
TE Step Tunings (cents)
⟨13.44763, 7.74310]
TE Tuning Map (cents)
⟨1199.324, 1903.106, 2786.196]
TE Mistunings (cents)
⟨-0.676, 1.151, -0.118]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.125147 |
Adjusted Error |
1.332176 cents |
TE Error |
0.573737 cents/octave |
Trisedodge (65 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 65 | 103 | 151 | ] |
⟨ | 15 | 24 | 35 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨239.9483, 73.9917]
TE Step Tunings (cents)
⟨17.97315, 2.09913]
TE Tuning Map (cents)
⟨1199.741, 1901.613, 2787.414]
TE Mistunings (cents)
⟨-0.259, -0.342, 1.101]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.869670 |
Adjusted Error |
0.779564 cents |
TE Error |
0.335740 cents/octave |
Trisedodge (15 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 80 | 127 | 186 | 225 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 7 | 11 | 15 | ] |
⟨ | 0 | 3 | 2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.7192, 74.8603]
TE Step Tunings (cents)
⟨-0.83138, 15.13833]
TE Tuning Map (cents)
⟨1198.596, 1902.615, 2786.632, 3371.207]
TE Mistunings (cents)
⟨-1.404, 0.660, 0.318, 2.381]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.458614 |
Adjusted Error |
2.383352 cents |
TE Error |
0.848967 cents/octave |
Trisedodge (15 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 7 | 11 | 15 | 17 | ] |
⟨ | 0 | 3 | 2 | -3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨239.7340, 74.8570]
TE Step Tunings (cents)
⟨-0.95771, 15.16295]
TE Tuning Map (cents)
⟨1198.670, 1902.709, 2786.788, 3371.439, 4150.336]
TE Mistunings (cents)
⟨-1.330, 0.754, 0.475, 2.614, -0.982]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.889213 |
Adjusted Error |
2.672535 cents |
TE Error |
0.772536 cents/octave |
Trismegistus (41 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -5 | 1 | 5 | -4 | ] |
⟨ | 0 | 15 | 3 | -5 | 17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8457, 527.0312]
TE Step Tunings (cents)
⟨26.57955, 6.94276]
TE Tuning Map (cents)
⟨1200.846, 1901.240, 2781.939, 3369.073, 4156.148]
TE Mistunings (cents)
⟨0.846, -0.715, -4.374, 0.247, 4.830]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.996556 |
Adjusted Error |
3.921555 cents |
TE Error |
1.133584 cents/octave |
Trismegistus (41 & 16)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -5 | 1 | 5 | -4 | -2 | ] |
⟨ | 0 | 15 | 3 | -5 | 17 | 13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4855, 526.8544]
TE Step Tunings (cents)
⟨26.27149, 7.70965]
TE Tuning Map (cents)
⟨1200.486, 1900.388, 2781.049, 3368.156, 4154.582, 4448.136]
TE Mistunings (cents)
⟨0.486, -1.567, -5.265, -0.670, 3.265, 7.608]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.659698 |
Adjusted Error |
5.129595 cents |
TE Error |
1.386212 cents/octave |
Trithu (7 & 15)
Equal Temperament Mappings
| 2 | 3 | 13 | |
[ ⟨ | 7 | 11 | 26 | ] |
⟨ | 15 | 24 | 56 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.6616, 164.4883]
TE Step Tunings (cents)
⟨74.00104, 45.24362]
TE Tuning Map (cents)
⟨1196.662, 1899.858, 4457.670]
TE Mistunings (cents)
⟨-3.338, -2.097, 17.142]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.798282 |
Adjusted Error |
12.522328 cents |
TE Error |
3.384011 cents/octave |
Tritikleismic (72 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 87 | 138 | 202 | 244 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨400.1846, 83.1667]
TE Step Tunings (cents)
⟨10.72711, 4.92186]
TE Tuning Map (cents)
⟨1200.554, 1902.107, 2785.643, 3367.810]
TE Mistunings (cents)
⟨0.554, 0.152, -0.670, -1.016]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.331721 |
Adjusted Error |
1.022092 cents |
TE Error |
0.364076 cents/octave |
Tritikleismic (72 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 6 | 8 | 8 | 11 | ] |
⟨ | 0 | -6 | -5 | 2 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.1573, 83.1514]
TE Step Tunings (cents)
⟨10.44698, 5.15275]
TE Tuning Map (cents)
⟨1200.472, 1902.035, 2785.501, 3367.561, 4152.276]
TE Mistunings (cents)
⟨0.472, 0.080, -0.812, -1.265, 0.958]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.798204 |
Adjusted Error |
1.225356 cents |
TE Error |
0.354207 cents/octave |
Tritikleismic (72 & 87)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 3 | 6 | 8 | 8 | 11 | 14 | ] |
⟨ | 0 | -6 | -5 | 2 | -3 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.1516, 83.0730]
TE Step Tunings (cents)
⟨8.20634, 7.00688]
TE Tuning Map (cents)
⟨1200.455, 1902.472, 2785.848, 3367.359, 4152.449, 4439.101]
TE Mistunings (cents)
⟨0.455, 0.517, -0.466, -1.467, 1.131, -1.427]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.234627 |
Adjusted Error |
1.418795 cents |
TE Error |
0.383413 cents/octave |
Triton (19 & 2p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 2 | 3 | 5 | 6 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 3 | -1 | -1 | ] |
⟨ | 0 | -3 | 7 | 8 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.4053, 570.4797]
TE Step Tunings (cents)
⟨62.44591, 8.46648]
TE Tuning Map (cents)
⟨1203.405, 1898.777, 2789.953, 3360.432]
TE Mistunings (cents)
⟨3.405, -3.178, 3.639, -8.394]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.046528 |
Adjusted Error |
7.295386 cents |
TE Error |
2.598669 cents/octave |
Triton (19p & 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | -1 | -1 | 3 | ] |
⟨ | 0 | -3 | 7 | 8 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.4569, 569.8352]
TE Step Tunings (cents)
⟨61.78652, 13.75656]
TE Tuning Map (cents)
⟨1201.457, 1894.865, 2787.389, 3357.225, 4174.206]
TE Mistunings (cents)
⟨1.457, -7.090, 1.076, -11.601, 22.888]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.854869 |
Adjusted Error |
14.111499 cents |
TE Error |
4.079138 cents/octave |
Tritoni (31 & 60p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 60 | 95 | 139 | 168 | 208 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | -3 | -3 | 17 | ] |
⟨ | 0 | -5 | 11 | 12 | -28 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0917, 580.9169]
TE Step Tunings (cents)
⟨23.35549, 7.95119]
TE Tuning Map (cents)
⟨1201.092, 1899.782, 2786.811, 3367.728, 4152.885]
TE Mistunings (cents)
⟨1.092, -2.173, 0.497, -1.098, 1.568]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.795133 |
Adjusted Error |
2.884094 cents |
TE Error |
0.833690 cents/octave |
Tritonic (31 & 60)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 60 | 95 | 139 | 168 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 4 | -3 | -3 | ] |
⟨ | 0 | -5 | 11 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.3562, 580.9419]
TE Step Tunings (cents)
⟨17.18418, 11.14411]
TE Tuning Map (cents)
⟨1201.356, 1900.715, 2786.292, 3367.234]
TE Mistunings (cents)
⟨1.356, -1.240, -0.022, -1.592]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.240157 |
Adjusted Error |
2.337284 cents |
TE Error |
0.832557 cents/octave |
Tritonic (31 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 4 | -3 | -3 | 2 | ] |
⟨ | 0 | -5 | 11 | 12 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.7157, 581.0970]
TE Step Tunings (cents)
⟨27.79209, 11.72969]
TE Tuning Map (cents)
⟨1201.716, 1901.378, 2786.920, 3368.016, 4146.722]
TE Mistunings (cents)
⟨1.716, -0.577, 0.606, -0.809, -4.596]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.907018 |
Adjusted Error |
3.456705 cents |
TE Error |
0.999212 cents/octave |
Tritonic (31 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 4 | -3 | -3 | 2 | -5 | ] |
⟨ | 0 | -5 | 11 | 12 | 3 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.5443, 580.8542]
TE Step Tunings (cents)
⟨23.15325, 16.68253]
TE Tuning Map (cents)
⟨1201.544, 1901.906, 2784.764, 3365.618, 4145.651, 4447.655]
TE Mistunings (cents)
⟨1.544, -0.049, -1.550, -3.208, -5.667, 7.127]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.959758 |
Adjusted Error |
4.902178 cents |
TE Error |
1.324755 cents/octave |
Tritriple (118 & 133)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 118 | 187 | 274 | ] |
⟨ | 133 | 211 | 309 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9546, 559.3105]
TE Step Tunings (cents)
⟨8.89598, 1.12954]
TE Tuning Map (cents)
⟨1199.955, 1901.881, 2786.527]
TE Mistunings (cents)
⟨-0.045, -0.074, 0.213]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.954962 |
Adjusted Error |
0.150661 cents |
TE Error |
0.064886 cents/octave |
Tritriple (118 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 118 | 187 | 274 | 331 | ] |
⟨ | 103 | 163 | 239 | 289 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -11 | -7 | 7 | ] |
⟨ | 0 | 27 | 20 | -9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4243, 559.4923]
TE Step Tunings (cents)
⟨7.33870, 3.24716]
TE Tuning Map (cents)
⟨1200.424, 1901.624, 2786.876, 3367.540]
TE Mistunings (cents)
⟨0.424, -0.331, 0.562, -1.286]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.883050 |
Adjusted Error |
0.984638 cents |
TE Error |
0.350735 cents/octave |
Tritriple (118 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -11 | -7 | 7 | -4 | ] |
⟨ | 0 | 27 | 20 | -9 | 16 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4958, 559.5246]
TE Step Tunings (cents)
⟨7.23217, 3.36990]
TE Tuning Map (cents)
⟨1200.496, 1901.710, 2787.021, 3367.749, 4150.410]
TE Mistunings (cents)
⟨0.496, -0.245, 0.707, -1.076, -0.908]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.061400 |
Adjusted Error |
1.176659 cents |
TE Error |
0.340131 cents/octave |
Tritrizo (135 & 171)
Equal Temperament Mappings
| 2 | 3 | 7 | |
[ ⟨ | 135 | 214 | 379 | ] |
⟨ | 171 | 271 | 480 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨133.3357, 35.2988]
TE Step Tunings (cents)
⟨3.99943, 3.86022]
TE Tuning Map (cents)
⟨1200.021, 1901.998, 3368.690]
TE Mistunings (cents)
⟨0.021, 0.043, -0.135]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.324579 |
Adjusted Error |
0.096014 cents |
TE Error |
0.034201 cents/octave |
Triwell (31 & 159)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 159 | 252 | 369 | 446 | 550 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 7 | 0 | 1 | 13 | ] |
⟨ | 0 | -21 | 9 | 7 | -37 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4807, 309.5950]
TE Step Tunings (cents)
⟨5.90074, 6.39974]
TE Tuning Map (cents)
⟨1200.481, 1901.869, 2786.355, 3367.646, 4151.233]
TE Mistunings (cents)
⟨0.481, -0.086, 0.042, -1.180, -0.085]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.059806 |
Adjusted Error |
0.992553 cents |
TE Error |
0.286912 cents/octave |
Triyo & Latrizo (15 & 36c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 36 | 57 | 83 | 101 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨400.2081, 164.5982]
TE Step Tunings (cents)
⟨25.86190, 22.57489]
TE Tuning Map (cents)
⟨1200.624, 1907.454, 2778.882, 3366.263]
TE Mistunings (cents)
⟨0.624, 5.499, -7.432, -2.563]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.333059 |
Adjusted Error |
6.805306 cents |
TE Error |
2.424099 cents/octave |
Triyo & Rurugu (7p & 23bc)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 7 | 11 | 16 | 20 | ] |
⟨ | 23 | 37 | 54 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | -2 | 5 | ] |
⟨ | 0 | 6 | 10 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1193.1560, 516.8890]
TE Step Tunings (cents)
⟨43.11164, 38.75541]
TE Tuning Map (cents)
⟨1193.156, 1908.178, 2782.578, 3381.335]
TE Mistunings (cents)
⟨-6.844, 6.223, -3.735, 12.509]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.568678 |
Adjusted Error |
12.918325 cents |
TE Error |
4.601600 cents/octave |
Trizo (5 & 1bd)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.7139, 236.2841]
TE Step Tunings (cents)
⟨236.28407, 20.29359]
TE Tuning Map (cents)
⟨1201.714, 1910.566, 3348.564]
TE Mistunings (cents)
⟨1.714, 8.611, -20.262]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.803798 |
Adjusted Error |
14.903325 cents |
TE Error |
5.308671 cents/octave |
Trizogu (4 & 19 & 17c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 4 | 6 | 9 | 11 | ] |
⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 17 | 27 | 40 | 48 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 1 | ] |
⟨ | 0 | 3 | 0 | -1 | ] |
⟨ | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.1337, 633.6686, 2792.4259]
TE Step Tunings (cents)
⟨-7.06209, 51.96191, 14.24152]
TE Tuning Map (cents)
⟨1201.134, 1901.006, 2792.426, 3359.891]
TE Mistunings (cents)
⟨1.134, -0.949, 6.112, -8.935]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.138460 |
Adjusted Error |
6.070442 cents |
TE Error |
2.162335 cents/octave |
Tsaharuk (171 & 77)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 171 | 271 | 397 | 480 | ] |
⟨ | 77 | 122 | 179 | 216 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 1 | 7 | 0 | ] |
⟨ | 0 | 5 | -40 | 24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1039, 140.3620]
TE Step Tunings (cents)
⟨6.94069, 0.17202]
TE Tuning Map (cents)
⟨1200.104, 1901.914, 2786.246, 3368.688]
TE Mistunings (cents)
⟨0.104, -0.041, -0.067, -0.137]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.645166 |
Adjusted Error |
0.170179 cents |
TE Error |
0.060619 cents/octave |
Tutone (6 & 31)
Equal Temperament Mappings
| 2 | 9 | 5 | 7 | 11 | |
[ ⟨ | 6 | 19 | 14 | 17 | 21 | ] |
⟨ | 31 | 98 | 72 | 87 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 9 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 2 | 2 | 2 | ] |
⟨ | 0 | 1 | 2 | 5 | 9 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7722, 194.0622]
TE Step Tunings (cents)
⟨12.06615, 36.39920]
TE Tuning Map (cents)
⟨1200.772, 3796.379, 2789.669, 3371.855, 4148.104]
TE Mistunings (cents)
⟨0.772, -7.531, 3.355, 3.029, -3.214]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.958580 |
Adjusted Error |
4.978765 cents |
TE Error |
1.439186 cents/octave |
Twentcufo (118 & 7)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 118 | 187 | 274 | 408 | ] |
⟨ | 7 | 11 | 16 | 24 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 0 | -2 | 0 | ] |
⟨ | 0 | 11 | 30 | 24 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1958, 172.9078]
TE Step Tunings (cents)
⟨10.15860, 0.21160]
TE Tuning Map (cents)
⟨1200.196, 1901.986, 2786.842, 4149.787]
TE Mistunings (cents)
⟨0.196, 0.031, 0.528, -1.531]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.573536 |
Adjusted Error |
0.925602 cents |
TE Error |
0.267559 cents/octave |
Twothirdtonic (46 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 3 | 2 | 4 | 4 | ] |
⟨ | 0 | -13 | 3 | -11 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.7144, 130.3992]
TE Step Tunings (cents)
⟨26.12192, -0.21046]
TE Tuning Map (cents)
⟨1199.714, 1903.954, 2790.626, 3364.467, 4146.862]
TE Mistunings (cents)
⟨-0.286, 1.999, 4.313, -4.359, -4.456]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.355103 |
Adjusted Error |
4.690639 cents |
TE Error |
1.355899 cents/octave |
Twothirdtonic (9 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 3 | 2 | 4 | 4 | 5 | ] |
⟨ | 0 | -13 | 3 | -11 | -5 | -12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9631, 130.4050]
TE Step Tunings (cents)
⟨-1.18550, 26.31810]
TE Tuning Map (cents)
⟨1199.963, 1904.624, 2791.141, 3365.397, 4147.827, 4434.955]
TE Mistunings (cents)
⟨-0.037, 2.669, 4.827, -3.429, -3.491, -5.572]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.076196 |
Adjusted Error |
5.219520 cents |
TE Error |
1.410514 cents/octave |
Tyr (72 & 270 & 183)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 183 | 290 | 425 | 514 | 633 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 3 | 0 | 0 | 4 | 8 | ] |
⟨ | 0 | 2 | 0 | -4 | 1 | ] |
⟨ | 0 | 0 | 1 | 2 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨400.0162, 950.9828, 2786.3374]
TE Step Tunings (cents)
⟨2.27018, 3.60152, 0.35074]
TE Tuning Map (cents)
⟨1200.049, 1901.966, 2786.337, 3368.809, 4151.113]
TE Mistunings (cents)
⟨0.049, 0.011, 0.024, -0.017, -0.205]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.427933 |
Adjusted Error |
0.120632 cents |
TE Error |
0.034871 cents/octave |
Ulmo (46 & 53 & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 1 | -3 | 2 | ] |
⟨ | 0 | 1 | 0 | 7 | 7 | 4 | ] |
⟨ | 0 | 0 | 1 | -4 | -2 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5522, 1903.2266, 2787.6929]
TE Step Tunings (cents)
⟨5.20029, 14.29318, 7.51113]
TE Tuning Map (cents)
⟨1199.552, 1903.227, 2787.693, 3371.367, 4148.544, 4436.625]
TE Mistunings (cents)
⟨-0.448, 1.272, 1.379, 2.541, -2.774, -3.903]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.214849 |
Adjusted Error |
2.933839 cents |
TE Error |
0.792835 cents/octave |
Uncle (5 & 8c)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1189.8949, 465.1423]
TE Step Tunings (cents)
⟨151.45357, 54.07838]
TE Tuning Map (cents)
⟨1189.895, 1914.648, 2790.854]
TE Mistunings (cents)
⟨-10.105, 12.693, 4.540]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.402685 |
Adjusted Error |
17.482209 cents |
TE Error |
7.529178 cents/octave |
Uncle (5 & 18)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 18 | 29 | 42 | 51 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1190.3661, 465.0588]
TE Step Tunings (cents)
⟨38.49519, 55.43834]
TE Tuning Map (cents)
⟨1190.366, 1915.673, 2790.353, 3366.288]
TE Mistunings (cents)
⟨-9.634, 13.718, 4.039, -2.538]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.427578 |
Adjusted Error |
18.386048 cents |
TE Error |
6.549242 cents/octave |
Undecental (99 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 29 | 46 | 67 | 81 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | -13 | -15 | ] |
⟨ | 0 | -1 | 37 | 43 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6546, 496.8175]
TE Step Tunings (cents)
⟨11.85180, 0.90782]
TE Tuning Map (cents)
⟨1199.655, 1902.492, 2786.737, 3368.333]
TE Mistunings (cents)
⟨-0.345, 0.537, 0.423, -0.493]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.979129 |
Adjusted Error |
0.766351 cents |
TE Error |
0.272980 cents/octave |
Undevigintone (19p & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |
⟨ | 0 | 0 | 0 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨63.3604, 30.4716]
TE Step Tunings (cents)
⟨32.88889, 30.47155]
TE Tuning Map (cents)
⟨1203.848, 1900.813, 2787.860, 3358.104, 4151.318]
TE Mistunings (cents)
⟨3.848, -1.142, 1.546, -10.722, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.189864 |
Adjusted Error |
8.524570 cents |
TE Error |
2.464153 cents/octave |
Undevigintone (19p & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |
⟨ | 0 | 0 | 0 | 0 | -1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨63.3756, 31.4684]
TE Step Tunings (cents)
⟨31.90715, 31.46840]
TE Tuning Map (cents)
⟨1204.135, 1901.267, 2788.524, 3358.904, 4151.318, 4436.289]
TE Mistunings (cents)
⟨4.135, -0.688, 2.211, -9.922, -0.000, -4.239]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.039800 |
Adjusted Error |
8.545786 cents |
TE Error |
2.309397 cents/octave |
Undim (152 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 152 | 241 | 353 | ] |
⟨ | 12 | 19 | 28 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨299.9422, 102.5856]
TE Step Tunings (cents)
⟨7.81479, 0.99334]
TE Tuning Map (cents)
⟨1199.769, 1902.239, 2786.435]
TE Mistunings (cents)
⟨-0.231, 0.284, 0.122]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.768873 |
Adjusted Error |
0.398348 cents |
TE Error |
0.171559 cents/octave |
Unicorn (19 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 19 | 30 | 44 | ] |
⟨ | 58 | 92 | 135 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0902, 62.4624]
TE Step Tunings (cents)
⟨22.54716, 13.30507]
TE Tuning Map (cents)
⟨1200.090, 1900.481, 2788.260]
TE Mistunings (cents)
⟨0.090, -1.474, 1.946]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.519226 |
Adjusted Error |
1.682377 cents |
TE Error |
0.724561 cents/octave |
Unicorn (19 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 58 | 92 | 135 | 163 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 2 | 3 | 4 | ] |
⟨ | 0 | -8 | -13 | -23 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6974, 62.2622]
TE Step Tunings (cents)
⟨12.11463, 16.71585]
TE Tuning Map (cents)
⟨1199.697, 1901.297, 2789.684, 3366.759]
TE Mistunings (cents)
⟨-0.303, -0.658, 3.370, -2.067]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.967966 |
Adjusted Error |
2.395414 cents |
TE Error |
0.853264 cents/octave |
Unidec (72 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 118 | 187 | 274 | 331 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 5 | 8 | 5 | ] |
⟨ | 0 | -6 | -11 | 2 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2430, 183.2357]
TE Step Tunings (cents)
⟨6.52921, 6.18968]
TE Tuning Map (cents)
⟨1200.486, 1901.801, 2786.352, 3367.686]
TE Mistunings (cents)
⟨0.486, -0.154, 0.038, -1.139]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.691723 |
Adjusted Error |
0.899535 cents |
TE Error |
0.320421 cents/octave |
Unidec (72 & 118)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 5 | 8 | 5 | 6 | ] |
⟨ | 0 | -6 | -11 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2499, 183.2413]
TE Step Tunings (cents)
⟨6.73633, 6.06343]
TE Tuning Map (cents)
⟨1200.500, 1901.802, 2786.345, 3367.732, 4151.223]
TE Mistunings (cents)
⟨0.500, -0.153, 0.032, -1.094, -0.095]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.763838 |
Adjusted Error |
0.992910 cents |
TE Error |
0.287015 cents/octave |
Unthirds (72 & 239)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 239 | 379 | 555 | 671 | 827 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -13 | -14 | -9 | -8 | ] |
⟨ | 0 | 42 | 47 | 34 | 33 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0247, 416.7271]
TE Step Tunings (cents)
⟨4.28325, 3.73067]
TE Tuning Map (cents)
⟨1200.025, 1902.215, 2785.826, 3368.498, 4151.795]
TE Mistunings (cents)
⟨0.025, 0.260, -0.488, -0.328, 0.477]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.100757 |
Adjusted Error |
0.499966 cents |
TE Error |
0.144523 cents/octave |
Unthirds (72 & 311)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 311 | 493 | 722 | 873 | 1076 | 1151 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -13 | -14 | -9 | -8 | -47 | ] |
⟨ | 0 | 42 | 47 | 34 | 33 | 146 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0537, 416.7344]
TE Step Tunings (cents)
⟨1.41413, 3.53131]
TE Tuning Map (cents)
⟨1200.054, 1902.145, 2785.763, 3368.485, 4151.804, 4440.692]
TE Mistunings (cents)
⟨0.054, 0.190, -0.551, -0.341, 0.486, 0.165]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
12.700013 |
Adjusted Error |
0.501018 cents |
TE Error |
0.135394 cents/octave |
Untriton (53 & 108)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 108 | 171 | 251 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.1806, 588.8108]
TE Step Tunings (cents)
⟨18.00036, 2.27928]
TE Tuning Map (cents)
⟨1200.181, 1901.786, 2786.142]
TE Mistunings (cents)
⟨0.181, -0.169, -0.172]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.688671 |
Adjusted Error |
0.298151 cents |
TE Error |
0.128407 cents/octave |
Untriton (53 & 2p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 53 | 84 | 123 | 149 | ] |
⟨ | 2 | 3 | 5 | 6 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 6 | -7 | -7 | ] |
⟨ | 0 | -9 | 19 | 20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8298, 588.5576]
TE Step Tunings (cents)
⟨22.71458, -2.02144]
TE Tuning Map (cents)
⟨1199.830, 1901.960, 2783.786, 3372.344]
TE Mistunings (cents)
⟨-0.170, 0.005, -2.528, 3.518]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.630601 |
Adjusted Error |
2.342155 cents |
TE Error |
0.834293 cents/octave |
Untriton (53 & 2)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |
⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 6 | -7 | -7 | 1 | ] |
⟨ | 0 | -9 | 19 | 20 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3656, 588.8053]
TE Step Tunings (cents)
⟨22.75494, -2.82312]
TE Tuning Map (cents)
⟨1200.366, 1902.946, 2784.742, 3373.547, 4144.392]
TE Mistunings (cents)
⟨0.366, 0.991, -1.572, 4.721, -6.926]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.048585 |
Adjusted Error |
4.326065 cents |
TE Error |
1.250513 cents/octave |
Urchin (8d & 14c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |
⟨ | 14 | 22 | 32 | 39 | 48 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 6 | 7 | 8 | 8 | ] |
⟨ | 0 | -3 | -5 | -5 | -4 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨598.3670, 162.4786]
TE Step Tunings (cents)
⟨59.38400, 51.54729]
TE Tuning Map (cents)
⟨1196.734, 1906.032, 2777.809, 3376.176, 4137.022, 4461.979]
TE Mistunings (cents)
⟨-3.266, 4.077, -8.505, 7.350, -14.296, 21.451]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.550346 |
Adjusted Error |
14.190692 cents |
TE Error |
3.834866 cents/octave |
Valentine (46 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 46 | 73 | 107 | ] |
⟨ | 31 | 49 | 72 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.3592, 77.9974]
TE Step Tunings (cents)
⟨19.20120, 10.19690]
TE Tuning Map (cents)
⟨1199.359, 1901.336, 2788.705]
TE Mistunings (cents)
⟨-0.641, -0.619, 2.392]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.341868 |
Adjusted Error |
1.708492 cents |
TE Error |
0.735808 cents/octave |
Valentine (31 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 46 | 73 | 107 | 129 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0773, 77.8688]
TE Step Tunings (cents)
⟨18.26612, 13.77886]
TE Tuning Map (cents)
⟨1200.077, 1900.897, 2789.499, 3366.625]
TE Mistunings (cents)
⟨0.077, -1.058, 3.185, -2.200]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.578005 |
Adjusted Error |
2.409983 cents |
TE Error |
0.858453 cents/octave |
Valentine (31 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 2 | 3 | 3 | ] |
⟨ | 0 | 9 | 5 | -3 | 7 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3935, 77.9068]
TE Step Tunings (cents)
⟨31.79165, 14.32350]
TE Tuning Map (cents)
⟨1200.393, 1901.555, 2790.321, 3367.460, 4146.528]
TE Mistunings (cents)
⟨0.393, -0.400, 4.007, -1.366, -4.790]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.309065 |
Adjusted Error |
3.578767 cents |
TE Error |
1.034496 cents/octave |
Valentino (31 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 2 | 3 | 3 | 5 | ] |
⟨ | 0 | 9 | 5 | -3 | 7 | -20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2013, 77.9711]
TE Step Tunings (cents)
⟨13.93483, 16.70047]
TE Tuning Map (cents)
⟨1200.201, 1901.941, 2790.258, 3366.691, 4146.402, 4441.585]
TE Mistunings (cents)
⟨0.201, -0.014, 3.944, -2.135, -4.916, 1.058]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.400962 |
Adjusted Error |
3.576912 cents |
TE Error |
0.966618 cents/octave |
Van Gogh (342 & 1106 & 1848)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |
⟨ | 1106 | 1753 | 2568 | 3105 | 3826 | ] |
⟨ | 1848 | 2929 | 4291 | 5188 | 6393 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 8 | 0 | 11 | ] |
⟨ | 0 | 1 | 1 | 2 | 1 | ] |
⟨ | 0 | 0 | 9 | 1 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0022, 1901.9507, -435.0702]
TE Step Tunings (cents)
⟨0.18822, 0.16412, 0.51629]
TE Tuning Map (cents)
⟨1200.004, 1901.951, 2786.336, 3368.831, 4151.272]
TE Mistunings (cents)
⟨0.004, -0.004, 0.022, 0.005, -0.046]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.828269 |
Adjusted Error |
0.026620 cents |
TE Error |
0.007695 cents/octave |
Varan (5e & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 5 | 8 | 12 | 14 | 18 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 4 | 3 | 7 | ] |
⟨ | 0 | -2 | -8 | -1 | -17 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.6339, 251.6299]
TE Step Tunings (cents)
⟨29.56675, 55.51580]
TE Tuning Map (cents)
⟨1202.634, 1902.008, 2797.496, 3356.272, 4140.728]
TE Mistunings (cents)
⟨2.634, 0.053, 11.182, -12.554, -10.590]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.884128 |
Adjusted Error |
11.933803 cents |
TE Error |
3.449643 cents/octave |
Varan (41 & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | -1 | 3 | -2 | ] |
⟨ | 0 | 3 | 17 | -1 | 28 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3810, 234.2189]
TE Step Tunings (cents)
⟨29.28673, -0.07502]
TE Tuning Map (cents)
⟨1200.381, 1903.038, 2781.340, 3366.924, 4157.366]
TE Mistunings (cents)
⟨0.381, 1.083, -4.974, -1.902, 6.048]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.614105 |
Adjusted Error |
4.567574 cents |
TE Error |
1.320325 cents/octave |
Varan (19e & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 2 | 4 | 3 | 7 | 6 | ] |
⟨ | 0 | -2 | -8 | -1 | -17 | -11 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.4890, 251.6861]
TE Step Tunings (cents)
⟨55.94154, 27.91996]
TE Tuning Map (cents)
⟨1202.489, 1901.606, 2796.467, 3355.781, 4138.759, 4446.387]
TE Mistunings (cents)
⟨2.489, -0.349, 10.153, -13.045, -12.559, 5.859]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.758137 |
Adjusted Error |
11.956832 cents |
TE Error |
3.231192 cents/octave |
Varan (41 & 5e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | -1 | 3 | -2 | 0 | ] |
⟨ | 0 | 3 | 17 | -1 | 28 | 19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1507, 234.1185]
TE Step Tunings (cents)
⟨29.55845, -2.34911]
TE Tuning Map (cents)
⟨1200.151, 1902.506, 2779.863, 3366.334, 4155.015, 4448.251]
TE Mistunings (cents)
⟨0.151, 0.551, -6.451, -2.492, 3.697, 7.723]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.363236 |
Adjusted Error |
5.682300 cents |
TE Error |
1.535574 cents/octave |
Varda (22 & 46 & 58)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 11 | 0 | 14 | ] |
⟨ | 0 | 1 | -2 | 0 | -4 | ] |
⟨ | 0 | 0 | 0 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.4093, 1902.7269, 3369.4886]
TE Step Tunings (cents)
⟨9.61485, 4.57785, 13.39157]
TE Tuning Map (cents)
⟨1198.819, 1902.727, 2788.049, 3369.489, 4150.312]
TE Mistunings (cents)
⟨-1.181, 0.772, 1.735, 0.663, -1.006]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.196955 |
Adjusted Error |
2.362316 cents |
TE Error |
0.682863 cents/octave |
Varda (12f & 22p & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 11 | 0 | 14 | 24 | ] |
⟨ | 0 | 1 | -2 | 0 | -4 | -7 | ] |
⟨ | 0 | 0 | 0 | 1 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.4012, 1902.3412, 3369.5311]
TE Step Tunings (cents)
⟨16.08658, 6.82435, 18.60060]
TE Tuning Map (cents)
⟨1198.802, 1902.341, 2788.730, 3369.531, 4151.783, 4438.771]
TE Mistunings (cents)
⟨-1.198, 0.386, 2.417, 0.705, 0.465, -1.757]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.234497 |
Adjusted Error |
2.565372 cents |
TE Error |
0.693261 cents/octave |
Varuna (72 & 118 & 130)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 118 | 187 | 274 | 331 | 408 | ] |
⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 0 | 0 | 9 | 12 | ] |
⟨ | 0 | 1 | 0 | -4 | -6 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.1003, 1901.5820, 2786.7140]
TE Step Tunings (cents)
⟨3.64065, 4.00014, 3.58506]
TE Tuning Map (cents)
⟨1200.201, 1901.582, 2786.714, 3368.003, 4151.854]
TE Mistunings (cents)
⟨0.201, -0.373, 0.400, -0.823, 0.537]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.249720 |
Adjusted Error |
0.750472 cents |
TE Error |
0.216935 cents/octave |
Varuna (72 & 58 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 0 | 0 | 9 | 12 | 11 | ] |
⟨ | 0 | 1 | 0 | -4 | -6 | -7 | ] |
⟨ | 0 | 0 | 1 | 2 | 3 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.0055, 1901.4552, 2787.2083]
TE Step Tunings (cents)
⟨9.94178, 7.28127, 1.34542]
TE Tuning Map (cents)
⟨1200.011, 1901.455, 2787.208, 3368.645, 4152.960, 4438.707]
TE Mistunings (cents)
⟨0.011, -0.500, 0.895, -0.181, 1.642, -1.820]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.268694 |
Adjusted Error |
1.281295 cents |
TE Error |
0.346255 cents/octave |
Vavoom (118 & 783)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 118 | 187 | 274 | ] |
⟨ | 783 | 1241 | 1818 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1200.0245, 111.8787]
TE Step Tunings (cents)
⟨0.73168, 1.42233]
TE Tuning Map (cents)
⟨1200.025, 1901.939, 2786.281]
TE Mistunings (cents)
⟨0.025, -0.016, -0.033]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.575941 |
Adjusted Error |
0.040440 cents |
TE Error |
0.017416 cents/octave |
Veery (15 & 19e & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | -1 | -5 | 2 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | 4 | ] |
⟨ | 0 | 0 | 1 | 3 | 5 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8094, 1904.2268, 2791.3791]
TE Step Tunings (cents)
⟨-1.99412, 24.52865, 28.28433]
TE Tuning Map (cents)
⟨1199.809, 1904.227, 2791.379, 3365.874, 4149.395, 4433.768]
TE Mistunings (cents)
⟨-0.191, 2.272, 5.065, -2.951, -1.923, -6.760]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.167341 |
Adjusted Error |
5.145574 cents |
TE Error |
1.390530 cents/octave |
Vega (b4 & b19)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1892.0204, 494.8658]
TE Step Tunings (cents)
⟨57.65126, 87.44291]
TE Tuning Map (cents)
⟨1892.020, 2794.309, 3376.618]
TE Mistunings (cents)
⟨-9.935, 7.995, 7.792]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.500682 |
Adjusted Error |
12.433899 cents |
TE Error |
4.429044 cents/octave |
Vibhu (72 & 31 & 80)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 0 | 2 | 1 | ] |
⟨ | 0 | 1 | 3 | 3 | 0 | 6 | ] |
⟨ | 0 | 0 | 5 | 4 | -3 | 14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1591, 1901.3987, -583.5081]
TE Step Tunings (cents)
⟨8.00468, 6.83503, 5.14920]
TE Tuning Map (cents)
⟨1200.159, 1901.399, 2786.655, 3370.163, 4150.843, 4439.437]
TE Mistunings (cents)
⟨0.159, -0.556, 0.342, 1.338, -0.475, -1.090]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.334782 |
Adjusted Error |
1.071300 cents |
TE Error |
0.289506 cents/octave |
Vicentino (7 & 31)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1201.3969, 348.5246]
TE Step Tunings (cents)
⟨8.31045, 36.87818]
TE Tuning Map (cents)
⟨1201.397, 1898.446, 2788.196]
TE Mistunings (cents)
⟨1.397, -3.509, 1.883]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.421604 |
Adjusted Error |
3.673804 cents |
TE Error |
1.582221 cents/octave |
Vigin (22p & 22f)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | 82 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |
⟨ | 0 | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨54.4952, 26.4174]
TE Step Tunings (cents)
⟨28.07780, 26.41739]
TE Tuning Map (cents)
⟨1198.894, 1907.332, 2779.255, 3378.702, 4141.634, 4440.528]
TE Mistunings (cents)
⟨-1.106, 5.377, -7.059, 9.876, -9.684, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.217697 |
Adjusted Error |
9.811821 cents |
TE Error |
2.651528 cents/octave |
Vigintiduo (22 & 22e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 22 | 35 | 51 | 62 | 77 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 0 | 0 | 0 | 0 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨54.4635, 12.0905]
TE Step Tunings (cents)
⟨42.37307, 12.09045]
TE Tuning Map (cents)
⟨1198.197, 1906.223, 2777.640, 3376.738, 4151.318]
TE Mistunings (cents)
⟨-1.803, 4.268, -8.674, 7.912, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.547590 |
Adjusted Error |
8.806364 cents |
TE Error |
2.545610 cents/octave |
Vili (130 & 270 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 5 | 4 | 10 | 4 | ] |
⟨ | 0 | 2 | 3 | 2 | 6 | 1 | ] |
⟨ | 0 | 0 | 6 | 3 | 14 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0597, 350.9419, -711.0856]
TE Step Tunings (cents)
⟨0.38530, 3.77926, 1.25797]
TE Tuning Map (cents)
⟨1200.060, 1901.944, 2786.610, 3368.866, 4151.050, 4440.095]
TE Mistunings (cents)
⟨0.060, -0.011, 0.297, 0.040, -0.268, -0.433]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.596597 |
Adjusted Error |
0.301499 cents |
TE Error |
0.081477 cents/octave |
Vines (46 & 4)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 46 | 73 | 107 | 129 | ] |
⟨ | 4 | 6 | 9 | 11 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 7 | 8 | 8 | ] |
⟨ | 0 | -8 | -7 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2455, 287.5151]
TE Step Tunings (cents)
⟨25.21527, 10.14712]
TE Tuning Map (cents)
⟨1200.491, 1901.598, 2789.358, 3364.389]
TE Mistunings (cents)
⟨0.491, -0.357, 3.045, -4.437]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.674789 |
Adjusted Error |
2.980837 cents |
TE Error |
1.061796 cents/octave |
Vines (46 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |
⟨ | 50 | 79 | 116 | 140 | 173 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 7 | 8 | 8 | 5 | ] |
⟨ | 0 | -8 | -7 | -5 | 4 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.2473, 287.5170]
TE Step Tunings (cents)
⟨15.04221, 10.17106]
TE Tuning Map (cents)
⟨1200.495, 1901.595, 2789.359, 3364.393, 4151.305]
TE Mistunings (cents)
⟨0.495, -0.360, 3.046, -4.433, -0.013]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.378300 |
Adjusted Error |
3.285431 cents |
TE Error |
0.949702 cents/octave |
Vines (46 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 50 | 79 | 116 | 140 | 173 | 185 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 7 | 8 | 8 | 5 | 5 | ] |
⟨ | 0 | -8 | -7 | -5 | 4 | 5 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.3085, 287.5835]
TE Step Tunings (cents)
⟨14.11465, 11.02686]
TE Tuning Map (cents)
⟨1200.617, 1901.491, 2789.383, 3364.550, 4151.876, 4439.460]
TE Mistunings (cents)
⟨0.617, -0.464, 3.070, -4.276, 0.558, -1.068]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.611455 |
Adjusted Error |
3.255107 cents |
TE Error |
0.879654 cents/octave |
Vish (72 & 41 & 121)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 121 | 192 | 281 | 340 | 419 | 448 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 0 | 2 | 2 | ] |
⟨ | 0 | 1 | 3 | 3 | 0 | -2 | ] |
⟨ | 0 | 0 | 5 | 4 | -3 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9470, 1902.3385, -584.3733]
TE Step Tunings (cents)
⟨6.78284, 0.48094, 5.71788]
TE Tuning Map (cents)
⟨1199.947, 1902.339, 2785.149, 3369.522, 4153.014, 4438.950]
TE Mistunings (cents)
⟨-0.053, 0.384, -1.165, 0.696, 1.696, -1.577]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.316604 |
Adjusted Error |
1.348345 cents |
TE Error |
0.364374 cents/octave |
Vishnean (16 & 50)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] |
⟨ | 50 | 79 | 116 | 140 | 173 | 185 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 2 | 4 | 5 | 5 | 8 | 8 | ] |
⟨ | 0 | -7 | -3 | 5 | -9 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.6044, 71.9982]
TE Step Tunings (cents)
⟨-1.85754, 24.61859]
TE Tuning Map (cents)
⟨1201.209, 1898.430, 2787.027, 3363.013, 4156.851, 4444.844]
TE Mistunings (cents)
⟨1.209, -3.525, 0.714, -5.813, 5.533, 4.317]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.876909 |
Adjusted Error |
5.793678 cents |
TE Error |
1.565673 cents/octave |
Vishnu (118 & 270)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 118 | 187 | 274 | ] |
⟨ | 270 | 428 | 627 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨599.9771, 71.1405]
TE Step Tunings (cents)
⟨4.33215, 2.55096]
TE Tuning Map (cents)
⟨1199.954, 1901.925, 2786.464]
TE Mistunings (cents)
⟨-0.046, -0.030, 0.150]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.708226 |
Adjusted Error |
0.109300 cents |
TE Error |
0.047073 cents/octave |
Vishnu (270 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 152 | 241 | 353 | 427 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 4 | 5 | 10 | ] |
⟨ | 0 | -7 | -3 | -37 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9486, 71.1014]
TE Step Tunings (cents)
⟨4.16849, 0.48950]
TE Tuning Map (cents)
⟨1199.897, 1902.085, 2786.439, 3368.734]
TE Mistunings (cents)
⟨-0.103, 0.130, 0.125, -0.092]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.281320 |
Adjusted Error |
0.204490 cents |
TE Error |
0.072841 cents/octave |
Vishnu (270 & 152)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |
⟨ | 152 | 241 | 353 | 427 | 526 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 4 | 5 | 10 | 10 | ] |
⟨ | 0 | -7 | -3 | -37 | -26 | ] ⟩ |
TE Generator Tunings (cents)
⟨599.9550, 71.0994]
TE Step Tunings (cents)
⟨3.96301, 0.85458]
TE Tuning Map (cents)
⟨1199.910, 1902.124, 2786.476, 3368.870, 4150.964]
TE Mistunings (cents)
⟨-0.090, 0.169, 0.163, 0.044, -0.354]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.463519 |
Adjusted Error |
0.289742 cents |
TE Error |
0.083754 cents/octave |
Voltage (10 & 47)
Equal Temperament Mappings
| 2 | 7 | 13 | |
[ ⟨ | 10 | 28 | 37 | ] |
⟨ | 47 | 132 | 174 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.7828, 357.6120]
TE Step Tunings (cents)
⟨10.80362, 23.22865]
TE Tuning Map (cents)
⟨1199.783, 3368.683, 4441.519]
TE Mistunings (cents)
⟨-0.217, -0.143, 0.991]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.618016 |
Adjusted Error |
0.744876 cents |
TE Error |
0.201294 cents/octave |
Vulcan (12 & 15 & 10p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] |
⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 0 | 6 | 9 | ] |
⟨ | 0 | 1 | 0 | -2 | -2 | ] |
⟨ | 0 | 0 | 1 | 0 | -1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1195.4554, 1903.7349, 2790.6610]
TE Step Tunings (cents)
⟨44.96912, 46.25182, -3.79513]
TE Tuning Map (cents)
⟨1195.455, 1903.735, 2790.661, 3365.263, 4160.968]
TE Mistunings (cents)
⟨-4.545, 1.780, 4.347, -3.563, 9.650]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.104513 |
Adjusted Error |
9.128170 cents |
TE Error |
2.638633 cents/octave |
Vulture (53 & 270)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 53 | 84 | 123 | ] |
⟨ | 270 | 428 | 627 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.9431, 475.5200]
TE Step Tunings (cents)
⟨3.49565, 3.75805]
TE Tuning Map (cents)
⟨1199.943, 1902.080, 2786.263]
TE Mistunings (cents)
⟨-0.057, 0.125, -0.051]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.810745 |
Adjusted Error |
0.133820 cents |
TE Error |
0.057633 cents/octave |
Vulture (270 & 323)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 270 | 428 | 627 | 758 | ] |
⟨ | 323 | 512 | 750 | 907 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | -6 | 25 | ] |
⟨ | 0 | 4 | 21 | -56 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9050, 475.5135]
TE Step Tunings (cents)
⟨3.01614, 1.19364]
TE Tuning Map (cents)
⟨1199.905, 1902.054, 2786.353, 3368.870]
TE Mistunings (cents)
⟨-0.095, 0.099, 0.039, 0.044]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
10.823506 |
Adjusted Error |
0.162824 cents |
TE Error |
0.057999 cents/octave |
Vulture (5 & 58)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.2555, 475.5764]
TE Step Tunings (cents)
⟨0.55551, 20.62893]
TE Tuning Map (cents)
⟨1199.256, 1902.306, 3370.293]
TE Mistunings (cents)
⟨-0.744, 0.351, 1.467]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.507071 |
Adjusted Error |
1.517216 cents |
TE Error |
0.540443 cents/octave |
Waage (72 & 12)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 12 | 19 | 28 | 34 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 12 | 19 | 28 | 34 | ] |
⟨ | 0 | 0 | -1 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨100.0580, 16.2342]
TE Step Tunings (cents)
⟨16.23418, 2.65285]
TE Tuning Map (cents)
⟨1200.695, 1901.101, 2785.389, 3369.502]
TE Mistunings (cents)
⟨0.695, -0.854, -0.925, 0.676]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.629519 |
Adjusted Error |
1.397108 cents |
TE Error |
0.497660 cents/octave |
Walid (2p & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 2 | 3 | 5 | 6 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨589.2869, 146.7476]
TE Step Tunings (cents)
⟨2.29646, 146.74762]
TE Tuning Map (cents)
⟨1178.574, 1914.608, 2799.687, 3388.974]
TE Mistunings (cents)
⟨-21.426, 12.653, 13.373, 20.148]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.854472 |
Adjusted Error |
34.597009 cents |
TE Error |
12.323703 cents/octave |
Whirrschmidt (99 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 99 | 157 | 230 | 278 | ] |
⟨ | 34 | 54 | 79 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | 2 | -14 | ] |
⟨ | 0 | 8 | 1 | 52 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5706, 387.7423]
TE Step Tunings (cents)
⟨12.03875, 0.22749]
TE Tuning Map (cents)
⟨1199.571, 1902.368, 2786.884, 3368.611]
TE Mistunings (cents)
⟨-0.429, 0.413, 0.570, -0.215]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.498425 |
Adjusted Error |
0.791908 cents |
TE Error |
0.282083 cents/octave |
Whitewood (7 & 14p)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨172.1605, 31.7464]
TE Step Tunings (cents)
⟨108.66760, 31.74643]
TE Tuning Map (cents)
⟨1205.123, 1893.765, 2786.314]
TE Mistunings (cents)
⟨5.123, -8.190, 0.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.415106 |
Adjusted Error |
9.754690 cents |
TE Error |
4.201116 cents/octave |
Whoops (152 & 15)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |
⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 17 | 14 | -7 | 10 | ] |
⟨ | 0 | -33 | -25 | 21 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.5939, 560.3294]
TE Step Tunings (cents)
⟨7.78364, 1.09869]
TE Tuning Map (cents)
⟨1199.594, 1902.226, 2786.080, 3369.760, 4151.327]
TE Mistunings (cents)
⟨-0.406, 0.271, -0.234, 0.934, 0.010]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
9.628528 |
Adjusted Error |
0.868421 cents |
TE Error |
0.251030 cents/octave |
Whoops (152 & 137)
Equal Temperament Mappings
| 2 | 3 | 5 | 11 | |
[ ⟨ | 152 | 241 | 353 | 526 | ] |
⟨ | 137 | 217 | 318 | 474 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 11 | |
[ ⟨ | 1 | 17 | 14 | 10 | ] |
⟨ | 0 | -33 | -25 | -14 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8728, 560.4816]
TE Step Tunings (cents)
⟨5.87441, 2.24061]
TE Tuning Map (cents)
⟨1199.873, 1901.943, 2786.178, 4151.985]
TE Mistunings (cents)
⟨-0.127, -0.012, -0.136, 0.667]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.880401 |
Adjusted Error |
0.412326 cents |
TE Error |
0.119189 cents/octave |
Whoosh (1171 & 730)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 1171 | 1856 | 2719 | ] |
⟨ | 730 | 1157 | 1695 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | |
[ ⟨ | 1 | 17 | 14 | ] |
⟨ | 0 | -33 | -25 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9978, 560.5458]
TE Step Tunings (cents)
⟨0.81729, 0.33281]
TE Tuning Map (cents)
⟨1199.998, 1901.951, 2786.324]
TE Mistunings (cents)
⟨-0.002, -0.004, 0.011]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.501694 |
Adjusted Error |
0.007462 cents |
TE Error |
0.003214 cents/octave |
Widefourth (87 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 16 | 8 | -2 | 17 | ] |
⟨ | 0 | -33 | -13 | 11 | -31 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4855, 524.4219]
TE Step Tunings (cents)
⟨6.39018, 6.25767]
TE Tuning Map (cents)
⟨1200.486, 1901.845, 2786.399, 3367.670, 4151.174]
TE Mistunings (cents)
⟨0.486, -0.110, 0.085, -1.156, -0.144]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
8.511552 |
Adjusted Error |
0.994413 cents |
TE Error |
0.287450 cents/octave |
Widefourth (87 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 16 | 8 | -2 | 17 | 12 | ] |
⟨ | 0 | -33 | -13 | 11 | -31 | -19 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4221, 524.3933]
TE Step Tunings (cents)
⟨6.48467, 6.17724]
TE Tuning Map (cents)
⟨1200.422, 1901.775, 2786.264, 3367.482, 4150.984, 4441.593]
TE Mistunings (cents)
⟨0.422, -0.180, -0.050, -1.344, -0.334, 1.065]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
7.782324 |
Adjusted Error |
1.081870 cents |
TE Error |
0.292363 cents/octave |
Wilsec (9 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -2 | 5 | 1 | 3 | ] |
⟨ | 0 | 8 | -6 | 4 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.6304, 538.8107]
TE Step Tunings (cents)
⟨21.68433, 34.77488]
TE Tuning Map (cents)
⟨1203.630, 1903.225, 2785.288, 3358.873, 4149.702]
TE Mistunings (cents)
⟨3.630, 1.270, -1.026, -9.952, -1.616]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.473550 |
Adjusted Error |
8.009719 cents |
TE Error |
2.315328 cents/octave |
Wilsec (9 & 29)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -2 | 5 | 1 | 3 | 1 | ] |
⟨ | 0 | 8 | -6 | 4 | 1 | 6 | ] ⟩ |
TE Generator Tunings (cents)
⟨1203.7904, 538.9052]
TE Step Tunings (cents)
⟨21.02489, 34.98505]
TE Tuning Map (cents)
⟨1203.790, 1903.661, 2785.521, 3359.411, 4150.276, 4437.221]
TE Mistunings (cents)
⟨3.790, 1.706, -0.793, -9.415, -1.042, -3.306]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.276536 |
Adjusted Error |
7.962029 cents |
TE Error |
2.151644 cents/octave |
Winston (9 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 3 | 1 | 3 | 1 | ] |
⟨ | 0 | 7 | -3 | 8 | 2 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.3057, 271.1572]
TE Step Tunings (cents)
⟨-3.73203, 39.80303]
TE Tuning Map (cents)
⟨1200.306, 1898.100, 2787.446, 3369.563, 4143.232, 4454.192]
TE Mistunings (cents)
⟨0.306, -3.855, 1.132, 0.737, -8.086, 13.664]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.005934 |
Adjusted Error |
7.615806 cents |
TE Error |
2.058081 cents/octave |
Winston (31 & 9)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 115 | ] |
⟨ | 9 | 14 | 21 | 25 | 33 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 13 | |
[ ⟨ | 1 | 0 | 3 | 1 | 1 | ] |
⟨ | 0 | 7 | -3 | 8 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.6016, 271.1272]
TE Step Tunings (cents)
⟨40.94119, -7.73058]
TE Tuning Map (cents)
⟨1199.602, 1897.890, 2785.423, 3368.619, 4453.127]
TE Mistunings (cents)
⟨-0.398, -4.065, -0.890, -0.207, 12.600]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.137102 |
Adjusted Error |
7.114557 cents |
TE Error |
1.922625 cents/octave |
Winston (9 & 22f)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 9 | 14 | 25 | 31 | 33 | ] |
⟨ | 22 | 35 | 62 | 76 | 82 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 3 | 1 | ] |
⟨ | 0 | 7 | 8 | 2 | 12 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.6768, 271.1177]
TE Step Tunings (cents)
⟨38.79414, 38.70589]
TE Tuning Map (cents)
⟨1200.677, 1897.824, 3369.619, 4144.266, 4454.089]
TE Mistunings (cents)
⟨0.677, -4.131, 0.793, -7.052, 13.562]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.665873 |
Adjusted Error |
8.260841 cents |
TE Error |
2.232395 cents/octave |
Witchcraft (41 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 2 | -1 | -7 | ] |
⟨ | 0 | 5 | 1 | 12 | 33 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.2675, 380.6334]
TE Step Tunings (cents)
⟨24.43021, 10.50677]
TE Tuning Map (cents)
⟨1201.267, 1903.167, 2783.168, 3366.334, 4152.031]
TE Mistunings (cents)
⟨1.267, 1.212, -3.145, -2.492, 0.713]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.427383 |
Adjusted Error |
3.409584 cents |
TE Error |
0.985591 cents/octave |
Witchcraft (41 & 19e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |
⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 2 | -1 | -7 | -2 | ] |
⟨ | 0 | 5 | 1 | 12 | 33 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1201.0499, 380.5217]
TE Step Tunings (cents)
⟨23.61282, 12.25918]
TE Tuning Map (cents)
⟨1201.050, 1902.609, 2782.622, 3365.211, 4149.867, 4447.291]
TE Mistunings (cents)
⟨1.050, 0.654, -3.692, -3.615, -1.451, 6.763]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.171502 |
Adjusted Error |
4.525966 cents |
TE Error |
1.223089 cents/octave |
Wizard (72 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 22 | 35 | 51 | 62 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.3442, 216.8681]
TE Step Tunings (cents)
⟨15.82776, 2.77679]
TE Tuning Map (cents)
⟨1200.688, 1901.553, 2784.853, 3369.369]
TE Mistunings (cents)
⟨0.688, -0.402, -1.461, 0.544]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.902029 |
Adjusted Error |
1.383590 cents |
TE Error |
0.492845 cents/octave |
Wizard (72 & 22)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 2 | 1 | 5 | 2 | 8 | ] |
⟨ | 0 | 6 | -1 | 10 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨600.3055, 216.8783]
TE Step Tunings (cents)
⟨15.56062, 3.64755]
TE Tuning Map (cents)
⟨1200.611, 1901.575, 2784.649, 3369.394, 4151.809]
TE Mistunings (cents)
⟨0.611, -0.380, -1.664, 0.568, 0.491]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
4.061084 |
Adjusted Error |
1.551521 cents |
TE Error |
0.448490 cents/octave |
Wizz (22 & 28)
Equal Temperament Mappings
| 2 | 5 | 11 | |
[ ⟨ | 22 | 51 | 76 | ] |
⟨ | 28 | 65 | 97 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨600.1834, 216.2983]
TE Step Tunings (cents)
⟨27.25988, 21.45176]
TE Tuning Map (cents)
⟨1200.367, 2784.619, 4152.572]
TE Mistunings (cents)
⟨0.367, -1.695, 1.254]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.707850 |
Adjusted Error |
1.785235 cents |
TE Error |
0.516049 cents/octave |
Wollemia (7d & 27e)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 7 | 11 | 16 | 19 | 24 | ] |
⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 1 | 1 | 0 | 2 | ] |
⟨ | 0 | 4 | 9 | 19 | 10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.6728, 176.9214]
TE Step Tunings (cents)
⟨9.81417, 41.77680]
TE Tuning Map (cents)
⟨1196.673, 1904.358, 2788.965, 3361.506, 4162.559]
TE Mistunings (cents)
⟨-3.327, 2.403, 2.652, -7.320, 11.242]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.196034 |
Adjusted Error |
8.755984 cents |
TE Error |
2.531047 cents/octave |
Wollemia (27e & 7d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |
⟨ | 7 | 11 | 16 | 19 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 0 | 2 | 4 | ] |
⟨ | 0 | 4 | 9 | 19 | 10 | -2 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.4862, 176.8600]
TE Step Tunings (cents)
⟨40.53348, 14.72603]
TE Tuning Map (cents)
⟨1197.486, 1904.926, 2789.226, 3360.339, 4163.572, 4436.225]
TE Mistunings (cents)
⟨-2.514, 2.971, 2.912, -8.487, 12.254, -4.303]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.444778 |
Adjusted Error |
8.866129 cents |
TE Error |
2.395966 cents/octave |
Worschmidt (31 & 34p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 34 | 54 | 79 | 95 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | 2 | 7 | ] |
⟨ | 0 | 8 | 1 | -13 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7664, 387.6396]
TE Step Tunings (cents)
⟨28.68336, 9.16418]
TE Tuning Map (cents)
⟨1200.766, 1900.351, 2789.173, 3366.050]
TE Mistunings (cents)
⟨0.766, -1.604, 2.859, -2.776]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.422937 |
Adjusted Error |
2.844241 cents |
TE Error |
1.013139 cents/octave |
Worschmidt (31 & 34p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 34 | 54 | 79 | 95 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | 2 | 7 | -3 | ] |
⟨ | 0 | 8 | 1 | -13 | 20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7945, 387.6635]
TE Step Tunings (cents)
⟨28.18067, 9.62335]
TE Tuning Map (cents)
⟨1200.795, 1900.513, 2789.253, 3365.936, 4150.886]
TE Mistunings (cents)
⟨0.795, -1.442, 2.939, -2.890, -0.432]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.785390 |
Adjusted Error |
3.146195 cents |
TE Error |
0.909454 cents/octave |
Worseschmidt (31 & 3def)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 3 | 5 | 7 | 9 | 11 | 12 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | 2 | -3 | -3 | -5 | ] |
⟨ | 0 | 8 | 1 | 18 | 20 | 27 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.4927, 387.2580]
TE Step Tunings (cents)
⟨38.71861, 0.07195]
TE Tuning Map (cents)
⟨1200.493, 1897.571, 2788.243, 3369.166, 4143.682, 4453.503]
TE Mistunings (cents)
⟨0.493, -4.384, 1.930, 0.340, -7.636, 12.975]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.872164 |
Adjusted Error |
7.668058 cents |
TE Error |
2.072202 cents/octave |
Würschmidt (65 & 34)
Equal Temperament Mappings
| 2 | 3 | 5 | |
[ ⟨ | 65 | 103 | 151 | ] |
⟨ | 34 | 54 | 79 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.6943, 387.7005]
TE Step Tunings (cents)
⟨14.82001, 6.95276]
TE Tuning Map (cents)
⟨1199.694, 1901.910, 2787.089]
TE Mistunings (cents)
⟨-0.306, -0.045, 0.775]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.285231 |
Adjusted Error |
0.608129 cents |
TE Error |
0.261907 cents/octave |
Würschmidt (31 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 31 | 49 | 72 | 87 | ] |
⟨ | 34 | 54 | 79 | 96 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | 2 | -3 | ] |
⟨ | 0 | 8 | 1 | 18 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9788, 387.3757]
TE Step Tunings (cents)
⟨28.99317, 8.85855]
TE Tuning Map (cents)
⟨1199.979, 1899.027, 2787.333, 3372.826]
TE Mistunings (cents)
⟨-0.021, -2.928, 1.020, 4.000]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.803183 |
Adjusted Error |
3.332639 cents |
TE Error |
1.187110 cents/octave |
Würschmidt (31 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | 2 | -3 | -3 | ] |
⟨ | 0 | 8 | 1 | 18 | 20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9672, 387.4364]
TE Step Tunings (cents)
⟨26.80213, 10.85592]
TE Tuning Map (cents)
⟨1199.967, 1899.524, 2787.371, 3373.953, 4148.826]
TE Mistunings (cents)
⟨-0.033, -2.431, 1.057, 5.127, -2.492]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
2.747505 |
Adjusted Error |
3.918712 cents |
TE Error |
1.132762 cents/octave |
Würschmidt (31 & 34d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | 2 | -3 | -3 | 5 | ] |
⟨ | 0 | 8 | 1 | 18 | 20 | -4 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.0410, 387.3165]
TE Step Tunings (cents)
⟨20.69122, 16.40039]
TE Tuning Map (cents)
⟨1199.041, 1899.491, 2785.399, 3374.573, 4149.206, 4445.939]
TE Mistunings (cents)
⟨-0.959, -2.464, -0.915, 5.748, -2.112, 5.412]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
3.043587 |
Adjusted Error |
4.823595 cents |
TE Error |
1.303519 cents/octave |
Yajna (72 & 224 & 103)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |
⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 0 | 0 | 2 | -4 | ] |
⟨ | 0 | 1 | 3 | 3 | 0 | 11 | ] |
⟨ | 0 | 0 | 5 | 4 | -3 | 20 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.0074, 1901.7142, -583.9021]
TE Step Tunings (cents)
⟨0.65601, 5.12107, 0.05490]
TE Tuning Map (cents)
⟨1200.007, 1901.714, 2785.632, 3369.534, 4151.721, 4440.784]
TE Mistunings (cents)
⟨0.007, -0.241, -0.682, 0.708, 0.403, 0.256]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.392358 |
Adjusted Error |
0.660866 cents |
TE Error |
0.178591 cents/octave |
Yarman (80 & 159)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 80 | 127 | 186 | 225 | 277 | ] |
⟨ | 159 | 252 | 369 | 446 | 550 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 2 | 3 | 4 | 4 | ] |
⟨ | 0 | -33 | -54 | -95 | -43 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.8341, 15.0637]
TE Step Tunings (cents)
⟨4.54007, 5.26181]
TE Tuning Map (cents)
⟨1199.834, 1902.566, 2786.063, 3368.285, 4151.597]
TE Mistunings (cents)
⟨-0.166, 0.611, -0.251, -0.541, 0.280]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
11.328402 |
Adjusted Error |
0.744451 cents |
TE Error |
0.215195 cents/octave |
Yo (3 & 2c)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1188.9047, 420.1095]
TE Step Tunings (cents)
⟨348.68577, 71.42370]
TE Tuning Map (cents)
⟨1188.905, 1957.700, 2726.495]
TE Mistunings (cents)
⟨-11.095, 55.745, -59.818]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.367248 |
Adjusted Error |
60.307855 cents |
TE Error |
25.973179 cents/octave |
Yoyo & Latrizo (10 & 11c)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 11 | 17 | 25 | 31 | ] ⟩ |
Reduced Mapping
TE Generator Tunings (cents)
⟨1203.9026, 117.4927]
TE Step Tunings (cents)
⟨88.51664, 28.97601]
TE Tuning Map (cents)
⟨1203.903, 1908.858, 2760.283, 3376.722]
TE Mistunings (cents)
⟨3.903, 6.903, -26.031, 7.896]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.707868 |
Adjusted Error |
18.182620 cents |
TE Error |
6.476780 cents/octave |
Zarvo (72 & 65p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 72 | 114 | 167 | 202 | ] |
⟨ | 65 | 103 | 151 | 182 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | -1 | -5 | 14 | ] |
⟨ | 0 | 6 | 17 | -26 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.8055, 517.0490]
TE Step Tunings (cents)
⟨14.36819, 2.55840]
TE Tuning Map (cents)
⟨1200.806, 1901.489, 2785.806, 3368.003]
TE Mistunings (cents)
⟨0.806, -0.466, -0.508, -0.823]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
6.177613 |
Adjusted Error |
1.308728 cents |
TE Error |
0.466178 cents/octave |
Zarvo (72 & 65p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |
⟨ | 65 | 103 | 151 | 182 | 225 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | -1 | -5 | 14 | -3 | ] |
⟨ | 0 | 6 | 17 | -26 | 15 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.7032, 516.9941]
TE Step Tunings (cents)
⟨15.07360, 1.77545]
TE Tuning Map (cents)
⟨1200.703, 1901.261, 2785.384, 3367.998, 4152.802]
TE Mistunings (cents)
⟨0.703, -0.694, -0.930, -0.828, 1.484]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.738872 |
Adjusted Error |
1.635370 cents |
TE Error |
0.472728 cents/octave |
Zarvo (72 & 7p)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |
⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | -1 | -5 | 14 | -3 | 8 | ] |
⟨ | 0 | 6 | 17 | -26 | 15 | -10 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.9353, 517.0699]
TE Step Tunings (cents)
⟨16.68317, -0.03610]
TE Tuning Map (cents)
⟨1200.935, 1901.484, 2785.511, 3369.278, 4153.242, 4436.784]
TE Mistunings (cents)
⟨0.935, -0.471, -0.802, 0.452, 1.924, -3.744]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
5.439322 |
Adjusted Error |
2.360503 cents |
TE Error |
0.637898 cents/octave |
Zeus (31 & 22 & 46)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |
⟨ | 22 | 35 | 51 | 62 | 76 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | |
[ ⟨ | 1 | 0 | 1 | 4 | 2 | ] |
⟨ | 0 | 1 | 1 | -1 | 1 | ] |
⟨ | 0 | 0 | 2 | -3 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.1724, 1902.4262, -157.1106]
TE Step Tunings (cents)
⟨15.43640, 9.48788, 11.15023]
TE Tuning Map (cents)
⟨1200.172, 1902.426, 2788.377, 3369.595, 4145.660]
TE Mistunings (cents)
⟨0.172, 0.471, 2.064, 0.769, -5.658]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.141626 |
Adjusted Error |
2.958836 cents |
TE Error |
0.855295 cents/octave |
Zeus (31 & 46 & 53)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |
⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |
⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 0 | 1 | 4 | 2 | 7 | ] |
⟨ | 0 | 1 | 1 | -1 | 1 | -2 | ] |
⟨ | 0 | 0 | 2 | -3 | 1 | 1 | ] ⟩ |
TE Generator Tunings (cents)
⟨1200.2442, 1902.2549, -156.9901]
TE Step Tunings (cents)
⟨7.73872, 10.63440, 8.88984]
TE Tuning Map (cents)
⟨1200.244, 1902.255, 2788.519, 3369.692, 4145.753, 4440.209]
TE Mistunings (cents)
⟨0.244, 0.300, 2.205, 0.866, -5.565, -0.319]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.216333 |
Adjusted Error |
2.900982 cents |
TE Error |
0.783956 cents/octave |
Zisa (130 & 270 & 31)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |
⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |
⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | 11 | 13 | |
[ ⟨ | 1 | 1 | 1 | 2 | -3 | 7 | ] |
⟨ | 0 | 2 | 1 | 1 | 8 | -6 | ] |
⟨ | 0 | 0 | 2 | 1 | 8 | -3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1199.9787, 350.9976, 617.8701]
TE Step Tunings (cents)
⟨0.78173, 3.94014, 1.11341]
TE Tuning Map (cents)
⟨1199.979, 1901.974, 2786.717, 3368.825, 4151.005, 4440.255]
TE Mistunings (cents)
⟨-0.021, 0.019, 0.403, -0.001, -0.313, -0.272]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.615994 |
Adjusted Error |
0.317873 cents |
TE Error |
0.085901 cents/octave |
Zo (5 & 2d)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1196.3491, 476.9858]
TE Step Tunings (cents)
⟨242.37752, -7.76927]
TE Tuning Map (cents)
⟨1196.349, 1915.712, 3354.439]
TE Mistunings (cents)
⟨-3.651, 13.757, -14.387]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.439957 |
Adjusted Error |
17.376400 cents |
TE Error |
6.189599 cents/octave |
Zo + Ya (5 & 10 & 3d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 5 | 8 | 12 | 14 | ] |
⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 3 | 5 | 7 | 9 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | -2 | ] |
⟨ | 0 | 1 | 0 | 3 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1196.3491, 1915.7123, 2786.3137]
TE Step Tunings (cents)
⟨67.86792, 83.37016, 7.76927]
TE Tuning Map (cents)
⟨1196.349, 1915.712, 2786.314, 3354.439]
TE Mistunings (cents)
⟨-3.651, 13.757, 0.000, -14.387]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.071055 |
Adjusted Error |
15.048404 cents |
TE Error |
5.360350 cents/octave |
Zozo & Lulu (14 & 10)
Equal Temperament Mappings
| 2 | 3 | 7 | 11 | |
[ ⟨ | 14 | 22 | 39 | 48 | ] |
⟨ | 10 | 16 | 28 | 35 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 7 | 11 | |
[ ⟨ | 2 | 4 | 6 | 9 | ] |
⟨ | 0 | -2 | -1 | -5 | ] ⟩ |
TE Generator Tunings (cents)
⟨601.5280, 251.9115]
TE Step Tunings (cents)
⟨56.50147, 41.20355]
TE Tuning Map (cents)
⟨1203.056, 1902.289, 3357.257, 4154.195]
TE Mistunings (cents)
⟨3.056, 0.334, -11.569, 2.877]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
1.206071 |
Adjusted Error |
8.997593 cents |
TE Error |
2.600888 cents/octave |
Zozo + Ya (19 & 10 & 5)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 19 | 30 | 44 | 53 | ] |
⟨ | 10 | 16 | 23 | 28 | ] |
⟨ | 5 | 8 | 12 | 14 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 0 | 2 | ] |
⟨ | 0 | 2 | 0 | 1 | ] |
⟨ | 0 | 0 | 1 | 0 | ] ⟩ |
TE Generator Tunings (cents)
⟨1202.8536, 951.8736, 2786.3137]
TE Step Tunings (cents)
⟨52.04663, 17.26039, 8.27276]
TE Tuning Map (cents)
⟨1202.854, 1903.747, 2786.314, 3357.581]
TE Mistunings (cents)
⟨2.854, 1.792, -0.000, -11.245]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.085584 |
Adjusted Error |
7.083548 cents |
TE Error |
2.523211 cents/octave |
Zozoquingu Nowa (31 & 6)
Equal Temperament Mappings
Reduced Mapping
TE Generator Tunings (cents)
⟨1199.8196, 193.7426]
TE Step Tunings (cents)
⟨37.36426, 6.92126]
TE Tuning Map (cents)
⟨1199.820, 2787.124, 3368.352]
TE Mistunings (cents)
⟨-0.180, 0.811, -0.474]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.727344 |
Adjusted Error |
0.693210 cents |
TE Error |
0.246926 cents/octave |
Zozotrigu (15 & 9 & 8d)
Equal Temperament Mappings
| 2 | 3 | 5 | 7 | |
[ ⟨ | 15 | 24 | 35 | 42 | ] |
⟨ | 9 | 14 | 21 | 25 | ] |
⟨ | 8 | 13 | 19 | 23 | ] ⟩ |
Reduced Mapping
| 2 | 3 | 5 | 7 | |
[ ⟨ | 1 | 0 | 1 | 0 | ] |
⟨ | 0 | 1 | 1 | 2 | ] |
⟨ | 0 | 0 | 2 | 3 | ] ⟩ |
TE Generator Tunings (cents)
⟨1197.4850, 1904.0609, -150.8366]
TE Step Tunings (cents)
⟨47.60734, 38.39921, 17.22276]
TE Tuning Map (cents)
⟨1197.485, 1904.061, 2799.873, 3355.612]
TE Mistunings (cents)
⟨-2.515, 2.106, 13.559, -13.214]
This is a trivial subgroup of the rational numbers so TE is TE is TE.
Complexity |
0.115770 |
Adjusted Error |
11.259698 cents |
TE Error |
4.010785 cents/octave |