Equal Temperament Mappings

2 | 3 | 7 | ||
---|---|---|---|---|

[ ⟨ | 36 | 57 | 101 | ] |

⟨ | 12 | 19 | 34 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | ||
---|---|---|---|---|

[ ⟨ | 12 | 19 | 34 | ] |

⟨ | 0 | 0 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨100.0514, 32.9215]
TE Step Tunings (cents)

⟨32.92151, 1.28688]
TE Tuning Map (cents)

[1200.617, 1900.976, 3368.826⟩
TE Mistunings (cents)

[0.617, -0.979, -0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.013977 |

Adjusted Error | 1.414402 cents |

TE Error | 0.503820 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 34 | 54 | 79 | ] |

⟨ | 17 | 27 | 40 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 17 | 27 | 39 | ] |

⟨ | 0 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨70.5154, 36.2148]
TE Step Tunings (cents)

⟨34.30055, 1.91426]
TE Tuning Map (cents)

[1198.761, 1903.915, 2786.314⟩
TE Mistunings (cents)

[-1.239, 1.960, -0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.454954 |

Adjusted Error | 2.346419 cents |

TE Error | 1.010548 cents/octave |

Contorted Semaphore? (order 3)

Equal Temperament Mappings

2 | 5 | 9 | ||
---|---|---|---|---|

[ ⟨ | 13 | 30 | 41 | ] |

⟨ | 18 | 42 | 57 | ] ⟩ |

Reduced Mapping

2 | 5 | 9 | ||
---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | ] |

⟨ | 0 | 6 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.3969, 464.6994]
TE Step Tunings (cents)

⟨45.18863, 34.10804]
TE Tuning Map (cents)

[1201.397, 2788.196, 3796.892⟩
TE Mistunings (cents)

[1.397, 1.883, -7.018⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.066203 |

Adjusted Error | 5.015523 cents |

TE Error | 1.582221 cents/octave |

Equal Temperament Mappings

2 | 5 | 9 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 13 | 30 | 41 | 48 | ] |

⟨ | 18 | 42 | 57 | 67 | ] ⟩ |

Reduced Mapping

2 | 5 | 9 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | 1 | ] |

⟨ | 0 | 6 | 3 | 7 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.1721, 464.0907]
TE Step Tunings (cents)

⟨54.57147, 27.31906]
TE Tuning Map (cents)

[1201.172, 2784.544, 3794.616, 4449.807⟩
TE Mistunings (cents)

[1.172, -1.769, -9.294, 9.280⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.973927 |

Adjusted Error | 7.592324 cents |

TE Error | 2.051736 cents/octave |

Equal Temperament Mappings

2 | 5 | 9 | 13 | 21 | ||
---|---|---|---|---|---|---|

[ ⟨ | 13 | 30 | 41 | 48 | 57 | ] |

⟨ | 18 | 42 | 57 | 67 | 79 | ] ⟩ |

Reduced Mapping

2 | 5 | 9 | 13 | 21 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | 1 | 4 | ] |

⟨ | 0 | 6 | 3 | 7 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.3598, 464.0779]
TE Step Tunings (cents)

⟨56.11570, 26.21421]
TE Tuning Map (cents)

[1201.360, 2784.468, 3794.953, 4449.905, 5269.517⟩
TE Mistunings (cents)

[1.360, -1.846, -8.957, 9.378, -1.264⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 0.980643 |

Adjusted Error | 8.091787 cents |

TE Error | 1.842259 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | ] |

⟨ | 494 | 783 | 1147 | 1387 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 7 | 13 | -1 | ] |

⟨ | 0 | -11 | -24 | 19 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9699, 208.8882]
TE Step Tunings (cents)

⟨2.03678, 1.31581]
TE Tuning Map (cents)

[1199.940, 1902.020, 2786.293, 3368.905⟩
TE Mistunings (cents)

[-0.060, 0.065, -0.021, 0.079⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.161291 |

Adjusted Error | 0.110163 cents |

TE Error | 0.039241 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 494 | 783 | 1147 | 1387 | 1709 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 7 | 13 | -1 | 1 | ] |

⟨ | 0 | -11 | -24 | 19 | 17 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9782, 208.8930]
TE Step Tunings (cents)

⟨1.54595, 1.58411]
TE Tuning Map (cents)

[1199.956, 1902.024, 2786.284, 3368.990, 4151.160⟩
TE Mistunings (cents)

[-0.044, 0.069, -0.030, 0.164, -0.158⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.227676 |

Adjusted Error | 0.150376 cents |

TE Error | 0.043468 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 494 | 783 | 1147 | 1387 | 1709 | 1828 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 7 | 13 | -1 | 1 | -2 | ] |

⟨ | 0 | -11 | -24 | 19 | 17 | 27 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9863, 208.8984]
TE Step Tunings (cents)

⟨0.91917, 1.92672]
TE Tuning Map (cents)

[1199.973, 1902.022, 2786.260, 3369.083, 4151.259, 4440.284⟩
TE Mistunings (cents)

[-0.027, 0.067, -0.053, 0.257, -0.059, -0.244⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.607001 |

Adjusted Error | 0.191537 cents |

TE Error | 0.051761 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | ] |

⟨ | 84 | 133 | 195 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | ] |

⟨ | 0 | 1 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨171.4825, 14.4773]
TE Step Tunings (cents)

⟨-2.24461, 14.47726]
TE Tuning Map (cents)

[1200.377, 1900.784, 2787.151⟩
TE Mistunings (cents)

[0.377, -1.171, 0.837⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.691457 |

Adjusted Error | 1.212398 cents |

TE Error | 0.522151 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 6 | 11 | 6 | ] |

⟨ | 0 | -5 | -13 | -29 | -9 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3649, 338.8677]
TE Step Tunings (cents)

⟨26.65568, -3.82803]
TE Tuning Map (cents)

[1199.365, 1903.756, 2790.909, 3365.850, 4146.380⟩
TE Mistunings (cents)

[-0.635, 1.801, 4.595, -2.976, -4.938⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.486879 |

Adjusted Error | 4.582325 cents |

TE Error | 1.324589 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 289 | 458 | 671 | 811 | 1000 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 10 | 11 | 27 | -16 | ] |

⟨ | 0 | -32 | -33 | -92 | 74 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9699, 315.5505]
TE Step Tunings (cents)

⟨3.60775, 0.78158]
TE Tuning Map (cents)

[1199.970, 1902.082, 2786.501, 3368.538, 4151.221⟩
TE Mistunings (cents)

[-0.030, 0.127, 0.187, -0.288, -0.097⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 18.558054 |

Adjusted Error | 0.245259 cents |

TE Error | 0.070896 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 10 | 11 | 27 | -16 | 25 | ] |

⟨ | 0 | -32 | -33 | -92 | 74 | -81 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9940, 315.5555]
TE Step Tunings (cents)

⟨4.41506, 0.41729]
TE Tuning Map (cents)

[1199.994, 1902.163, 2786.602, 3368.730, 4151.205, 4439.853⟩
TE Mistunings (cents)

[-0.006, 0.208, 0.288, -0.096, -0.113, -0.675⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 17.592816 |

Adjusted Error | 0.394541 cents |

TE Error | 0.106620 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 152 | 241 | 353 | 427 | 526 | 563 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 5 | 10 | 10 | 17 | ] |

⟨ | 0 | -7 | -3 | -37 | -26 | -81 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9475, 71.0947]
TE Step Tunings (cents)

⟨3.67337, 1.36897]
TE Tuning Map (cents)

[1199.895, 1902.127, 2786.453, 3368.969, 4151.011, 4440.433⟩
TE Mistunings (cents)

[-0.105, 0.172, 0.139, 0.143, -0.307, -0.095⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 15.096571 |

Adjusted Error | 0.292508 cents |

TE Error | 0.079047 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |

⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | 3 | 6 | -1 | ] |

⟨ | 0 | 3 | 17 | -1 | -13 | 24 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3081, 234.6989]
TE Step Tunings (cents)

⟨26.81387, -6.62598]
TE Tuning Map (cents)

[1200.308, 1904.405, 2789.572, 3366.226, 4150.764, 4432.464⟩
TE Mistunings (cents)

[0.308, 2.450, 3.259, -2.600, -0.554, -8.063⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.896163 |

Adjusted Error | 4.797539 cents |

TE Error | 1.296478 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | 3 | -3 | ] |

⟨ | 0 | 3 | 17 | -1 | 33 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9254, 234.7137]
TE Step Tunings (cents)

⟨26.35672, -2.49677]
TE Tuning Map (cents)

[1199.925, 1904.067, 2790.208, 3365.062, 4145.777⟩
TE Mistunings (cents)

[-0.075, 2.112, 3.894, -3.764, -5.541⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.015654 |

Adjusted Error | 4.629971 cents |

TE Error | 1.338362 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |

⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | 3 | -3 | -1 | ] |

⟨ | 0 | 3 | 17 | -1 | 33 | 24 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0341, 234.7882]
TE Step Tunings (cents)

⟨26.09305, -0.04922]
TE Tuning Map (cents)

[1200.034, 1904.399, 2791.366, 3365.314, 4147.909, 4434.883⟩
TE Mistunings (cents)

[0.034, 2.444, 5.052, -3.512, -3.409, -5.645⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.811713 |

Adjusted Error | 5.227737 cents |

TE Error | 1.412734 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 68 | 108 | 158 | 191 | 235 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | 2 | 5 | ] |

⟨ | 0 | 2 | 1 | 1 | 0 | ] |

⟨ | 0 | 0 | 2 | 1 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4171, 350.8364, 617.2189]
TE Step Tunings (cents)

⟨13.02055, 11.82537, 4.58735]
TE Tuning Map (cents)

[1200.417, 1902.090, 2785.691, 3368.889, 4150.429⟩
TE Mistunings (cents)

[0.417, 0.135, -0.623, 0.064, -0.889⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.250897 |

Adjusted Error | 0.874688 cents |

TE Error | 0.252842 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 68 | 108 | 158 | 191 | 235 | 252 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | 2 | 5 | -1 | ] |

⟨ | 0 | 2 | 1 | 1 | 0 | 2 | ] |

⟨ | 0 | 0 | 2 | 1 | -3 | 8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4416, 350.8093, 617.3719]
TE Step Tunings (cents)

⟨10.80453, 3.01811, 4.83756]
TE Tuning Map (cents)

[1200.442, 1902.060, 2785.995, 3369.064, 4150.092, 4440.152⟩
TE Mistunings (cents)

[0.442, 0.105, -0.319, 0.238, -1.226, -0.375⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.384286 |

Adjusted Error | 0.908087 cents |

TE Error | 0.245400 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 8 | 6 | 7 | 14 | ] |

⟨ | 0 | -4 | -16 | -9 | -10 | -29 | ] ⟩ |

TE Generator Tunings (cents)

⟨1202.3364, 427.1063]
TE Step Tunings (cents)

⟨32.19396, 14.59456]
TE Tuning Map (cents)

[1202.336, 1898.584, 2784.991, 3370.062, 4145.292, 4446.627⟩
TE Mistunings (cents)

[2.336, -3.371, -1.323, 1.236, -6.026, 6.100⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.673362 |

Adjusted Error | 6.090193 cents |

TE Error | 1.645803 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 10 | -3 | 2 | ] |

⟨ | 0 | 1 | 0 | -6 | 7 | 4 | ] |

⟨ | 0 | 0 | 1 | 1 | -2 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0950, 1903.0331, 2785.6180]
TE Step Tunings (cents)

⟨8.45814, 2.02730, 7.19090]
TE Tuning Map (cents)

[1200.095, 1903.033, 2785.618, 3368.369, 4149.711, 4441.086⟩
TE Mistunings (cents)

[0.095, 1.078, -0.696, -0.457, -1.607, 0.559⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.294942 |

Adjusted Error | 1.373466 cents |

TE Error | 0.371163 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -2 | 6 | ] |

⟨ | 0 | 2 | 0 | 9 | -12 | ] |

⟨ | 0 | 0 | 1 | -1 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0429, 950.6654, 2786.4294]
TE Step Tunings (cents)

⟨9.39934, 5.83220, 3.49099]
TE Tuning Map (cents)

[1200.043, 1901.331, 2786.429, 3369.474, 4151.560⟩
TE Mistunings (cents)

[0.043, -0.624, 0.116, 0.648, 0.242⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.297006 |

Adjusted Error | 0.721598 cents |

TE Error | 0.208589 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 4 | 3 | ] |

⟨ | 0 | -8 | -13 | -23 | 9 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.6550, 62.0318]
TE Step Tunings (cents)

⟨20.05043, 1.88052]
TE Tuning Map (cents)

[1198.655, 1901.056, 2789.551, 3367.888, 4154.251⟩
TE Mistunings (cents)

[-1.345, -0.899, 3.238, -0.938, 2.934⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.953658 |

Adjusted Error | 3.426767 cents |

TE Error | 0.990558 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 4 | 3 | 5 | ] |

⟨ | 0 | -8 | -13 | -23 | 9 | -25 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.6341, 62.0482]
TE Step Tunings (cents)

⟨19.71814, 2.89377]
TE Tuning Map (cents)

[1198.634, 1900.882, 2789.276, 3367.428, 4154.336, 4441.965⟩
TE Mistunings (cents)

[-1.366, -1.073, 2.962, -1.398, 3.018, 1.438⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.839292 |

Adjusted Error | 3.415294 cents |

TE Error | 0.922943 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | 0 | 3 | ] |

⟨ | 0 | -9 | 7 | 61 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7230, 55.2303]
TE Step Tunings (cents)

⟨6.14075, 3.06125]
TE Tuning Map (cents)

[1199.723, 1902.374, 2786.058, 3369.046, 4151.472⟩
TE Mistunings (cents)

[-0.277, 0.419, -0.256, 0.220, 0.154⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.226141 |

Adjusted Error | 0.631777 cents |

TE Error | 0.182624 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | ] |

⟨ | 34 | 54 | 79 | 96 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 1 | 9 | ] |

⟨ | 0 | -10 | 3 | -14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.8625, 529.4769]
TE Step Tunings (cents)

⟨19.27713, 30.15789]
TE Tuning Map (cents)

[1198.862, 1898.406, 2787.293, 3377.086⟩
TE Mistunings (cents)

[-1.138, -3.549, 0.979, 8.260⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.217266 |

Adjusted Error | 5.462215 cents |

TE Error | 1.945680 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 1 | 9 | 7 | ] |

⟨ | 0 | -10 | 3 | -14 | -8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.5661, 529.3408]
TE Step Tunings (cents)

⟨19.09390, 30.19768]
TE Tuning Map (cents)

[1198.566, 1897.989, 2786.588, 3376.324, 4155.237⟩
TE Mistunings (cents)

[-1.434, -3.966, 0.275, 7.499, 3.919⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.879312 |

Adjusted Error | 6.331535 cents |

TE Error | 1.830224 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 1 | 9 | 7 | 9 | ] |

⟨ | 0 | -10 | 3 | -14 | -8 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.7541, 529.4005]
TE Step Tunings (cents)

⟨18.30624, 30.41170]
TE Tuning Map (cents)

[1198.754, 1898.519, 2786.956, 3377.179, 4156.074, 4435.980⟩
TE Mistunings (cents)

[-1.246, -3.436, 0.642, 8.354, 4.756, -4.547⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.644069 |

Adjusted Error | 6.512181 cents |

TE Error | 1.759840 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 99 | 157 | 230 | 278 | ] |

⟨ | 212 | 336 | 492 | 595 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 6 | 5 | ] |

⟨ | 0 | -20 | -52 | -31 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9463, 84.8761]
TE Step Tunings (cents)

⟨5.45505, 3.11272]
TE Tuning Map (cents)

[1199.946, 1902.316, 2786.119, 3368.572⟩
TE Mistunings (cents)

[-0.054, 0.361, -0.195, -0.254⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.944139 |

Adjusted Error | 0.371618 cents |

TE Error | 0.132373 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 43 | 68 | 100 | 121 | 149 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -2 | 2 | 9 | 9 | ] |

⟨ | 0 | 11 | 1 | -19 | -17 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.5293, 390.9220]
TE Step Tunings (cents)

⟨16.23330, 10.53018]
TE Tuning Map (cents)

[1199.529, 1901.083, 2789.981, 3368.247, 4150.091⟩
TE Mistunings (cents)

[-0.471, -0.872, 3.667, -0.579, -1.227⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.789119 |

Adjusted Error | 2.761806 cents |

TE Error | 0.798341 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |

⟨ | 43 | 68 | 100 | 121 | 149 | 159 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | -2 | 2 | 9 | 9 | 5 | ] |

⟨ | 0 | 11 | 1 | -19 | -17 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8222, 391.0146]
TE Step Tunings (cents)

⟨16.11512, 10.66341]
TE Tuning Map (cents)

[1199.822, 1901.516, 2790.659, 3369.123, 4151.152, 4435.053⟩
TE Mistunings (cents)

[-0.178, -0.439, 4.345, 0.297, -0.165, -5.475⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.371540 |

Adjusted Error | 3.642331 cents |

TE Error | 0.984297 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | ] |

⟨ | 99 | 157 | 230 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 3 | 6 | ] |

⟨ | 0 | -5 | -13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9135, 339.4943]
TE Step Tunings (cents)

⟨12.36123, 5.50271]
TE Tuning Map (cents)

[1199.914, 1902.269, 2786.055⟩
TE Mistunings (cents)

[-0.086, 0.314, -0.259⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.291990 |

Adjusted Error | 0.325996 cents |

TE Error | 0.140399 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 99 | 157 | 230 | 278 | ] |

⟨ | 53 | 84 | 123 | 149 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 6 | -2 | ] |

⟨ | 0 | -5 | -13 | 17 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.6102, 339.3219]
TE Step Tunings (cents)

⟨10.09007, 3.78666]
TE Tuning Map (cents)

[1199.610, 1902.221, 2786.476, 3369.253⟩
TE Mistunings (cents)

[-0.390, 0.266, 0.162, 0.427⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.364558 |

Adjusted Error | 0.640286 cents |

TE Error | 0.228074 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |

⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 6 | -2 | 21 | ] |

⟨ | 0 | -5 | -13 | 17 | -62 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.5964, 339.3502]
TE Step Tunings (cents)

⟨6.97405, 1.40950]
TE Tuning Map (cents)

[1199.596, 1902.038, 2786.025, 3369.761, 4151.810⟩
TE Mistunings (cents)

[-0.404, 0.083, -0.288, 0.935, 0.492⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.928953 |

Adjusted Error | 0.864542 cents |

TE Error | 0.249909 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |

⟨ | 152 | 241 | 353 | 427 | 526 | 563 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 6 | -2 | 21 | 17 | ] |

⟨ | 0 | -5 | -13 | 17 | -62 | -47 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.5444, 339.3517]
TE Step Tunings (cents)

⟨1.05284, 7.52463]
TE Tuning Map (cents)

[1199.544, 1901.875, 2785.694, 3369.891, 4150.626, 4442.724⟩
TE Mistunings (cents)

[-0.456, -0.080, -0.620, 1.065, -0.692, 2.196⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.913304 |

Adjusted Error | 1.365877 cents |

TE Error | 0.369112 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 8 | 13 | 19 | 23 | ] |

⟨ | 29 | 46 | 67 | 81 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 5 | 8 | 10 | ] |

⟨ | 0 | -9 | -15 | -19 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3567, 454.2048]
TE Step Tunings (cents)

⟨20.98414, 35.56840]
TE Tuning Map (cents)

[1199.357, 1908.940, 2781.782, 3363.676⟩
TE Mistunings (cents)

[-0.643, 6.985, -4.532, -5.150⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.759118 |

Adjusted Error | 7.295446 cents |

TE Error | 2.598690 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 5 | 8 | 10 | 8 | ] |

⟨ | 0 | -9 | -15 | -19 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0392, 454.5265]
TE Step Tunings (cents)

⟨19.16265, 36.09441]
TE Tuning Map (cents)

[1200.039, 1909.457, 2782.416, 3364.388, 4145.996⟩
TE Mistunings (cents)

[0.039, 7.502, -3.898, -4.437, -5.322⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.517219 |

Adjusted Error | 8.486708 cents |

TE Error | 2.453209 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 5 | 8 | 10 | 8 | 9 | ] |

⟨ | 0 | -9 | -15 | -19 | -12 | -14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2735, 454.6324]
TE Step Tunings (cents)

⟨18.66949, 36.23854]
TE Tuning Map (cents)

[1200.274, 1909.676, 2782.702, 3364.720, 4146.600, 4437.608⟩
TE Mistunings (cents)

[0.274, 7.721, -3.611, -4.106, -4.718, -2.919⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.311859 |

Adjusted Error | 8.390448 cents |

TE Error | 2.267419 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | ] |

⟨ | 41 | 65 | 95 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | ] |

⟨ | 0 | 6 | -7 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.8376, 116.7547]
TE Step Tunings (cents)

⟨16.40759, 16.88298]
TE Tuning Map (cents)

[1200.838, 1901.366, 2785.230⟩
TE Mistunings (cents)

[0.838, -0.589, -1.084⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.780215 |

Adjusted Error | 1.378663 cents |

TE Error | 0.593758 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 118 | 187 | 274 | 331 | 408 | 437 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 5 | 10 | 10 | 1 | ] |

⟨ | 0 | -7 | -3 | -37 | -26 | 54 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9941, 71.1163]
TE Step Tunings (cents)

⟨4.09778, 0.79311]
TE Tuning Map (cents)

[1199.988, 1902.162, 2786.621, 3368.638, 4150.917, 4440.273⟩
TE Mistunings (cents)

[-0.012, 0.207, 0.308, -0.188, -0.401, -0.254⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 17.147872 |

Adjusted Error | 0.362000 cents |

TE Error | 0.097826 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | -4 | ] |

⟨ | 0 | -1 | 8 | 14 | 18 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1989, 497.7111]
TE Step Tunings (cents)

⟨2.77352, 28.46138]
TE Tuning Map (cents)

[1200.199, 1902.687, 2781.490, 3367.358, 4158.004⟩
TE Mistunings (cents)

[0.199, 0.732, -4.824, -1.467, 6.686⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.464843 |

Adjusted Error | 4.531040 cents |

TE Error | 1.309764 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | -4 | -5 | ] |

⟨ | 0 | -1 | 8 | 14 | 18 | 21 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3146, 497.5710]
TE Step Tunings (cents)

⟨-4.93511, 30.72039]
TE Tuning Map (cents)

[1200.315, 1903.058, 2780.254, 3365.051, 4155.020, 4447.419⟩
TE Mistunings (cents)

[0.315, 1.103, -6.060, -3.775, 3.702, 6.891⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.524619 |

Adjusted Error | 5.615386 cents |

TE Error | 1.517491 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | 35 | ] |

⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 3 | 6 | 9 | ] |

⟨ | 0 | -2 | 4 | -1 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9457, 247.7940]
TE Step Tunings (cents)

⟨26.20058, 39.07857]
TE Tuning Map (cents)

[1199.891, 1904.195, 2791.013, 3351.880, 4160.541⟩
TE Mistunings (cents)

[-0.109, 2.240, 4.699, -16.946, 9.224⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.265829 |

Adjusted Error | 10.901204 cents |

TE Error | 3.151155 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |

⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 3 | 6 | 9 | 7 | ] |

⟨ | 0 | -2 | 4 | -1 | -5 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.7793, 247.5998]
TE Step Tunings (cents)

⟨27.69846, 38.44059]
TE Tuning Map (cents)

[1199.559, 1903.918, 2789.737, 3351.076, 4160.015, 4446.055⟩
TE Mistunings (cents)

[-0.441, 1.963, 3.424, -17.750, 8.697, 5.527⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.107568 |

Adjusted Error | 10.938604 cents |

TE Error | 2.956028 cents/octave |

Equal Temperament Mappings

2 | 9 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 6 | 19 | 14 | 17 | ] |

⟨ | 10 | 32 | 23 | 28 | ] ⟩ |

Reduced Mapping

2 | 9 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 6 | 5 | 6 | ] |

⟨ | 0 | 1 | -1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨598.8593, 213.6884]
TE Step Tunings (cents)

⟨129.27686, 42.20575]
TE Tuning Map (cents)

[1197.719, 3806.844, 2780.608, 3379.468⟩
TE Mistunings (cents)

[-2.281, 2.934, -5.705, 10.642⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.598065 |

Adjusted Error | 8.154205 cents |

TE Error | 2.572365 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 15 | 24 | 35 | 42 | 52 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 3 | 2 | ] |

⟨ | 0 | 1 | 1 | 0 | 1 | ] |

⟨ | 0 | 0 | 4 | 3 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.0724, 1902.0183, -78.7124]
TE Step Tunings (cents)

⟨27.85201, 15.54239, 7.46601]
TE Tuning Map (cents)

[1201.072, 1902.018, 2788.241, 3367.080, 4146.738⟩
TE Mistunings (cents)

[1.072, 0.063, 1.927, -1.746, -4.580⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.161950 |

Adjusted Error | 3.086432 cents |

TE Error | 0.892179 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 3 | 2 | 6 | ] |

⟨ | 0 | 1 | 1 | 0 | 1 | -1 | ] |

⟨ | 0 | 0 | 4 | 3 | 2 | 11 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.0689, 1901.8083, -78.5911]
TE Step Tunings (cents)

⟨14.33855, 14.44460, 6.58015]
TE Tuning Map (cents)

[1201.069, 1901.808, 2788.513, 3367.434, 4146.764, 4440.104⟩
TE Mistunings (cents)

[1.069, -0.147, 2.199, -1.392, -4.554, -0.424⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.264037 |

Adjusted Error | 3.036561 cents |

TE Error | 0.820595 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 27 | 43 | 63 | 76 | 94 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -1 | 4 | ] |

⟨ | 0 | 1 | 0 | -2 | 7 | ] |

⟨ | 0 | 0 | 1 | 3 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.6034, 1900.1796, 2789.4634]
TE Step Tunings (cents)

⟨25.42091, 12.84147, 3.41240]
TE Tuning Map (cents)

[1199.603, 1900.180, 2789.463, 3368.428, 4152.353⟩
TE Mistunings (cents)

[-0.397, -1.775, 3.150, -0.398, 1.036⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.174660 |

Adjusted Error | 2.836694 cents |

TE Error | 0.819988 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |

⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -1 | 4 | 0 | ] |

⟨ | 0 | 1 | 0 | -2 | 7 | -5 | ] |

⟨ | 0 | 0 | 1 | 3 | -5 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.0647, 1900.3002, 2788.9690]
TE Step Tunings (cents)

⟨21.95183, 20.56695, 15.97324]
TE Tuning Map (cents)

[1199.065, 1900.300, 2788.969, 3367.242, 4153.515, 4443.344⟩
TE Mistunings (cents)

[-0.935, -1.655, 2.655, -1.584, 2.197, 2.816⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.192172 |

Adjusted Error | 3.230785 cents |

TE Error | 0.873081 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -5 | 2 | ] |

⟨ | 0 | 1 | 0 | 2 | -2 | ] |

⟨ | 0 | 0 | 1 | 2 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8310, 1903.2165, 2781.2115]
TE Step Tunings (cents)

⟨9.47898, 22.85170, 4.53113]
TE Tuning Map (cents)

[1199.831, 1903.217, 2781.211, 3369.701, 4155.652⟩
TE Mistunings (cents)

[-0.169, 1.262, -5.102, 0.875, 4.334⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.138578 |

Adjusted Error | 4.139008 cents |

TE Error | 1.196442 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |

⟨ | 7 | 11 | 16 | 19 | 24 | 26 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -5 | 2 | 7 | ] |

⟨ | 0 | 1 | 0 | 2 | -2 | -5 | ] |

⟨ | 0 | 0 | 1 | 2 | 2 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.6983, 1903.5196, 2780.8358]
TE Step Tunings (cents)

⟨24.60744, 34.44970, 20.93079]
TE Tuning Map (cents)

[1199.698, 1903.520, 2780.836, 3370.220, 4154.029, 4441.961⟩
TE Mistunings (cents)

[-0.302, 1.565, -5.478, 1.394, 2.711, 1.434⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.189446 |

Adjusted Error | 4.176208 cents |

TE Error | 1.128571 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | 2 | 3 | ] |

⟨ | 0 | -18 | 14 | 35 | 20 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8351, 27.6590]
TE Step Tunings (cents)

⟨6.66152, 3.83721]
TE Tuning Map (cents)

[1199.835, 1901.808, 2786.896, 3367.735, 4152.685⟩
TE Mistunings (cents)

[-0.165, -0.147, 0.582, -1.091, 1.367⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.011017 |

Adjusted Error | 0.985635 cents |

TE Error | 0.284912 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | 2 | 3 | 4 | ] |

⟨ | 0 | -18 | 14 | 35 | 20 | -13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8736, 27.6569]
TE Step Tunings (cents)

⟨6.40560, 4.22006]
TE Tuning Map (cents)

[1199.874, 1901.923, 2786.944, 3367.740, 4152.759, 4439.954⟩
TE Mistunings (cents)

[-0.126, -0.032, 0.631, -1.086, 1.442, -0.573⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.657777 |

Adjusted Error | 0.999174 cents |

TE Error | 0.270015 cents/octave |

Equal Temperament Mappings

2 | 75 | 85 | ||
---|---|---|---|---|

[ ⟨ | 83 | 517 | 532 | ] |

⟨ | 22 | 137 | 141 | ] ⟩ |

Reduced Mapping

2 | 75 | 85 | ||
---|---|---|---|---|

[ ⟨ | 1 | 5 | 6 | ] |

⟨ | 0 | 3 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9826, 491.5392]
TE Step Tunings (cents)

⟨14.01936, 1.65342]
TE Tuning Map (cents)

[1199.983, 7474.530, 7691.435⟩
TE Mistunings (cents)

[-0.017, -0.052, 0.165⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 0.200650 |

Adjusted Error | 0.119346 cents |

TE Error | 0.018620 cents/octave |

Equal Temperament Mappings

2 | 17/15 | 75/64 | ||
---|---|---|---|---|

[ ⟨ | 83 | 15 | 19 | ] |

⟨ | 61 | 11 | 14 | ] ⟩ |

Reduced Mapping

2 | 17/15 | 75/64 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | ] |

⟨ | 0 | -2 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.4843, 491.3736]
TE Step Tunings (cents)

⟨13.31923, 1.54080]
TE Tuning Map (cents)

[1199.484, 216.737, 274.636⟩
TE Mistunings (cents)

[-0.516, 0.050, 0.054⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 9.890078 |

Adjusted Error | 0.365015 cents |

TE Error | 0.365015 cents/octave |

Equal Temperament Mappings

2 | 3 | 7 | ||
---|---|---|---|---|

[ ⟨ | 5 | 8 | 14 | ] |

⟨ | 17 | 27 | 48 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | ||
---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | ] |

⟨ | 0 | -1 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1196.9667, 489.4384]
TE Step Tunings (cents)

⟨58.31372, 53.25871]
TE Tuning Map (cents)

[1196.967, 1904.495, 3372.810⟩
TE Mistunings (cents)

[-3.033, 2.540, 3.984⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.550144 |

Adjusted Error | 6.017469 cents |

TE Error | 2.143466 cents/octave |

Equal Temperament Mappings

3 | 5 | 7 | ||
---|---|---|---|---|

[ ⟨ | 13 | 19 | 23 | ] |

⟨ | 2 | 3 | 4 | ] ⟩ |

Reduced Mapping

3 | 5 | 7 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | ] |

⟨ | 0 | 1 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1903.8685, 878.9253]
TE Step Tunings (cents)

⟨146.01781, 2.81846]
TE Tuning Map (cents)

[1903.868, 2782.794, 3369.683⟩
TE Mistunings (cents)

[1.913, -3.520, 0.858⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.581698 |

Adjusted Error | 3.179836 cents |

TE Error | 1.132681 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 6 | 2 | ] |

⟨ | 0 | 1 | 0 | -2 | -2 | ] |

⟨ | 0 | 0 | 1 | 0 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1197.0402, 1904.9765, 2784.5655]
TE Step Tunings (cents)

⟨25.58454, 25.85402, 21.59547]
TE Tuning Map (cents)

[1197.040, 1904.977, 2784.566, 3372.288, 4153.258⟩
TE Mistunings (cents)

[-2.960, 3.022, -1.748, 3.462, 1.940⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.114130 |

Adjusted Error | 5.951253 cents |

TE Error | 1.720298 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | ] |

⟨ | 9 | 14 | 21 | 25 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 1 | 5 | ] |

⟨ | 0 | -1 | 3 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1205.1780, 528.2729]
TE Step Tunings (cents)

⟨66.25553, 82.37659]
TE Tuning Map (cents)

[1205.178, 1882.083, 2789.997, 3384.525⟩
TE Mistunings (cents)

[5.178, -19.872, 3.683, 15.699⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.104933 |

Adjusted Error | 20.715412 cents |

TE Error | 7.378979 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |

⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 1 | 5 | 3 | ] |

⟨ | 0 | -1 | 3 | -5 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1205.6455, 528.6685]
TE Step Tunings (cents)

⟨83.74282, 64.56573]
TE Tuning Map (cents)

[1205.645, 1882.622, 2791.651, 3384.885, 4145.605⟩
TE Mistunings (cents)

[5.645, -19.333, 5.337, 16.059, -5.713⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.013547 |

Adjusted Error | 23.019285 cents |

TE Error | 6.654066 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 1 | 5 | 3 | 5 | ] |

⟨ | 0 | -1 | 3 | -5 | 1 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1205.5810, 528.6846]
TE Step Tunings (cents)

⟨84.04951, 64.16221]
TE Tuning Map (cents)

[1205.581, 1882.477, 2791.635, 3384.482, 4145.428, 4441.851⟩
TE Mistunings (cents)

[5.581, -19.478, 5.321, 15.656, -5.890, 1.323⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.955680 |

Adjusted Error | 22.485904 cents |

TE Error | 6.076549 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |

⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 2 | 3 | ] |

⟨ | 0 | -1 | -4 | 2 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1599, 501.5754]
TE Step Tunings (cents)

⟨89.45178, 107.55729]
TE Tuning Map (cents)

[1200.160, 1898.744, 2794.338, 3403.471, 4102.055⟩
TE Mistunings (cents)

[0.160, -3.211, 8.024, 34.645, -49.263⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.847355 |

Adjusted Error | 29.805229 cents |

TE Error | 8.615643 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |

⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 2 | 3 | 5 | ] |

⟨ | 0 | -1 | -4 | 2 | 1 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.2668, 502.5302]
TE Step Tunings (cents)

⟨116.11738, 77.08903]
TE Tuning Map (cents)

[1198.267, 1894.003, 2782.946, 3401.594, 4097.331, 4483.743⟩
TE Mistunings (cents)

[-1.733, -7.952, -3.367, 32.768, -53.987, 43.216⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.800550 |

Adjusted Error | 35.314425 cents |

TE Error | 9.543305 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 2 | ] |

⟨ | 0 | 1 | 1 | 4 | 1 | ] |

⟨ | 0 | 0 | 2 | 4 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.2818, 1901.9013, -158.4923]
TE Step Tunings (cents)

⟨25.18531, 16.27947, 8.91268]
TE Tuning Map (cents)

[1201.282, 1901.901, 2786.198, 3369.790, 4145.973⟩
TE Mistunings (cents)

[1.282, -0.054, -0.115, 0.964, -5.345⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.161735 |

Adjusted Error | 3.152525 cents |

TE Error | 0.911284 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 2 | -5 | ] |

⟨ | 0 | 1 | 1 | 4 | 1 | 6 | ] |

⟨ | 0 | 0 | 2 | 4 | 1 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.7981, 1901.5540, -158.9495]
TE Step Tunings (cents)

⟨21.30103, 3.89263, 17.46319]
TE Tuning Map (cents)

[1201.798, 1901.554, 2785.453, 3365.024, 4146.201, 4446.636⟩
TE Mistunings (cents)

[1.798, -0.401, -0.861, -3.802, -5.117, 6.109⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.183019 |

Adjusted Error | 4.820579 cents |

TE Error | 1.302704 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | 82 | 90 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 2 | -5 | 0 | ] |

⟨ | 0 | 1 | 1 | 4 | 1 | 6 | 3 | ] |

⟨ | 0 | 0 | 2 | 4 | 1 | 6 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.6677, 1901.9983, -159.6040]
TE Step Tunings (cents)

⟨22.52505, -2.04618, 18.91060]
TE Tuning Map (cents)

[1201.668, 1901.998, 2784.458, 3364.574, 4145.730, 4446.027, 4907.975⟩
TE Mistunings (cents)

[1.668, 0.043, -1.856, -4.252, -5.588, 5.499, 3.019⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.186127 |

Adjusted Error | 5.142140 cents |

TE Error | 1.258027 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | ||
---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | 132 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | ] |

⟨ | 9 | 14 | 21 | 25 | 31 | 33 | 37 | 38 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | ||
---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 2 | -5 | 0 | -3 | ] |

⟨ | 0 | 1 | 1 | 4 | 1 | 6 | 3 | 5 | ] |

⟨ | 0 | 0 | 2 | 4 | 1 | 6 | 5 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.6838, 1901.5858, -159.5447]
TE Step Tunings (cents)

⟨17.90479, 20.67071, 5.24276]
TE Tuning Map (cents)

[1201.684, 1901.586, 2784.180, 3363.113, 4145.409, 4443.827, 4907.034, 5105.154⟩
TE Mistunings (cents)

[1.684, -0.369, -2.134, -5.713, -5.909, 3.300, 2.078, 7.641⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.169469 |

Adjusted Error | 5.832611 cents |

TE Error | 1.373049 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | ||
---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | 131 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | 132 | 140 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | 82 | 90 | 94 | 100 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | ||
---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 2 | -5 | 0 | -3 | -3 | ] |

⟨ | 0 | 1 | 1 | 4 | 1 | 6 | 3 | 5 | 5 | ] |

⟨ | 0 | 0 | 2 | 4 | 1 | 6 | 5 | 5 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.7161, 1902.0678, -159.9063]
TE Step Tunings (cents)

⟨21.01779, 21.64541, -3.58216]
TE Tuning Map (cents)

[1201.716, 1902.068, 2783.971, 3363.498, 4145.594, 4444.388, 4906.672, 5105.659, 5425.472⟩
TE Mistunings (cents)

[1.716, 0.113, -2.343, -5.328, -5.724, 3.861, 1.716, 8.146, -2.803⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.170328 |

Adjusted Error | 5.962072 cents |

TE Error | 1.318004 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1171 | 1856 | 2719 | ] |

⟨ | 118 | 187 | 274 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 5 | 1 | ] |

⟨ | 0 | -31 | 12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9946, 132.1941]
TE Step Tunings (cents)

⟨1.02912, -0.04331]
TE Tuning Map (cents)

[1199.995, 1901.957, 2786.324⟩
TE Mistunings (cents)

[-0.005, 0.002, 0.010⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.649401 |

Adjusted Error | 0.009291 cents |

TE Error | 0.004001 cents/octave |

Contorted Magic (order 2)

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | ] |

⟨ | 38 | 60 | 88 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 2 | 5 | 5 | ] |

⟨ | 0 | -5 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.6240, 220.1703]
TE Step Tunings (cents)

⟨21.13255, 19.37716]
TE Tuning Map (cents)

[1201.248, 1902.269, 2782.950⟩
TE Mistunings (cents)

[1.248, 0.314, -3.364⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.790526 |

Adjusted Error | 2.577115 cents |

TE Error | 1.109903 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | ] |

⟨ | 16 | 25 | 37 | 45 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 5 | 6 | ] |

⟨ | 0 | -5 | -1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.7094, 219.3153]
TE Step Tunings (cents)

⟨44.60550, 13.63111]
TE Tuning Map (cents)

[1199.419, 1901.970, 2779.231, 3378.941⟩
TE Mistunings (cents)

[-0.581, 0.015, -7.082, 10.115⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.527133 |

Adjusted Error | 6.676416 cents |

TE Error | 2.378187 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 5 | 6 | 8 | ] |

⟨ | 0 | -5 | -1 | -1 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0669, 219.4946]
TE Step Tunings (cents)

⟨44.24438, 14.17234]
TE Tuning Map (cents)

[1200.134, 1902.862, 2780.840, 3380.907, 4142.052⟩
TE Mistunings (cents)

[0.134, 0.907, -5.474, 12.081, -9.266⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.260965 |

Adjusted Error | 8.696329 cents |

TE Error | 2.513803 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |

⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 5 | 6 | 8 | 7 | ] |

⟨ | 0 | -5 | -1 | -1 | -3 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.8107, 220.5110]
TE Step Tunings (cents)

⟨38.34440, 22.37780]
TE Tuning Map (cents)

[1201.621, 1901.499, 2783.543, 3384.353, 4144.953, 4426.186⟩
TE Mistunings (cents)

[1.621, -0.456, -2.771, 15.528, -6.365, -14.342⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.256182 |

Adjusted Error | 11.011956 cents |

TE Error | 2.975851 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -5 | -9 | -4 | ] |

⟨ | 0 | 1 | 0 | 2 | 2 | -1 | ] |

⟨ | 0 | 0 | 1 | 2 | 4 | 4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9181, 1901.1045, 2785.7693]
TE Step Tunings (cents)

⟨28.56082, 23.14278, 18.97616]
TE Tuning Map (cents)

[1199.918, 1901.105, 2785.769, 3374.157, 4146.023, 4442.300⟩
TE Mistunings (cents)

[-0.082, -0.850, -0.544, 5.331, -5.295, 1.773⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.175501 |

Adjusted Error | 3.859754 cents |

TE Error | 1.043053 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 4296 | 6809 | 9975 | ] |

⟨ | 12276 | 19457 | 28504 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | ] |

⟨ | 0 | 1 | -7 | ] ⟩ |

TE Generator Tunings (cents)

⟨100.0000, 1.9552]
TE Step Tunings (cents)

⟨0.13080, 0.05198]
TE Tuning Map (cents)

[1200.000, 1901.955, 2786.314⟩
TE Mistunings (cents)

[-0.000, 0.000, 0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 19.091883 |

Adjusted Error | 0.000098 cents |

TE Error | 0.000042 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | ] |

⟨ | 108 | 171 | 251 | 303 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 6 | -7 | 19 | ] |

⟨ | 0 | -9 | 19 | -33 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9764, 588.7706]
TE Step Tunings (cents)

⟨11.52819, 5.45354]
TE Tuning Map (cents)

[1199.976, 1900.923, 2786.806, 3370.123⟩
TE Mistunings (cents)

[-0.024, -1.032, 0.492, 1.297⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.348391 |

Adjusted Error | 1.159760 cents |

TE Error | 0.413115 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 27 | 43 | 63 | 76 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 8 | ] |

⟨ | 0 | -1 | 0 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨398.7516, 90.4599]
TE Step Tunings (cents)

⟨16.63629, 36.91183]
TE Tuning Map (cents)

[1196.255, 1903.298, 2791.261, 3370.933⟩
TE Mistunings (cents)

[-3.745, 1.343, 4.948, 2.107⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.430604 |

Adjusted Error | 6.253522 cents |

TE Error | 2.227549 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 8 | 10 | ] |

⟨ | 0 | -1 | 0 | 2 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨398.5059, 88.4916]
TE Step Tunings (cents)

⟨43.95217, 44.53945]
TE Tuning Map (cents)

[1195.518, 1904.038, 2789.542, 3365.031, 4162.043⟩
TE Mistunings (cents)

[-4.482, 2.083, 3.228, -3.795, 10.725⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.445911 |

Adjusted Error | 9.177366 cents |

TE Error | 2.652854 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 8 | 10 | 11 | ] |

⟨ | 0 | -1 | 0 | 2 | 2 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨398.0750, 87.5631]
TE Step Tunings (cents)

⟨39.74070, 47.82244]
TE Tuning Map (cents)

[1194.225, 1902.812, 2786.525, 3359.726, 4155.876, 4466.388⟩
TE Mistunings (cents)

[-5.775, 0.857, 0.211, -9.100, 4.558, 25.860⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.330459 |

Adjusted Error | 14.703736 cents |

TE Error | 3.973511 cents/octave |

Equal Temperament Mappings

2 | 5 | 7 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 6 | 14 | 17 | 21 | ] |

⟨ | 15 | 35 | 42 | 52 | ] ⟩ |

Reduced Mapping

2 | 5 | 7 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 3 | 7 | 9 | 11 | ] |

⟨ | 0 | 0 | -1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨398.9320, 227.6656]
TE Step Tunings (cents)

⟨58.46790, 56.39924]
TE Tuning Map (cents)

[1196.796, 2792.524, 3362.722, 4160.586⟩
TE Mistunings (cents)

[-3.204, 6.210, -6.104, 9.268⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.490473 |

Adjusted Error | 9.366700 cents |

TE Error | 2.707583 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | ] |

⟨ | 15 | 24 | 35 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | ] |

⟨ | 0 | -1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨399.0176, 93.1331]
TE Step Tunings (cents)

⟨66.64783, 26.48526]
TE Tuning Map (cents)

[1197.053, 1901.955, 2793.123⟩
TE Mistunings (cents)

[-2.947, -0.000, 6.810⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.894463 |

Adjusted Error | 5.573697 cents |

TE Error | 2.400461 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 3 | 5 | 7 | 9 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 9 | ] |

⟨ | 0 | -1 | 0 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨399.1285, 103.7628]
TE Step Tunings (cents)

⟨103.76281, -15.92276]
TE Tuning Map (cents)

[1197.385, 1891.880, 2793.899, 3384.631⟩
TE Mistunings (cents)

[-2.615, -10.075, 7.586, 15.805⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.013401 |

Adjusted Error | 13.287812 cents |

TE Error | 4.733214 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |

⟨ | 0 | -1 | 0 | -2 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨398.9641, 107.2078]
TE Step Tunings (cents)

⟨77.34086, 29.86689]
TE Tuning Map (cents)

[1196.892, 1887.613, 2792.749, 3376.262, 4174.190⟩
TE Mistunings (cents)

[-3.108, -14.342, 6.435, 7.436, 22.872⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.952479 |

Adjusted Error | 18.944768 cents |

TE Error | 5.476266 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 9 | 11 | 12 | ] |

⟨ | 0 | -1 | 0 | -2 | -2 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨399.1455, 110.9789]
TE Step Tunings (cents)

⟨44.77020, 66.20872]
TE Tuning Map (cents)

[1197.436, 1884.749, 2794.018, 3370.352, 4168.643, 4456.809⟩
TE Mistunings (cents)

[-2.564, -17.206, 7.705, 1.526, 17.325, 16.281⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.991753 |

Adjusted Error | 20.277733 cents |

TE Error | 5.479817 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] |

⟨ | 0 | -1 | 0 | -2 | -2 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨400.5016, 114.7875]
TE Step Tunings (cents)

⟨114.78751, 56.13903]
TE Tuning Map (cents)

[1201.505, 1887.720, 2803.511, 3374.939, 4175.942, 4405.517⟩
TE Mistunings (cents)

[1.505, -14.235, 17.197, 6.113, 24.624, -35.010⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.966613 |

Adjusted Error | 25.400437 cents |

TE Error | 6.864167 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 2 | -2 | 6 | ] |

⟨ | 0 | 1 | 0 | 1 | 1 | 1 | ] |

⟨ | 0 | 0 | 3 | -1 | 5 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.4359, 1901.2184, 929.4864]
TE Step Tunings (cents)

⟨-4.09866, 23.67349, 18.57206]
TE Tuning Map (cents)

[1198.436, 1901.218, 2788.459, 3368.604, 4151.779, 4444.402⟩
TE Mistunings (cents)

[-1.564, -0.737, 2.146, -0.222, 0.461, 3.874⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.200994 |

Adjusted Error | 3.252833 cents |

TE Error | 0.879040 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 2 | 3 | 4 | ] |

⟨ | 9 | 14 | 21 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | ] |

⟨ | 0 | 1 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1210.8952, 667.6000]
TE Step Tunings (cents)

⟨46.07541, 124.30493]
TE Tuning Map (cents)

[1210.895, 1878.495, 2794.705⟩
TE Mistunings (cents)

[10.895, -23.460, 8.391⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.090024 |

Adjusted Error | 25.110098 cents |

TE Error | 10.814331 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | ] |

⟨ | 6 | 10 | 14 | 17 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | 3 | ] |

⟨ | 0 | -2 | 2 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1185.3594, 223.9379]
TE Step Tunings (cents)

⟨158.26804, 65.66987]
TE Tuning Map (cents)

[1185.359, 1922.843, 2818.595, 3332.140⟩
TE Mistunings (cents)

[-14.641, 20.888, 32.281, -36.686⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.770589 |

Adjusted Error | 38.494471 cents |

TE Error | 13.712007 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 13 | -9 | -1 | ] |

⟨ | 0 | 2 | 0 | -7 | 4 | 3 | ] |

⟨ | 0 | 0 | 1 | -2 | 4 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9633, 951.0591, 2786.6655]
TE Step Tunings (cents)

⟨4.00970, 0.80133, 0.15139]
TE Tuning Map (cents)

[1199.963, 1902.118, 2786.666, 3368.779, 4151.228, 4439.879⟩
TE Mistunings (cents)

[-0.037, 0.163, 0.352, -0.047, -0.090, -0.648⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.474843 |

Adjusted Error | 0.389683 cents |

TE Error | 0.105307 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 342 | 542 | 794 | 960 | 1183 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 1 | 3 | 7 | ] |

⟨ | 0 | 2 | 1 | 1 | -2 | ] |

⟨ | 0 | 0 | 2 | 1 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0149, 950.9717, 617.7007]
TE Step Tunings (cents)

⟨1.48800, 2.09277, 0.63495]
TE Tuning Map (cents)

[1200.030, 1901.943, 2786.388, 3368.717, 4151.263⟩
TE Mistunings (cents)

[0.030, -0.012, 0.074, -0.109, -0.055⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.395436 |

Adjusted Error | 0.094355 cents |

TE Error | 0.027275 cents/octave |

Equal Temperament Mappings

2 | 9 | 5 | 7 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 6 | 19 | 14 | 17 | 22 | ] |

⟨ | 47 | 149 | 109 | 132 | 174 | ] ⟩ |

Reduced Mapping

2 | 9 | 5 | 7 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 3 | 4 | 2 | ] |

⟨ | 0 | 1 | -4 | -7 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0173, 204.0934]
TE Step Tunings (cents)

⟨7.75073, 24.54283]
TE Tuning Map (cents)

[1200.017, 3804.145, 2783.679, 3371.416, 4440.968⟩
TE Mistunings (cents)

[0.017, 0.235, -2.635, 2.590, 0.441⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.805532 |

Adjusted Error | 2.431655 cents |

TE Error | 0.657126 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | -1 | 3 | 3 | ] |

⟨ | 0 | 5 | 13 | 6 | 9 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.5062, 260.6129]
TE Step Tunings (cents)

⟨22.77169, 10.96533]
TE Tuning Map (cents)

[1201.012, 1903.571, 2787.462, 3365.196, 4147.035⟩
TE Mistunings (cents)

[1.012, 1.616, 1.148, -3.630, -4.283⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.599856 |

Adjusted Error | 3.632665 cents |

TE Error | 1.050076 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | -1 | 3 | 3 | 0 | ] |

⟨ | 0 | 5 | 13 | 6 | 9 | 17 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.3940, 260.7894]
TE Step Tunings (cents)

⟨24.34344, 5.78500]
TE Tuning Map (cents)

[1200.788, 1904.341, 2789.868, 3365.918, 4148.286, 4433.419⟩
TE Mistunings (cents)

[0.788, 2.386, 3.554, -2.908, -3.032, -7.108⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.577259 |

Adjusted Error | 4.955595 cents |

TE Error | 1.339191 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 3 | 2 | ] |

⟨ | 0 | -2 | -8 | -1 | 7 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.1900, 251.4223]
TE Step Tunings (cents)

⟨27.73572, 55.92165]
TE Tuning Map (cents)

[1201.190, 1899.535, 2793.381, 3352.148, 4162.336⟩
TE Mistunings (cents)

[1.190, -2.420, 7.068, -16.678, 11.018⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.777895 |

Adjusted Error | 11.828081 cents |

TE Error | 3.419082 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | ] |

⟨ | 27 | 43 | 63 | 76 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 5 | 4 | ] |

⟨ | 0 | 2 | -9 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1196.6420, 354.9082]
TE Step Tunings (cents)

⟨9.38502, 40.84414]
TE Tuning Map (cents)

[1196.642, 1906.458, 2789.036, 3366.935⟩
TE Mistunings (cents)

[-3.358, 4.503, 2.723, -1.891⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.913753 |

Adjusted Error | 6.459612 cents |

TE Error | 2.300960 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |

⟨ | 10 | 16 | 23 | 28 | 34 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 5 | 4 | 10 | ] |

⟨ | 0 | 2 | -9 | -4 | -22 | ] ⟩ |

TE Generator Tunings (cents)

⟨1196.7188, 355.1661]
TE Step Tunings (cents)

⟨38.49540, 15.73431]
TE Tuning Map (cents)

[1196.719, 1907.051, 2787.099, 3366.211, 4153.534⟩
TE Mistunings (cents)

[-3.281, 5.096, 0.785, -2.615, 2.216⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.744763 |

Adjusted Error | 7.337961 cents |

TE Error | 2.121146 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |

⟨ | 10 | 16 | 23 | 28 | 34 | 37 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 5 | 4 | 10 | 4 | ] |

⟨ | 0 | 2 | -9 | -4 | -22 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1197.2728, 355.4198]
TE Step Tunings (cents)

⟨37.62035, 18.15235]
TE Tuning Map (cents)

[1197.273, 1908.112, 2787.586, 3367.412, 4153.492, 4433.671⟩
TE Mistunings (cents)

[-2.727, 6.157, 1.272, -1.414, 2.174, -6.856⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.594053 |

Adjusted Error | 7.836987 cents |

TE Error | 2.117853 cents/octave |

Contorted Archy (order 2)

Equal Temperament Mappings

2 | 3 | 7 | ||
---|---|---|---|---|

[ ⟨ | 17 | 27 | 48 | ] |

⟨ | 10 | 16 | 28 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | 4 | ] |

⟨ | 0 | 2 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1196.9667, 353.7641]
TE Step Tunings (cents)

⟨53.25871, 29.15686]
TE Tuning Map (cents)

[1196.967, 1904.495, 3372.810⟩
TE Mistunings (cents)

[-3.033, 2.540, 3.984⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.100288 |

Adjusted Error | 6.017469 cents |

TE Error | 2.143466 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | ] |

⟨ | 4 | 6 | 9 | 11 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 3 | ] |

⟨ | 0 | -2 | -3 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1204.7939, 264.4470]
TE Step Tunings (cents)

⟨147.00609, 117.44087]
TE Tuning Map (cents)

[1204.794, 1880.694, 2821.041, 3349.935⟩
TE Mistunings (cents)

[4.794, -21.261, 34.727, -18.891⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.561466 |

Adjusted Error | 30.492203 cents |

TE Error | 10.861542 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | 52 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |

⟨ | 0 | -6 | -10 | -3 | -8 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.1112, 81.6981]
TE Step Tunings (cents)

⟨55.33716, 26.36099]
TE Tuning Map (cents)

[1199.111, 1908.033, 2780.352, 3352.239, 4142.860, 4469.652⟩
TE Mistunings (cents)

[-0.889, 6.078, -5.962, -16.587, -8.458, 29.124⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.543188 |

Adjusted Error | 16.884867 cents |

TE Error | 4.562935 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 118 | 187 | 274 | 331 | 408 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -3 | -9 | ] |

⟨ | 0 | 1 | 0 | 0 | 2 | ] |

⟨ | 0 | 0 | 2 | 5 | 8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0100, 1901.7272, 1393.5621]
TE Step Tunings (cents)

⟨-0.79097, 4.90475, 4.96746]
TE Tuning Map (cents)

[1200.010, 1901.727, 2787.124, 3367.780, 4151.861⟩
TE Mistunings (cents)

[0.010, -0.228, 0.810, -1.046, 0.543⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.275327 |

Adjusted Error | 0.855713 cents |

TE Error | 0.247357 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | 3 | 2 | 7 | ] |

⟨ | 0 | 6 | -7 | -2 | 15 | -34 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.8613, 116.6573]
TE Step Tunings (cents)

⟨13.79135, 6.70593]
TE Tuning Map (cents)

[1200.861, 1900.805, 2785.983, 3369.269, 4151.582, 4439.682⟩
TE Mistunings (cents)

[0.861, -1.150, -0.331, 0.443, 0.264, -0.846⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.530301 |

Adjusted Error | 1.769289 cents |

TE Error | 0.478129 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 1 | 6 | ] |

⟨ | 0 | 1 | 0 | 7 | -6 | ] |

⟨ | 0 | 0 | 1 | -4 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4711, 1901.8589, 2786.2710]
TE Step Tunings (cents)

⟨11.42917, 5.50475, 2.34627]
TE Tuning Map (cents)

[1200.471, 1901.859, 2786.271, 3368.399, 4150.486⟩
TE Mistunings (cents)

[0.471, -0.096, -0.043, -0.426, -0.832⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.294305 |

Adjusted Error | 0.856985 cents |

TE Error | 0.247724 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 1 | 6 | 2 | ] |

⟨ | 0 | 1 | 0 | 7 | -6 | 4 | ] |

⟨ | 0 | 0 | 1 | -4 | 3 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6842, 1902.1037, 2786.4383]
TE Step Tunings (cents)

⟨11.00132, 4.23198, 4.00639]
TE Tuning Map (cents)

[1200.684, 1902.104, 2786.438, 3369.657, 4150.798, 4436.906⟩
TE Mistunings (cents)

[0.684, 0.149, 0.125, 0.831, -0.520, -3.621⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.254842 |

Adjusted Error | 1.879339 cents |

TE Error | 0.507869 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 68 | 108 | 158 | 191 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 10 | 13 | ] |

⟨ | 0 | 1 | -2 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨299.6892, 105.2547]
TE Step Tunings (cents)

⟨8.80551, 16.07486]
TE Tuning Map (cents)

[1198.757, 1903.390, 2786.382, 3369.686⟩
TE Mistunings (cents)

[-1.243, 1.435, 0.069, 0.860⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.637277 |

Adjusted Error | 2.201545 cents |

TE Error | 0.784206 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 80 | 127 | 186 | 225 | 277 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 10 | 13 | 17 | ] |

⟨ | 0 | 1 | -2 | -5 | -9 | ] ⟩ |

TE Generator Tunings (cents)

⟨299.6816, 104.9750]
TE Step Tunings (cents)

⟨-1.72956, 15.24351]
TE Tuning Map (cents)

[1198.726, 1903.064, 2786.866, 3370.985, 4149.811⟩
TE Mistunings (cents)

[-1.274, 1.109, 0.552, 2.159, -1.507⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.678051 |

Adjusted Error | 2.657295 cents |

TE Error | 0.768130 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] |

⟨ | 68 | 108 | 158 | 191 | 235 | 252 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 10 | 13 | 17 | 12 | ] |

⟨ | 0 | 1 | -2 | -5 | -9 | 8 | ] ⟩ |

TE Generator Tunings (cents)

⟨299.7546, 105.2148]
TE Step Tunings (cents)

⟨9.87565, 6.01421]
TE Tuning Map (cents)

[1199.018, 1903.742, 2787.116, 3370.735, 4148.894, 4438.773⟩
TE Mistunings (cents)

[-0.982, 1.787, 0.802, 1.909, -2.423, -1.754⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.277362 |

Adjusted Error | 2.839498 cents |

TE Error | 0.767341 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 3 | 1 | 3 | ] |

⟨ | 0 | 1 | 3 | 2 | 2 | ] |

⟨ | 0 | 0 | 4 | 1 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6614, 1900.9273, -1629.4372]
TE Step Tunings (cents)

⟨28.53864, 14.04610, 0.49639]
TE Tuning Map (cents)

[1200.661, 1900.927, 2787.017, 3373.079, 4144.965⟩
TE Mistunings (cents)

[0.661, -1.028, 0.704, 4.253, -6.353⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.138268 |

Adjusted Error | 3.979912 cents |

TE Error | 1.150452 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 3 | 1 | 3 | 1 | ] |

⟨ | 0 | 1 | 3 | 2 | 2 | 0 | ] |

⟨ | 0 | 0 | 4 | 1 | 2 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.0299, 1899.0270, -1626.0667]
TE Step Tunings (cents)

⟨1.61065, 35.19272, 11.69498]
TE Tuning Map (cents)

[1199.030, 1899.027, 2789.904, 3371.017, 4143.010, 4451.163⟩
TE Mistunings (cents)

[-0.970, -2.928, 3.590, 2.191, -8.308, 10.636⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.140616 |

Adjusted Error | 6.985503 cents |

TE Error | 1.887749 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | 33 | ] |

⟨ | 9 | 14 | 21 | 25 | 31 | 33 | 37 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | 82 | 90 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 3 | 1 | 3 | 1 | 5 | ] |

⟨ | 0 | 1 | 3 | 2 | 2 | 0 | 2 | ] |

⟨ | 0 | 0 | 4 | 1 | 2 | -2 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.2279, 1899.5511, -1626.2018]
TE Step Tunings (cents)

⟨13.89434, 33.03111, 35.89969]
TE Tuning Map (cents)

[1198.228, 1899.551, 2788.530, 3371.128, 4141.382, 4450.631, 4911.636⟩
TE Mistunings (cents)

[-1.772, -2.404, 2.216, 2.302, -9.936, 10.104, 6.681⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.136847 |

Adjusted Error | 7.786086 cents |

TE Error | 1.904870 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 6 | 7 | 16 | 14 | ] |

⟨ | 0 | -6 | -5 | -22 | -15 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.2679, 283.4052]
TE Step Tunings (cents)

⟨15.74582, 1.96578]
TE Tuning Map (cents)

[1200.536, 1901.176, 2784.849, 3369.371, 4152.672⟩
TE Mistunings (cents)

[0.536, -0.779, -1.465, 0.545, 1.354⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.180329 |

Adjusted Error | 1.635451 cents |

TE Error | 0.472751 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 6 | 7 | 16 | 14 | 14 | ] |

⟨ | 0 | -6 | -5 | -22 | -15 | -14 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.3591, 283.4434]
TE Step Tunings (cents)

⟨15.66468, 2.14298]
TE Tuning Map (cents)

[1200.718, 1901.494, 2785.297, 3369.991, 4153.377, 4436.820⟩
TE Mistunings (cents)

[0.718, -0.461, -1.017, 1.165, 2.059, -3.707⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.729773 |

Adjusted Error | 2.302235 cents |

TE Error | 0.622152 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 38 | 60 | 88 | 106 | 131 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 4 | 4 | 5 | ] |

⟨ | 0 | 1 | 4 | 10 | 12 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.7547, 96.1370]
TE Step Tunings (cents)

⟨24.33851, 23.93282]
TE Tuning Map (cents)

[1201.509, 1898.401, 2787.567, 3364.388, 4157.417⟩
TE Mistunings (cents)

[1.509, -3.554, 1.253, -4.437, 6.099⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.890883 |

Adjusted Error | 5.621786 cents |

TE Error | 1.625060 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 4 | 4 | 5 | 5 | ] |

⟨ | 0 | 1 | 4 | 10 | 12 | 15 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.8369, 95.9701]
TE Step Tunings (cents)

⟨20.92134, 25.01626]
TE Tuning Map (cents)

[1201.674, 1898.481, 2787.228, 3363.049, 4155.826, 4443.736⟩
TE Mistunings (cents)

[1.674, -3.474, 0.914, -5.777, 4.508, 3.209⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.096330 |

Adjusted Error | 5.741857 cents |

TE Error | 1.551669 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 14 | 22 | 32 | 39 | ] |

⟨ | 2 | 3 | 5 | 6 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 5 | 6 | ] |

⟨ | 0 | 1 | -3 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨603.8104, 81.7111]
TE Step Tunings (cents)

⟨81.71107, 31.83293]
TE Tuning Map (cents)

[1207.621, 1893.142, 2773.919, 3377.729⟩
TE Mistunings (cents)

[7.621, -8.813, -12.395, 8.903⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.558956 |

Adjusted Error | 15.852662 cents |

TE Error | 5.646832 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |

⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 5 | 6 | 7 | ] |

⟨ | 0 | 1 | -3 | -3 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨604.0123, 81.8231]
TE Step Tunings (cents)

⟨81.82311, 31.25056]
TE Tuning Map (cents)

[1208.025, 1893.860, 2774.592, 3378.605, 4146.263⟩
TE Mistunings (cents)

[8.025, -8.095, -11.721, 9.779, -5.055⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.398558 |

Adjusted Error | 17.655407 cents |

TE Error | 5.103557 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 217 | 344 | 504 | 609 | 751 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 0 | 1 | 0 | 0 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨38.7101, 4.9378]
TE Step Tunings (cents)

⟨4.14573, 4.93776]
TE Tuning Map (cents)

[1200.012, 1901.731, 2787.124, 3367.775, 4151.852⟩
TE Mistunings (cents)

[0.012, -0.224, 0.811, -1.051, 0.534⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.195381 |

Adjusted Error | 0.855738 cents |

TE Error | 0.247364 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 217 | 344 | 504 | 609 | 751 | 803 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 0 | 1 | 0 | 0 | 2 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨38.7074, 5.1699]
TE Step Tunings (cents)

⟨2.51776, 5.16995]
TE Tuning Map (cents)

[1199.930, 1901.833, 2786.933, 3367.544, 4152.032, 4441.012⟩
TE Mistunings (cents)

[-0.070, -0.122, 0.619, -1.282, 0.714, 0.484⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 12.335455 |

Adjusted Error | 0.894060 cents |

TE Error | 0.241609 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | ] |

⟨ | 27 | 43 | 63 | 76 | ] |

⟨ | 7 | 11 | 16 | 20 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 0 | 6 | ] |

⟨ | 0 | 2 | 0 | 5 | ] |

⟨ | 0 | 0 | 1 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.1808, 350.6521, 2788.8375]
TE Step Tunings (cents)

⟨23.44414, 16.37959, 4.30910]
TE Tuning Map (cents)

[1199.181, 1900.485, 2788.837, 3370.671⟩
TE Mistunings (cents)

[-0.819, -1.470, 2.524, 1.845⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.183325 |

Adjusted Error | 2.489043 cents |

TE Error | 0.886615 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 10 | 16 | 23 | 28 | ] |

⟨ | 4 | 6 | 9 | 11 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 0 | 1 | ] |

⟨ | 0 | 1 | 0 | 0 | ] |

⟨ | 0 | 0 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.6767, 1901.9550, 2779.3415]
TE Step Tunings (cents)

⟨58.66777, 44.25715, 13.19215]
TE Tuning Map (cents)

[1199.353, 1901.955, 2779.341, 3379.018⟩
TE Mistunings (cents)

[-0.647, 0.000, -6.972, 10.192⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.088983 |

Adjusted Error | 6.675330 cents |

TE Error | 2.377800 cents/octave |

Equal Temperament Mappings

2 | 5 | 7 | ||
---|---|---|---|---|

[ ⟨ | 6 | 14 | 17 | ] |

⟨ | 10 | 23 | 28 | ] ⟩ |

Reduced Mapping

2 | 5 | 7 | ||
---|---|---|---|---|

[ ⟨ | 2 | 5 | 6 | ] |

⟨ | 0 | -1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.6767, 219.0420]
TE Step Tunings (cents)

⟨104.14339, 57.44931]
TE Tuning Map (cents)

[1199.353, 2779.341, 3379.018⟩
TE Mistunings (cents)

[-0.647, -6.972, 10.192⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.376091 |

Adjusted Error | 7.708007 cents |

TE Error | 2.745647 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | ] |

⟨ | 118 | 187 | 274 | 331 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 6 | 9 | ] |

⟨ | 0 | 1 | -8 | -20 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0073, 101.5934]
TE Step Tunings (cents)

⟨6.06330, 3.48971]
TE Tuning Map (cents)

[1200.015, 1901.615, 2787.297, 3368.198⟩
TE Mistunings (cents)

[0.015, -0.340, 0.983, -0.628⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.190909 |

Adjusted Error | 0.736645 cents |

TE Error | 0.262398 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 6 | 9 | 12 | ] |

⟨ | 0 | 1 | -8 | -20 | -30 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0167, 101.6151]
TE Step Tunings (cents)

⟨4.79523, 4.87843]
TE Tuning Map (cents)

[1200.033, 1901.665, 2787.180, 3367.849, 4151.748⟩
TE Mistunings (cents)

[0.033, -0.290, 0.866, -0.977, 0.430⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.427004 |

Adjusted Error | 0.861705 cents |

TE Error | 0.249089 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 118 | 187 | 274 | 331 | 408 | 437 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 6 | 9 | 12 | 3 | ] |

⟨ | 0 | 1 | -8 | -20 | -30 | 26 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9612, 101.5835]
TE Step Tunings (cents)

⟨6.18631, 3.35341]
TE Tuning Map (cents)

[1199.922, 1901.467, 2787.099, 3367.981, 4152.030, 4441.054⟩
TE Mistunings (cents)

[-0.078, -0.488, 0.785, -0.845, 0.712, 0.526⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.495950 |

Adjusted Error | 0.916952 cents |

TE Error | 0.247795 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 0 | 0 | 3 | ] |

⟨ | 0 | 1 | 1 | 2 | 1 | ] |

⟨ | 0 | 0 | 2 | -1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.3116, 1904.0766, 441.3351]
TE Step Tunings (cents)

⟨6.82710, 20.24018, 8.52704]
TE Tuning Map (cents)

[1200.623, 1904.077, 2786.747, 3366.818, 4146.346⟩
TE Mistunings (cents)

[0.623, 2.122, 0.433, -2.008, -4.972⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.200323 |

Adjusted Error | 3.386583 cents |

TE Error | 0.978942 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 50 | 79 | 116 | 140 | 173 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 2 | 2 | 5 | ] |

⟨ | 0 | 9 | 11 | 15 | 8 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.6377, 144.5392]
TE Step Tunings (cents)

⟨15.65377, 5.82713]
TE Tuning Map (cents)

[1199.275, 1900.490, 2789.207, 3367.363, 4154.502⟩
TE Mistunings (cents)

[-0.725, -1.465, 2.893, -1.463, 3.184⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.317080 |

Adjusted Error | 3.113358 cents |

TE Error | 0.899962 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 2 | 2 | 5 | 5 | ] |

⟨ | 0 | 9 | 11 | 15 | 8 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.5236, 144.5379]
TE Step Tunings (cents)

⟨21.37192, -5.06551]
TE Tuning Map (cents)

[1199.047, 1900.365, 2788.964, 3367.116, 4153.921, 4442.997⟩
TE Mistunings (cents)

[-0.953, -1.590, 2.651, -1.710, 2.603, 2.469⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.999952 |

Adjusted Error | 3.240153 cents |

TE Error | 0.875613 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 14 | 10 | 23 | ] |

⟨ | 0 | 4 | -32 | -15 | -55 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0429, 175.4474]
TE Step Tunings (cents)

⟨3.26928, 0.63070]
TE Tuning Map (cents)

[1200.086, 1901.875, 2786.282, 3368.717, 4151.377⟩
TE Mistunings (cents)

[0.086, -0.080, -0.032, -0.109, 0.059⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 14.596803 |

Adjusted Error | 0.168374 cents |

TE Error | 0.048671 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | ] |

⟨ | 46 | 73 | 107 | 129 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 7 | 3 | ] |

⟨ | 0 | -7 | -9 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9415, 156.9093]
TE Step Tunings (cents)

⟨9.26559, -0.10096]
TE Tuning Map (cents)

[1199.883, 1901.342, 2787.406, 3368.918⟩
TE Mistunings (cents)

[-0.117, -0.613, 1.093, 0.092⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.452257 |

Adjusted Error | 0.871822 cents |

TE Error | 0.310549 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 7 | 3 | 3 | ] |

⟨ | 0 | -7 | -9 | 10 | 15 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.8778, 156.8512]
TE Step Tunings (cents)

⟨2.59706, 8.30993]
TE Tuning Map (cents)

[1199.756, 1901.431, 2787.484, 3368.145, 4152.401⟩
TE Mistunings (cents)

[-0.244, -0.524, 1.170, -0.681, 1.083⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.267152 |

Adjusted Error | 1.178230 cents |

TE Error | 0.340585 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 7 | 3 | 3 | 4 | ] |

⟨ | 0 | -7 | -9 | 10 | 15 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9164, 156.8818]
TE Step Tunings (cents)

⟨8.78361, 1.26009]
TE Tuning Map (cents)

[1199.833, 1901.409, 2787.478, 3368.567, 4152.976, 4439.129⟩
TE Mistunings (cents)

[-0.167, -0.546, 1.165, -0.259, 1.659, -1.398⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.153599 |

Adjusted Error | 1.333589 cents |

TE Error | 0.360387 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 140 | 222 | 325 | 393 | ] |

⟨ | 118 | 187 | 274 | 331 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 6 | 1 | ] |

⟨ | 0 | 8 | -5 | 17 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0295, 162.8141]
TE Step Tunings (cents)

⟨5.56063, 3.57264]
TE Tuning Map (cents)

[1200.059, 1902.542, 2786.107, 3367.870⟩
TE Mistunings (cents)

[0.059, 0.587, -0.207, -0.956⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.837741 |

Adjusted Error | 0.722428 cents |

TE Error | 0.257334 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 118 | 187 | 274 | 331 | 408 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 6 | 1 | 8 | ] |

⟨ | 0 | 8 | -5 | 17 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.1226, 162.8066]
TE Step Tunings (cents)

⟨9.49529, 3.62732]
TE Tuning Map (cents)

[1200.245, 1902.575, 2786.703, 3367.835, 4149.755⟩
TE Mistunings (cents)

[0.245, 0.620, 0.389, -0.991, -1.563⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.690287 |

Adjusted Error | 1.168345 cents |

TE Error | 0.337727 cents/octave |

Equal Temperament Mappings

2 | 11 | 13 | ||
---|---|---|---|---|

[ ⟨ | 4 | 14 | 15 | ] |

⟨ | 20 | 69 | 74 | ] ⟩ |

Reduced Mapping

2 | 11 | 13 | ||
---|---|---|---|---|

[ ⟨ | 4 | 14 | 15 | ] |

⟨ | 0 | -1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨299.9738, 53.3351]
TE Step Tunings (cents)

⟨33.29812, 53.33513]
TE Tuning Map (cents)

[1199.895, 4146.298, 4446.272⟩
TE Mistunings (cents)

[-0.105, -5.020, 5.744⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.528257 |

Adjusted Error | 4.545285 cents |

TE Error | 1.228309 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | ] |

⟨ | 10 | 16 | 23 | 28 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | ] |

⟨ | 0 | 0 | -1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨239.4454, 87.0309]
TE Step Tunings (cents)

⟨65.38349, 87.03095]
TE Tuning Map (cents)

[1197.227, 1915.563, 2786.314, 3352.235⟩
TE Mistunings (cents)

[-2.773, 13.608, -0.000, -16.590⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.934589 |

Adjusted Error | 15.139493 cents |

TE Error | 5.392796 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |

⟨ | 15 | 24 | 35 | 42 | 52 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 17 | ] |

⟨ | 0 | 0 | -1 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨239.3606, 84.8252]
TE Step Tunings (cents)

⟨-15.11509, 84.82522]
TE Tuning Map (cents)

[1196.803, 1914.885, 2787.502, 3351.048, 4153.955⟩
TE Mistunings (cents)

[-3.197, 12.930, 1.188, -17.778, 2.637⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.154217 |

Adjusted Error | 16.785469 cents |

TE Error | 4.852089 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |

⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 11 | 14 | 18 | 18 | ] |

⟨ | 0 | 0 | 1 | 0 | -1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨239.2112, 150.5402]
TE Step Tunings (cents)

⟨88.67103, 61.86918]
TE Tuning Map (cents)

[1196.056, 1913.690, 2781.864, 3348.957, 4155.262, 4456.343⟩
TE Mistunings (cents)

[-3.944, 11.735, -4.450, -19.869, 3.944, 15.815⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.147218 |

Adjusted Error | 18.109343 cents |

TE Error | 4.893835 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |

⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |

⟨ | 0 | 0 | -1 | 0 | -2 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨239.2234, 82.9185]
TE Step Tunings (cents)

⟨-9.53216, 82.91852]
TE Tuning Map (cents)

[1196.117, 1913.787, 2787.762, 3349.128, 4140.184, 4462.326⟩
TE Mistunings (cents)

[-3.883, 11.832, 1.449, -19.698, -11.134, 21.799⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.158584 |

Adjusted Error | 19.434078 cents |

TE Error | 5.251829 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | ] |

⟨ | 15 | 24 | 35 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | ] |

⟨ | 0 | 0 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨238.8615, 80.0247]
TE Step Tunings (cents)

⟨-1.21269, 80.02474]
TE Tuning Map (cents)

[1194.308, 1910.892, 2786.314⟩
TE Mistunings (cents)

[-5.692, 8.937, 0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.019941 |

Adjusted Error | 10.741151 cents |

TE Error | 4.625962 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 3 | 1 | 3 | 3 | ] |

⟨ | 0 | 7 | -3 | 8 | 2 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.8377, 271.7161]
TE Step Tunings (cents)

⟨31.43415, 41.76956]
TE Tuning Map (cents)

[1201.838, 1902.013, 2790.365, 3375.567, 4148.945, 4420.661⟩
TE Mistunings (cents)

[1.838, 0.058, 4.051, 6.741, -2.373, -19.866⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.879107 |

Adjusted Error | 9.729646 cents |

TE Error | 2.629322 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 31 | 33 | ] |

⟨ | 22 | 35 | 51 | 76 | 81 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 3 | 3 | 3 | ] |

⟨ | 0 | 7 | -3 | 2 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1202.0868, 272.0305]
TE Step Tunings (cents)

⟨25.76238, 44.10115]
TE Tuning Map (cents)

[1202.087, 1904.214, 2790.169, 4150.321, 4422.352⟩
TE Mistunings (cents)

[2.087, 2.259, 3.855, -0.997, -18.176⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.898921 |

Adjusted Error | 9.556963 cents |

TE Error | 2.582656 cents/octave |

Equal Temperament Mappings

2 | 3 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 17 | 27 | 48 | 59 | 63 | ] |

⟨ | 9 | 14 | 25 | 31 | 33 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 3 | 3 | ] |

⟨ | 0 | 5 | 7 | 4 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.9922, 139.8722]
TE Step Tunings (cents)

⟨59.85795, 20.15633]
TE Tuning Map (cents)

[1198.992, 1898.353, 3377.090, 4156.465, 4436.210⟩
TE Mistunings (cents)

[-1.008, -3.602, 8.264, 5.148, -4.318⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.090525 |

Adjusted Error | 7.102627 cents |

TE Error | 1.919401 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -1 | -5 | 9 | ] |

⟨ | 0 | 1 | 0 | -2 | -2 | 4 | ] |

⟨ | 0 | 0 | 1 | 3 | 5 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.7194, 1900.3688, 2789.3582]
TE Step Tunings (cents)

⟨-1.78755, 22.96145, 19.02696]
TE Tuning Map (cents)

[1198.719, 1900.369, 2789.358, 3368.618, 4152.456, 4443.159⟩
TE Mistunings (cents)

[-1.281, -1.586, 3.045, -0.208, 1.138, 2.632⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.198683 |

Adjusted Error | 3.371291 cents |

TE Error | 0.911052 cents/octave |

Equal Temperament Mappings

2 | 11 | 13 | ||
---|---|---|---|---|

[ ⟨ | 13 | 45 | 48 | ] |

⟨ | 33 | 114 | 122 | ] ⟩ |

Reduced Mapping

2 | 11 | 13 | ||
---|---|---|---|---|

[ ⟨ | 1 | 3 | 4 | ] |

⟨ | 0 | 3 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.8805, 182.5019]
TE Step Tunings (cents)

⟨18.15966, 29.23651]
TE Tuning Map (cents)

[1200.880, 4150.147, 4438.518⟩
TE Mistunings (cents)

[0.880, -1.171, -2.009⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.579391 |

Adjusted Error | 2.325390 cents |

TE Error | 0.628409 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | ] |

⟨ | 8 | 13 | 19 | 23 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 0 | ] |

⟨ | 0 | 13 | 19 | 23 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0000, 146.4741]
TE Step Tunings (cents)

⟨28.20745, 5.43680]
TE Tuning Map (cents)

[1200.000, 1904.163, 2783.007, 3368.904⟩
TE Mistunings (cents)

[-0.000, 2.208, -3.306, 0.078⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.547488 |

Adjusted Error | 2.796469 cents |

TE Error | 0.996122 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 0 | 2 | ] |

⟨ | 0 | 13 | 19 | 23 | 12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.2362, 146.4513]
TE Step Tunings (cents)

⟨27.62576, 8.32252]
TE Tuning Map (cents)

[1199.236, 1903.867, 2782.575, 3368.380, 4155.888⟩
TE Mistunings (cents)

[-0.764, 1.912, -3.739, -0.446, 4.570⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.350742 |

Adjusted Error | 3.914501 cents |

TE Error | 1.131545 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 0 | 2 | 2 | ] |

⟨ | 0 | 13 | 19 | 23 | 12 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.5564, 146.4263]
TE Step Tunings (cents)

⟨27.14604, 10.69610]
TE Tuning Map (cents)

[1198.556, 1903.542, 2782.100, 3367.805, 4154.228, 4447.081⟩
TE Mistunings (cents)

[-1.444, 1.587, -4.214, -1.021, 2.911, 6.553⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.135445 |

Adjusted Error | 4.861676 cents |

TE Error | 1.313810 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 3 | 0 | 0 | 4 | 8 | -3 | ] |

⟨ | 0 | 2 | 0 | -4 | 1 | 3 | ] |

⟨ | 0 | 0 | 1 | 2 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨400.0003, 951.0850, 2786.5833]
TE Step Tunings (cents)

⟨4.32231, 0.42081, 0.03080]
TE Tuning Map (cents)

[1200.001, 1902.170, 2786.583, 3368.827, 4151.087, 4439.838⟩
TE Mistunings (cents)

[0.001, 0.215, 0.270, 0.002, -0.231, -0.690⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.445227 |

Adjusted Error | 0.402874 cents |

TE Error | 0.108872 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 75 | 119 | 174 | 211 | 260 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 7 | 0 | 9 | 17 | ] |

⟨ | 0 | -14 | 6 | -16 | -35 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0213, 464.2560]
TE Step Tunings (cents)

⟨18.58372, 8.31901]
TE Tuning Map (cents)

[1200.021, 1900.565, 2785.536, 3372.095, 4151.401⟩
TE Mistunings (cents)

[0.021, -1.390, -0.778, 3.270, 0.084⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.942850 |

Adjusted Error | 2.314885 cents |

TE Error | 0.669152 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 26 | 41 | 60 | 73 | 90 | ] |

⟨ | 0 | 1 | 2 | 0 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨46.1443, 9.2497]
TE Step Tunings (cents)

⟨9.24973, -0.10434]
TE Tuning Map (cents)

[1199.753, 1901.167, 2787.159, 3368.536, 4152.989⟩
TE Mistunings (cents)

[-0.247, -0.788, 0.845, -0.290, 1.672⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.692850 |

Adjusted Error | 1.280485 cents |

TE Error | 0.370143 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] |

⟨ | 0 | 1 | 2 | 0 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨46.1469, 9.2373]
TE Step Tunings (cents)

⟨9.23730, -0.03955]
TE Tuning Map (cents)

[1199.820, 1901.262, 2787.291, 3368.726, 4153.224, 4439.343⟩
TE Mistunings (cents)

[-0.180, -0.693, 0.977, -0.099, 1.906, -1.184⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.852046 |

Adjusted Error | 1.358006 cents |

TE Error | 0.366985 cents/octave |

Equal Temperament Mappings

2 | 7 | 11 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 37 | 104 | 128 | 137 | ] |

⟨ | 20 | 56 | 69 | 74 | ] ⟩ |

Reduced Mapping

2 | 7 | 11 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 3 | ] |

⟨ | 0 | 8 | 7 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8676, 421.2626]
TE Step Tunings (cents)

⟨26.17856, 11.56305]
TE Tuning Map (cents)

[1199.868, 3370.101, 4148.706, 4442.128⟩
TE Mistunings (cents)

[-0.132, 1.275, -2.612, 1.600⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.138138 |

Adjusted Error | 1.832499 cents |

TE Error | 0.495211 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 441 | 699 | 1024 | 1238 | ] |

⟨ | 1106 | 1753 | 2568 | 3105 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | ] |

⟨ | 0 | 3 | 8 | -11 | ] ⟩ |

TE Generator Tunings (cents)

⟨171.4275, 5.4299]
TE Step Tunings (cents)

⟨0.78600, 0.77158]
TE Tuning Map (cents)

[1199.993, 1901.992, 2786.280, 3368.822⟩
TE Mistunings (cents)

[-0.007, 0.037, -0.034, -0.004⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 19.266779 |

Adjusted Error | 0.040461 cents |

TE Error | 0.014412 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 224 | 355 | 520 | 629 | 775 | ] |

⟨ | 217 | 344 | 504 | 609 | 751 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |

⟨ | 0 | 3 | 8 | -11 | 7 | ] ⟩ |

TE Generator Tunings (cents)

⟨171.4208, 5.4184]
TE Step Tunings (cents)

⟨3.45056, 1.96783]
TE Tuning Map (cents)

[1199.945, 1901.884, 2786.079, 3368.813, 4152.027⟩
TE Mistunings (cents)

[-0.055, -0.071, -0.234, -0.013, 0.709⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 17.855458 |

Adjusted Error | 0.370160 cents |

TE Error | 0.107000 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 171 | 271 | 397 | 480 | ] |

⟨ | 99 | 157 | 230 | 278 | ] |

⟨ | 130 | 206 | 302 | 365 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | 2 | ] |

⟨ | 0 | 2 | 1 | 1 | ] |

⟨ | 0 | 0 | 2 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0206, 350.9724, 617.6826]
TE Step Tunings (cents)

⟨5.72522, 1.77208, 0.35056]
TE Tuning Map (cents)

[1200.021, 1901.965, 2786.358, 3368.696⟩
TE Mistunings (cents)

[0.021, 0.010, 0.044, -0.130⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.160134 |

Adjusted Error | 0.076486 cents |

TE Error | 0.027245 cents/octave |

Equal Temperament Mappings

2 | 3 | 11/5 | 13/5 | ||
---|---|---|---|---|---|

[ ⟨ | 29 | 46 | 33 | 40 | ] |

⟨ | 5 | 8 | 6 | 7 | ] ⟩ |

Reduced Mapping

2 | 3 | 11/5 | 13/5 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 2 | ] |

⟨ | 0 | -2 | -9 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.5045, 248.1827]
TE Step Tunings (cents)

⟨41.40893, -0.27087]
TE Tuning Map (cents)

[1199.505, 1902.644, 1364.869, 1654.461⟩
TE Mistunings (cents)

[-0.495, 0.689, -0.135, 0.247⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 3.031205 |

Adjusted Error | 0.549309 cents |

TE Error | 0.346575 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | ] |

⟨ | 4 | 6 | 9 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | ] |

⟨ | 0 | -2 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0000, 260.3879]
TE Step Tunings (cents)

⟨158.44830, 101.93963]
TE Tuning Map (cents)

[1200.000, 1879.224, 2818.836⟩
TE Mistunings (cents)

[0.000, -22.731, 32.523⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.601999 |

Adjusted Error | 26.873841 cents |

TE Error | 11.573933 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | ] |

⟨ | 34 | 54 | 79 | 96 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | -1 | ] |

⟨ | 0 | 4 | 9 | 26 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3025, 175.7849]
TE Step Tunings (cents)

⟨24.82512, 5.36684]
TE Tuning Map (cents)

[1200.302, 1903.442, 2782.367, 3370.105⟩
TE Mistunings (cents)

[0.302, 1.487, -3.947, 1.279⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.384711 |

Adjusted Error | 2.831516 cents |

TE Error | 1.008606 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | -1 | 2 | ] |

⟨ | 0 | 4 | 9 | 26 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7543, 175.7411]
TE Step Tunings (cents)

⟨23.57543, 6.85770]
TE Tuning Map (cents)

[1199.754, 1902.718, 2781.424, 3369.513, 4156.919⟩
TE Mistunings (cents)

[-0.246, 0.763, -4.890, 0.687, 5.601⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.056377 |

Adjusted Error | 4.211139 cents |

TE Error | 1.217292 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | -1 | 2 | 4 | ] |

⟨ | 0 | 4 | 9 | 26 | 10 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.1124, 175.7557]
TE Step Tunings (cents)

⟨19.86803, 11.30951]
TE Tuning Map (cents)

[1199.112, 1902.135, 2780.914, 3370.536, 4155.782, 4444.938⟩
TE Mistunings (cents)

[-0.888, 0.180, -5.400, 1.710, 4.464, 4.411⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.210337 |

Adjusted Error | 4.696797 cents |

TE Error | 1.269254 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | ] |

⟨ | 58 | 92 | 135 | 163 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | -6 | 4 | ] |

⟨ | 0 | 4 | 21 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3071, 475.3615]
TE Step Tunings (cents)

⟨13.09808, 8.70878]
TE Tuning Map (cents)

[1199.307, 1901.446, 2786.748, 3371.144⟩
TE Mistunings (cents)

[-0.693, -0.509, 0.435, 2.318⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.931326 |

Adjusted Error | 1.600518 cents |

TE Error | 0.570116 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | -6 | 4 | -12 | ] |

⟨ | 0 | 4 | 21 | -3 | 39 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.2531, 475.4043]
TE Step Tunings (cents)

⟨12.11401, 9.37058]
TE Tuning Map (cents)

[1199.253, 1901.617, 2787.972, 3370.799, 4149.731⟩
TE Mistunings (cents)

[-0.747, -0.338, 1.658, 1.973, -1.587⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.934398 |

Adjusted Error | 2.085980 cents |

TE Error | 0.602983 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | -6 | 4 | -12 | -7 | ] |

⟨ | 0 | 4 | 21 | -3 | 39 | 27 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.2406, 475.3962]
TE Step Tunings (cents)

⟨11.94566, 9.55457]
TE Tuning Map (cents)

[1199.241, 1901.585, 2787.877, 3370.774, 4149.565, 4441.013⟩
TE Mistunings (cents)

[-0.759, -0.370, 1.563, 1.948, -1.753, 0.486⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.636184 |

Adjusted Error | 2.049116 cents |

TE Error | 0.553749 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] |

⟨ | 7 | 11 | 16 | 19 | 24 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | -4 | 0 | -6 | ] |

⟨ | 0 | 1 | 4 | 0 | 6 | ] |

⟨ | 0 | 0 | 0 | 1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨1202.1032, 1896.6716, 3368.8259]
TE Step Tunings (cents)

⟨53.56660, 29.45074, 20.99908]
TE Tuning Map (cents)

[1202.103, 1896.672, 2778.274, 3368.826, 4167.411⟩
TE Mistunings (cents)

[2.103, -5.283, -8.040, 0.000, 16.093⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.094258 |

Adjusted Error | 10.847896 cents |

TE Error | 3.135745 cents/octave |

Equal Temperament Mappings

3 | 5 | 7 | ||
---|---|---|---|---|

[ ⟨ | 13 | 19 | 23 | ] |

⟨ | 62 | 91 | 110 | ] ⟩ |

Reduced Mapping

3 | 5 | 7 | ||
---|---|---|---|---|

[ ⟨ | 1 | 3 | 3 | ] |

⟨ | 0 | -5 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1901.7828, 583.9055]
TE Step Tunings (cents)

⟨68.26738, 16.35979]
TE Tuning Map (cents)

[1901.783, 2785.821, 3369.726⟩
TE Mistunings (cents)

[-0.172, -0.493, 0.900⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.564293 |

Adjusted Error | 0.647803 cents |

TE Error | 0.230752 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 99 | 157 | 230 | 278 | ] |

⟨ | 19 | 30 | 44 | 53 | ] |

⟨ | 94 | 149 | 218 | 264 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -1 | ] |

⟨ | 0 | 1 | 2 | 2 | ] |

⟨ | 0 | 0 | 4 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9597, 1902.3090, -254.6168]
TE Step Tunings (cents)

⟨8.61255, 3.38568, 3.01052]
TE Tuning Map (cents)

[1199.960, 1902.309, 2786.151, 3368.509⟩
TE Mistunings (cents)

[-0.040, 0.354, -0.163, -0.317⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.316194 |

Adjusted Error | 0.369246 cents |

TE Error | 0.131528 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |

⟨ | 6 | 10 | 14 | 17 | 21 | 23 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | 2 | 3 | 1 | ] |

⟨ | 0 | 10 | 2 | 5 | 3 | 17 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4755, 190.4354]
TE Step Tunings (cents)

⟨57.86329, 16.84550]
TE Tuning Map (cents)

[1200.475, 1904.354, 2781.822, 3353.128, 4172.733, 4437.877⟩
TE Mistunings (cents)

[0.475, 2.399, -4.492, -15.698, 21.415, -2.651⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.270513 |

Adjusted Error | 13.201032 cents |

TE Error | 3.567423 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | ] |

⟨ | 42 | 67 | 98 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | -7 | -4 | 1 | ] |

⟨ | 0 | 19 | 14 | 4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.6310, 542.0152]
TE Step Tunings (cents)

⟨28.34969, 7.63787]
TE Tuning Map (cents)

[1199.631, 1900.872, 2789.689, 3367.692⟩
TE Mistunings (cents)

[-0.369, -1.083, 3.375, -1.134⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.680948 |

Adjusted Error | 2.381827 cents |

TE Error | 0.848424 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 11 | 18 | 26 | 31 | 38 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -7 | -4 | 1 | 3 | ] |

⟨ | 0 | 19 | 14 | 4 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6479, 542.3693]
TE Step Tunings (cents)

⟨37.17744, 4.37703]
TE Tuning Map (cents)

[1200.648, 1900.481, 2790.578, 3370.125, 4144.313⟩
TE Mistunings (cents)

[0.648, -1.474, 4.265, 1.299, -7.005⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.565016 |

Adjusted Error | 4.634164 cents |

TE Error | 1.339574 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 196 | ] |

⟨ | 34 | 54 | 79 | 126 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 0 | ] |

⟨ | 0 | 6 | 5 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1213, 317.1076]
TE Step Tunings (cents)

⟨19.43199, 5.00665]
TE Tuning Map (cents)

[1200.121, 1902.646, 2785.660, 4439.507⟩
TE Mistunings (cents)

[0.121, 0.691, -0.654, -1.021⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.553107 |

Adjusted Error | 1.110388 cents |

TE Error | 0.300069 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 65 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | -5 | ] |

⟨ | 0 | 6 | 5 | 22 | 32 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9656, 317.0333]
TE Step Tunings (cents)

⟨20.55973, 23.80384]
TE Tuning Map (cents)

[1199.966, 1902.200, 2785.132, 3374.835, 4145.236⟩
TE Mistunings (cents)

[-0.034, 0.245, -1.182, 6.009, -6.082⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.461527 |

Adjusted Error | 4.363850 cents |

TE Error | 1.261436 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | -5 | 0 | ] |

⟨ | 0 | 6 | 5 | 22 | 32 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0866, 317.0589]
TE Step Tunings (cents)

⟨20.77585, 23.68663]
TE Tuning Map (cents)

[1200.087, 1902.354, 2785.381, 3375.037, 4145.453, 4438.825⟩
TE Mistunings (cents)

[0.087, 0.399, -0.932, 6.211, -5.865, -1.703⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.174415 |

Adjusted Error | 4.329278 cents |

TE Error | 1.169936 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |

⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 13 | 17 | 13 | 32 | ] |

⟨ | 0 | -28 | -36 | -25 | -70 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0224, 489.2610]
TE Step Tunings (cents)

⟨7.05181, 2.75037]
TE Tuning Map (cents)

[1200.022, 1900.982, 2786.983, 3368.765, 4152.443⟩
TE Mistunings (cents)

[0.022, -0.973, 0.669, -0.061, 1.125⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.275888 |

Adjusted Error | 1.164860 cents |

TE Error | 0.336720 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 13 | 17 | 13 | 32 | 9 | ] |

⟨ | 0 | -28 | -36 | -25 | -70 | -13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1028, 489.2982]
TE Step Tunings (cents)

⟨6.60143, 3.31958]
TE Tuning Map (cents)

[1200.103, 1900.986, 2787.012, 3368.881, 4152.415, 4440.048⟩
TE Mistunings (cents)

[0.103, -0.969, 0.698, 0.055, 1.097, -0.479⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.431710 |

Adjusted Error | 1.162450 cents |

TE Error | 0.314138 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | ] |

⟨ | 53 | 84 | 123 | 149 | ] |

⟨ | 130 | 206 | 302 | 365 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -2 | ] |

⟨ | 0 | 2 | 0 | 9 | ] |

⟨ | 0 | 0 | 1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1074, 950.6741, 2786.6031]
TE Step Tunings (cents)

⟨4.22183, 1.90466, 6.11683]
TE Tuning Map (cents)

[1200.107, 1901.348, 2786.603, 3369.249⟩
TE Mistunings (cents)

[0.107, -0.607, 0.289, 0.423⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.199749 |

Adjusted Error | 0.621996 cents |

TE Error | 0.221559 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | ] |

⟨ | 53 | 84 | 123 | 149 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | ] |

⟨ | 0 | 6 | 5 | 22 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.5972, 316.8895]
TE Step Tunings (cents)

⟨13.21978, 4.69383]
TE Tuning Map (cents)

[1200.597, 1901.337, 2785.045, 3369.777⟩
TE Mistunings (cents)

[0.597, -0.618, -1.269, 0.951⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.868157 |

Adjusted Error | 1.348009 cents |

TE Error | 0.480170 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 9 | ] |

⟨ | 0 | 6 | 5 | 22 | -21 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6532, 316.8913]
TE Step Tunings (cents)

⟨13.90831, 3.75953]
TE Tuning Map (cents)

[1200.653, 1901.348, 2785.109, 3369.648, 4151.162⟩
TE Mistunings (cents)

[0.653, -0.607, -1.204, 0.822, -0.155⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.587812 |

Adjusted Error | 1.492236 cents |

TE Error | 0.431353 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 9 | 0 | ] |

⟨ | 0 | 6 | 5 | 22 | -21 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.7998, 316.9486]
TE Step Tunings (cents)

⟨12.91967, 5.10536]
TE Tuning Map (cents)

[1200.800, 1901.692, 2785.543, 3370.471, 4151.277, 4437.281⟩
TE Mistunings (cents)

[0.800, -0.263, -0.771, 1.645, -0.041, -3.247⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.270026 |

Adjusted Error | 2.077208 cents |

TE Error | 0.561341 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 70 | ] |

⟨ | 53 | 84 | 123 | 149 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 0 | ] |

⟨ | 0 | 6 | 5 | 22 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.7854, 316.9483]
TE Step Tunings (cents)

⟨12.73736, 18.09010]
TE Tuning Map (cents)

[1200.785, 1901.690, 2785.527, 3370.506, 4437.276⟩
TE Mistunings (cents)

[0.785, -0.265, -0.787, 1.680, -3.252⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.568542 |

Adjusted Error | 2.275132 cents |

TE Error | 0.614827 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 6 | 4 | ] |

⟨ | 0 | 6 | 5 | -12 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1197.0491, 317.4989]
TE Step Tunings (cents)

⟨21.52110, 25.71272]
TE Tuning Map (cents)

[1197.049, 1904.993, 2784.544, 3372.308, 4153.199⟩
TE Mistunings (cents)

[-2.951, 3.038, -1.770, 3.482, 1.881⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.739392 |

Adjusted Error | 5.951380 cents |

TE Error | 1.720335 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 66 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 4 | ] |

⟨ | 0 | 6 | 5 | 22 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.6702, 316.7315]
TE Step Tunings (cents)

⟨19.16027, 24.54780]
TE Tuning Map (cents)

[1198.670, 1900.389, 2782.328, 3372.083, 4161.218⟩
TE Mistunings (cents)

[-1.330, -1.566, -3.986, 3.257, 9.900⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.032524 |

Adjusted Error | 6.036977 cents |

TE Error | 1.745078 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 4 | 0 | ] |

⟨ | 0 | 6 | 5 | 22 | -2 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.8549, 316.8149]
TE Step Tunings (cents)

⟨17.98682, 25.20898]
TE Tuning Map (cents)

[1198.855, 1900.890, 2782.930, 3373.364, 4161.790, 4435.409⟩
TE Mistunings (cents)

[-1.145, -1.065, -3.384, 4.538, 10.472, -5.119⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.800572 |

Adjusted Error | 6.333493 cents |

TE Error | 1.711551 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | -10 | ] |

⟨ | 0 | 6 | 5 | 22 | 51 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.8112, 316.8671]
TE Step Tunings (cents)

⟨16.41990, 0.97781]
TE Tuning Map (cents)

[1200.811, 1901.203, 2785.147, 3368.644, 4152.113⟩
TE Mistunings (cents)

[0.811, -0.752, -1.167, -0.182, 0.795⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.193826 |

Adjusted Error | 1.689610 cents |

TE Error | 0.488407 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | -10 | 0 | ] |

⟨ | 0 | 6 | 5 | 22 | 51 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.0826, 316.9251]
TE Step Tunings (cents)

⟨16.16329, 1.96453]
TE Tuning Map (cents)

[1201.083, 1901.550, 2785.708, 3369.104, 4152.353, 4436.951⟩
TE Mistunings (cents)

[1.083, -0.405, -0.606, 0.278, 1.035, -3.577⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.793839 |

Adjusted Error | 2.310289 cents |

TE Error | 0.624328 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -1 | 2 | 0 | ] |

⟨ | 0 | 1 | 0 | -2 | -2 | -5 | ] |

⟨ | 0 | 0 | 1 | 3 | 2 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1196.8794, 1901.7723, 2788.7526]
TE Step Tunings (cents)

⟨11.55860, 30.81909, 42.71703]
TE Tuning Map (cents)

[1196.879, 1901.772, 2788.753, 3365.834, 4167.719, 4434.901⟩
TE Mistunings (cents)

[-3.121, -0.183, 2.439, -2.992, 16.401, -5.626⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.119813 |

Adjusted Error | 9.161880 cents |

TE Error | 2.475889 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 0 | 0 | 0 | -1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨99.8548, 32.7285]
TE Step Tunings (cents)

⟨34.39790, 32.72846]
TE Tuning Map (cents)

[1198.258, 1897.242, 2795.935, 3362.335, 4161.174⟩
TE Mistunings (cents)

[-1.742, -4.713, 9.621, -6.491, 9.856⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.916514 |

Adjusted Error | 10.087167 cents |

TE Error | 2.915845 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 0 | 0 | 0 | -1 | -1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨99.8353, 37.1711]
TE Step Tunings (cents)

⟨25.49321, 37.17106]
TE Tuning Map (cents)

[1198.024, 1896.871, 2795.389, 3357.230, 4155.912, 4455.418⟩
TE Mistunings (cents)

[-1.976, -5.084, 9.075, -11.596, 4.594, 14.891⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.860646 |

Adjusted Error | 12.131649 cents |

TE Error | 3.278434 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 24 | 38 | 56 | 67 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 0 | 0 | 0 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨99.8700, 26.7551]
TE Step Tunings (cents)

⟨46.35988, 26.75508]
TE Tuning Map (cents)

[1198.440, 1897.531, 2796.361, 3368.826⟩
TE Mistunings (cents)

[-1.560, -4.424, 10.047, -0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.853309 |

Adjusted Error | 7.552312 cents |

TE Error | 2.690188 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 3 | 4 | 1 | ] |

⟨ | 0 | 4 | 3 | 3 | 11 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.9715, 323.9503]
TE Step Tunings (cents)

⟨-4.55306, 46.92905]
TE Tuning Map (cents)

[1201.943, 1896.773, 2774.765, 3375.737, 4164.425⟩
TE Mistunings (cents)

[1.943, -5.182, -11.548, 6.911, 13.107⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.238691 |

Adjusted Error | 11.945536 cents |

TE Error | 3.453034 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 3 | 4 | 1 | 2 | ] |

⟨ | 0 | 4 | 3 | 3 | 11 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.9786, 323.9232]
TE Step Tunings (cents)

⟨-4.15055, 46.86767]
TE Tuning Map (cents)

[1201.957, 1896.671, 2774.705, 3375.684, 4164.133, 4441.189⟩
TE Mistunings (cents)

[1.957, -5.284, -11.608, 6.858, 12.815, 0.661⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.198572 |

Adjusted Error | 11.668770 cents |

TE Error | 3.153347 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 1 | 2 | 3 | 3 | 4 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |

⟨ | 0 | -9 | -15 | -4 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.3195, 54.3002]
TE Step Tunings (cents)

⟨54.30018, 3.71556]
TE Tuning Map (cents)

[1198.320, 1907.937, 2780.456, 3377.758, 4141.676⟩
TE Mistunings (cents)

[-1.680, 5.982, -5.858, 8.932, -9.642⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.453775 |

Adjusted Error | 9.945670 cents |

TE Error | 2.874943 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |

⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |

⟨ | 0 | -9 | -15 | -4 | -12 | -7 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4566, 54.6862]
TE Step Tunings (cents)

⟨54.68618, -2.63937]
TE Tuning Map (cents)

[1200.457, 1908.738, 2781.077, 3382.625, 4145.592, 4419.023⟩
TE Mistunings (cents)

[0.457, 6.783, -5.237, 13.799, -5.726, -21.504⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.306086 |

Adjusted Error | 13.868780 cents |

TE Error | 3.747874 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 0 | 2 | 3 | 1 | ] |

⟨ | 0 | 3 | 0 | 5 | -1 | -4 | ] |

⟨ | 0 | 0 | 1 | 0 | 1 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9568, 433.8374, 2787.0177]
TE Step Tunings (cents)

⟨9.56848, 8.30526, 1.33081]
TE Tuning Map (cents)

[1199.914, 1901.469, 2787.018, 3369.101, 4153.051, 4438.642⟩
TE Mistunings (cents)

[-0.086, -0.486, 0.704, 0.275, 1.733, -1.885⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.295378 |

Adjusted Error | 1.275955 cents |

TE Error | 0.344812 cents/octave |

Equal Temperament Mappings

2 | 7 | 9 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 83 | 233 | 263 | 287 | 307 | ] |

⟨ | 17 | 48 | 54 | 59 | 63 | ] ⟩ |

Reduced Mapping

2 | 7 | 9 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -8 | -2 | -5 | -1 | ] |

⟨ | 0 | 23 | 11 | 18 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3135, 564.0052]
TE Step Tunings (cents)

⟨14.41959, 0.20514]
TE Tuning Map (cents)

[1200.313, 3369.612, 3803.430, 4150.526, 4439.738⟩
TE Mistunings (cents)

[0.313, 0.786, -0.480, -0.792, -0.789⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.717901 |

Adjusted Error | 0.902471 cents |

TE Error | 0.243882 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | -1 | 0 | ] |

⟨ | 0 | 5 | 1 | 12 | 11 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.5382, 379.8120]
TE Step Tunings (cents)

⟨13.19843, 61.10226]
TE Tuning Map (cents)

[1200.538, 1899.060, 2780.888, 3357.206, 4177.932⟩
TE Mistunings (cents)

[0.538, -2.895, -5.425, -11.620, 26.614⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.681175 |

Adjusted Error | 14.297395 cents |

TE Error | 4.132874 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |

⟨ | 3 | 5 | 7 | 9 | 11 | 12 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | -1 | 0 | -2 | ] |

⟨ | 0 | 5 | 1 | 12 | 11 | 18 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3673, 379.9070]
TE Step Tunings (cents)

⟨60.64621, 16.02981]
TE Tuning Map (cents)

[1200.367, 1899.535, 2780.642, 3358.517, 4178.978, 4437.592⟩
TE Mistunings (cents)

[0.367, -2.420, -5.672, -10.309, 27.660, -2.936⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.826303 |

Adjusted Error | 14.048084 cents |

TE Error | 3.796328 cents/octave |

Equal Temperament Mappings

3 | 7 | 13 | 17 | ||
---|---|---|---|---|---|

[ ⟨ | 57 | 101 | 133 | 147 | ] |

⟨ | 78 | 138 | 182 | 201 | ] ⟩ |

Reduced Mapping

3 | 7 | 13 | 17 | ||
---|---|---|---|---|---|

[ ⟨ | 3 | 7 | 7 | 9 | ] |

⟨ | 0 | -4 | 0 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨634.1772, 267.5916]
TE Step Tunings (cents)

⟨18.56726, 10.82305]
TE Tuning Map (cents)

[1902.532, 3368.874, 4439.240, 4904.820⟩
TE Mistunings (cents)

[0.577, 0.048, -1.287, -0.136⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.120944 |

Adjusted Error | 1.031524 cents |

TE Error | 0.252363 cents/octave |

Equal Temperament Mappings

3 | 13/9 | 17/9 | 7/3 | ||
---|---|---|---|---|---|

[ ⟨ | 21 | 7 | 12 | 16 | ] |

⟨ | 57 | 19 | 33 | 44 | ] ⟩ |

Reduced Mapping

3 | 13/9 | 17/9 | 7/3 | ||
---|---|---|---|---|---|

[ ⟨ | 3 | 1 | 3 | 4 | ] |

⟨ | 0 | 0 | -3 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨635.2959, 268.4296]
TE Step Tunings (cents)

⟨17.79473, 26.88067]
TE Tuning Map (cents)

[1905.888, 635.296, 1100.599, 1467.465⟩
TE Mistunings (cents)

[3.933, -1.322, -0.446, 0.594⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 3.089212 |

Adjusted Error | 2.839387 cents |

TE Error | 1.791454 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 99 | 157 | 230 | 278 | ] |

⟨ | 60 | 95 | 139 | 168 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 3 | 4 | 5 | 6 | ] |

⟨ | 0 | 5 | 13 | 16 | ] ⟩ |

TE Generator Tunings (cents)

⟨399.9549, 60.5216]
TE Step Tunings (cents)

⟨10.56715, 2.56196]
TE Tuning Map (cents)

[1199.865, 1902.428, 2786.555, 3368.075⟩
TE Mistunings (cents)

[-0.135, 0.473, 0.242, -0.751⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.965688 |

Adjusted Error | 0.611181 cents |

TE Error | 0.217707 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | -4 | 0 | -12 | ] |

⟨ | 0 | 1 | 4 | 0 | 8 | ] |

⟨ | 0 | 0 | 0 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6459, 1898.2713, 3370.4426]
TE Step Tunings (cents)

⟨7.01524, 36.88988, -3.87476]
TE Tuning Map (cents)

[1200.646, 1898.271, 2790.502, 3370.443, 4148.863⟩
TE Mistunings (cents)

[0.646, -3.684, 4.188, 1.617, -2.455⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.148233 |

Adjusted Error | 4.869695 cents |

TE Error | 1.407658 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | ] |

⟨ | 68 | 108 | 158 | 191 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 6 | 12 | ] |

⟨ | 0 | -12 | -10 | -25 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8387, 441.2754]
TE Step Tunings (cents)

⟨10.76218, 14.63761]
TE Tuning Map (cents)

[1199.839, 1903.727, 2786.278, 3366.178⟩
TE Mistunings (cents)

[-0.161, 1.772, -0.036, -2.647⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.435155 |

Adjusted Error | 2.065576 cents |

TE Error | 0.735773 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 6 | 12 | -5 | ] |

⟨ | 0 | -12 | -10 | -25 | 23 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9638, 441.3417]
TE Step Tunings (cents)

⟨14.25507, -2.11722]
TE Tuning Map (cents)

[1199.964, 1903.683, 2786.366, 3366.024, 4151.039⟩
TE Mistunings (cents)

[-0.036, 1.728, 0.053, -2.802, -0.279⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.646723 |

Adjusted Error | 2.290989 cents |

TE Error | 0.662244 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 6 | 12 | -5 | 14 | ] |

⟨ | 0 | -12 | -10 | -25 | 23 | -28 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9311, 441.3380]
TE Step Tunings (cents)

⟨14.09542, -1.38794]
TE Tuning Map (cents)

[1199.931, 1903.530, 2786.207, 3365.723, 4151.119, 4441.571⟩
TE Mistunings (cents)

[-0.069, 1.575, -0.107, -3.103, -0.199, 1.043⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.449147 |

Adjusted Error | 2.290816 cents |

TE Error | 0.619066 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | ] |

⟨ | 50 | 79 | 116 | 140 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 7 | 11 | 14 | ] |

⟨ | 0 | 3 | 2 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨240.2510, 73.1208]
TE Step Tunings (cents)

⟨10.45481, 20.88866]
TE Tuning Map (cents)

[1201.255, 1901.120, 2789.003, 3363.514⟩
TE Mistunings (cents)

[1.255, -0.835, 2.689, -5.311⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.891640 |

Adjusted Error | 3.653398 cents |

TE Error | 1.301366 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |

⟨ | 50 | 79 | 116 | 140 | 173 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 5 | 7 | 11 | 14 | 17 | ] |

⟨ | 0 | 3 | 2 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨240.1539, 73.3110]
TE Step Tunings (cents)

⟨12.64838, 20.22088]
TE Tuning Map (cents)

[1200.770, 1901.011, 2788.315, 3362.155, 4155.928⟩
TE Mistunings (cents)

[0.770, -0.944, 2.002, -6.671, 4.610⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.572559 |

Adjusted Error | 4.670264 cents |

TE Error | 1.350009 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | ] |

⟨ | 50 | 79 | 116 | 140 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 3 | 13 | ] |

⟨ | 0 | -13 | -2 | -30 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4422, 407.8399]
TE Step Tunings (cents)

⟨15.52114, 7.55643]
TE Tuning Map (cents)

[1200.442, 1900.734, 2785.647, 3370.551⟩
TE Mistunings (cents)

[0.442, -1.221, -0.667, 1.725⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.599911 |

Adjusted Error | 1.568654 cents |

TE Error | 0.558766 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |

⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 3 | 13 | -3 | ] |

⟨ | 0 | -13 | -2 | -30 | 19 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.8030, 408.0143]
TE Step Tunings (cents)

⟨2.63356, 10.30315]
TE Tuning Map (cents)

[1200.803, 1900.632, 2786.381, 3370.011, 4149.863⟩
TE Mistunings (cents)

[0.803, -1.323, 0.067, 1.185, -1.455⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.856475 |

Adjusted Error | 2.015482 cents |

TE Error | 0.582605 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |

⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 3 | 13 | -3 | 2 | ] |

⟨ | 0 | -13 | -2 | -30 | 19 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.7386, 407.9866]
TE Step Tunings (cents)

⟨3.23471, 9.99319]
TE Tuning Map (cents)

[1200.739, 1900.606, 2786.243, 3370.005, 4149.529, 4441.410⟩
TE Mistunings (cents)

[0.739, -1.349, -0.071, 1.179, -1.789, 0.883⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.570914 |

Adjusted Error | 2.010564 cents |

TE Error | 0.543331 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 1 | 4 | ] |

⟨ | 0 | -3 | -5 | 13 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1203.0557, 166.4034]
TE Step Tunings (cents)

⟨13.47691, 38.23163]
TE Tuning Map (cents)

[1203.056, 1906.901, 2777.150, 3366.300, 4146.609⟩
TE Mistunings (cents)

[3.056, 4.946, -9.164, -2.526, -4.709⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.481027 |

Adjusted Error | 9.450477 cents |

TE Error | 2.731801 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 1 | 4 | 3 | ] |

⟨ | 0 | -3 | -5 | 13 | -4 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1203.0269, 166.3928]
TE Step Tunings (cents)

⟨13.28455, 38.27707]
TE Tuning Map (cents)

[1203.027, 1906.875, 2777.117, 3366.134, 4146.536, 4441.045⟩
TE Mistunings (cents)

[3.027, 4.920, -9.197, -2.692, -4.782, 0.517⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.329514 |

Adjusted Error | 9.231154 cents |

TE Error | 2.494610 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |

⟨ | 4 | 6 | 9 | 11 | 14 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -1 | 0 | 1 | 4 | ] |

⟨ | 0 | 10 | 9 | 7 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1196.1298, 309.8505]
TE Step Tunings (cents)

⟨43.27217, 6.94531]
TE Tuning Map (cents)

[1196.130, 1902.375, 2788.655, 3365.083, 4164.818⟩
TE Mistunings (cents)

[-3.870, 0.420, 2.341, -3.743, 13.500⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.541856 |

Adjusted Error | 8.897054 cents |

TE Error | 2.571825 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 2 | 3 | 4 | 5 | 6 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 4 | 5 | 6 | ] |

⟨ | 0 | 2 | 7 | 7 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨598.8325, 55.0762]
TE Step Tunings (cents)

⟨55.07625, -7.00616]
TE Tuning Map (cents)

[1197.665, 1906.650, 2780.864, 3379.696, 4143.758⟩
TE Mistunings (cents)

[-2.335, 4.695, -5.450, 10.871, -7.560⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.300232 |

Adjusted Error | 9.724080 cents |

TE Error | 2.810889 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |

⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] |

⟨ | 0 | 2 | 7 | 7 | 10 | 4 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.1383, 54.4472]
TE Step Tunings (cents)

⟨54.44724, 1.21864]
TE Tuning Map (cents)

[1200.277, 1909.309, 2781.684, 3381.822, 4145.302, 4418.757⟩
TE Mistunings (cents)

[0.277, 7.354, -4.630, 12.996, -6.016, -21.771⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.189133 |

Adjusted Error | 13.899279 cents |

TE Error | 3.756116 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 118 | 187 | 274 | 331 | 408 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 4 | 5 | 6 | ] |

⟨ | 0 | 5 | 19 | 18 | 27 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0403, 20.3913]
TE Step Tunings (cents)

⟨3.00608, 8.69261]
TE Tuning Map (cents)

[1200.081, 1902.077, 2787.596, 3367.245, 4150.807⟩
TE Mistunings (cents)

[0.081, 0.122, 1.282, -1.581, -0.511⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.217884 |

Adjusted Error | 1.253414 cents |

TE Error | 0.362318 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | ] |

⟨ | 72 | 114 | 167 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | ] |

⟨ | 0 | 0 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨100.0514, 15.1253]
TE Step Tunings (cents)

⟨9.29940, 15.12533]
TE Tuning Map (cents)

[1200.617, 1900.976, 2786.314⟩
TE Mistunings (cents)

[0.617, -0.979, 0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.435023 |

Adjusted Error | 1.169834 cents |

TE Error | 0.503820 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 0 | 0 | -1 | -2 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨100.0634, 16.7446]
TE Step Tunings (cents)

⟨16.74460, -0.40420]
TE Tuning Map (cents)

[1200.761, 1901.205, 2785.031, 3368.666, 4152.429⟩
TE Mistunings (cents)

[0.761, -0.750, -1.283, -0.160, 1.111⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.279767 |

Adjusted Error | 1.705134 cents |

TE Error | 0.492894 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 0 | 0 | -1 | -2 | -3 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨100.0509, 16.0454]
TE Step Tunings (cents)

⟨16.04540, 3.77852]
TE Tuning Map (cents)

[1200.611, 1900.967, 2785.380, 3369.640, 4154.002, 4438.110⟩
TE Mistunings (cents)

[0.611, -0.988, -0.934, 0.814, 2.684, -2.418⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.947330 |

Adjusted Error | 2.155824 cents |

TE Error | 0.582586 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 60 | 95 | 139 | 168 | 207 | 222 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 44 | ] |

⟨ | 0 | 0 | -1 | -2 | -3 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨100.0927, 17.4045]
TE Step Tunings (cents)

⟨13.07009, 4.33444]
TE Tuning Map (cents)

[1201.113, 1901.762, 2785.192, 3368.344, 4151.681, 4438.889⟩
TE Mistunings (cents)

[1.113, -0.193, -1.122, -0.482, 0.363, -1.638⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.743623 |

Adjusted Error | 1.983030 cents |

TE Error | 0.535890 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | ] |

⟨ | 37 | 59 | 86 | 104 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | -13 | -4 | -4 | ] |

⟨ | 0 | 30 | 13 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4418, 583.5996]
TE Step Tunings (cents)

⟨14.76761, 3.70740]
TE Tuning Map (cents)

[1200.442, 1902.244, 2785.027, 3368.627⟩
TE Mistunings (cents)

[0.442, 0.289, -1.286, -0.199⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.010225 |

Adjusted Error | 1.031857 cents |

TE Error | 0.367555 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 37 | 59 | 86 | 104 | 128 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -13 | -4 | -4 | 2 | ] |

⟨ | 0 | 30 | 13 | 14 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4063, 583.5847]
TE Step Tunings (cents)

⟨14.67913, 3.87862]
TE Tuning Map (cents)

[1200.406, 1902.259, 2784.976, 3368.561, 4151.567⟩
TE Mistunings (cents)

[0.406, 0.304, -1.338, -0.265, 0.249⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.789379 |

Adjusted Error | 1.145234 cents |

TE Error | 0.331047 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 37 | 59 | 86 | 104 | 128 | 137 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | -13 | -4 | -4 | 2 | -7 | ] |

⟨ | 0 | 30 | 13 | 14 | 3 | 22 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6126, 583.6844]
TE Step Tunings (cents)

⟨14.70198, 3.83973]
TE Tuning Map (cents)

[1200.613, 1902.570, 2785.447, 3369.132, 4152.278, 4436.770⟩
TE Mistunings (cents)

[0.613, 0.615, -0.866, 0.306, 0.961, -3.758⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.196953 |

Adjusted Error | 2.018463 cents |

TE Error | 0.545466 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 65 | 103 | 151 | 225 | ] |

⟨ | 15 | 24 | 35 | 52 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 7 | 11 | 17 | ] |

⟨ | 0 | 3 | 2 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨239.9046, 74.0952]
TE Step Tunings (cents)

⟨17.61901, 3.61912]
TE Tuning Map (cents)

[1199.523, 1901.617, 2787.140, 4152.473⟩
TE Mistunings (cents)

[-0.477, -0.338, 0.827, 1.155⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.618120 |

Adjusted Error | 1.236829 cents |

TE Error | 0.357524 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 10 | 11 | 27 | 55 | ] |

⟨ | 0 | -32 | -33 | -92 | -196 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8877, 315.5238]
TE Step Tunings (cents)

⟨4.48670, -0.60644]
TE Tuning Map (cents)

[1199.888, 1902.116, 2786.480, 3368.780, 4151.163⟩
TE Mistunings (cents)

[-0.112, 0.161, 0.166, -0.046, -0.155⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 19.116050 |

Adjusted Error | 0.269492 cents |

TE Error | 0.077901 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 251 | 398 | 583 | 705 | 869 | 929 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 10 | 11 | 27 | 55 | 25 | ] |

⟨ | 0 | -32 | -33 | -92 | -196 | -81 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9285, 315.5348]
TE Step Tunings (cents)

⟨3.94779, 0.53396]
TE Tuning Map (cents)

[1199.929, 1902.172, 2786.566, 3368.870, 4151.251, 4439.896⟩
TE Mistunings (cents)

[-0.071, 0.217, 0.252, 0.044, -0.066, -0.632⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 17.482798 |

Adjusted Error | 0.386545 cents |

TE Error | 0.104459 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | ] |

⟨ | 140 | 222 | 325 | 393 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 11 | ] |

⟨ | 0 | 6 | 5 | -31 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9175, 317.0996]
TE Step Tunings (cents)

⟨3.00131, 7.43463]
TE Tuning Map (cents)

[1199.917, 1902.598, 2785.416, 3369.004⟩
TE Mistunings (cents)

[-0.083, 0.643, -0.898, 0.178⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.796764 |

Adjusted Error | 0.800088 cents |

TE Error | 0.284997 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 11 | -5 | ] |

⟨ | 0 | 6 | 5 | -31 | 32 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0987, 317.1881]
TE Step Tunings (cents)

⟨9.58670, 6.90671]
TE Tuning Map (cents)

[1200.099, 1903.129, 2786.039, 3368.255, 4149.525⟩
TE Mistunings (cents)

[0.099, 1.174, -0.275, -0.571, -1.793⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.678189 |

Adjusted Error | 1.452807 cents |

TE Error | 0.419955 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 11 | -5 | 0 | ] |

⟨ | 0 | 6 | 5 | -31 | 32 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0943, 317.1866]
TE Step Tunings (cents)

⟨9.57052, 6.93320]
TE Tuning Map (cents)

[1200.094, 1903.120, 2786.027, 3368.252, 4149.500, 4440.613⟩
TE Mistunings (cents)

[0.094, 1.165, -0.286, -0.574, -1.818, 0.085⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.194935 |

Adjusted Error | 1.419147 cents |

TE Error | 0.383508 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 224 | 355 | 520 | ] |

⟨ | 205 | 325 | 476 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | -5 | -4 | ] |

⟨ | 0 | 25 | 24 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0419, 316.0916]
TE Step Tunings (cents)

⟨3.47823, 2.05326]
TE Tuning Map (cents)

[1200.042, 1902.081, 2786.031⟩
TE Mistunings (cents)

[0.042, 0.126, -0.282⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.541892 |

Adjusted Error | 0.202736 cents |

TE Error | 0.087314 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | ] |

⟨ | 183 | 290 | 425 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 10 | 12 | ] |

⟨ | 0 | -20 | -23 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9479, 504.8912]
TE Step Tunings (cents)

⟨-0.88819, 6.64931]
TE Tuning Map (cents)

[1199.948, 1901.654, 2786.876⟩
TE Mistunings (cents)

[-0.052, -0.301, 0.562⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.423535 |

Adjusted Error | 0.418450 cents |

TE Error | 0.180216 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 730 | 1157 | 1695 | ] |

⟨ | 53 | 84 | 123 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 2 | 21 | ] |

⟨ | 0 | -1 | -45 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0116, 498.0873]
TE Step Tunings (cents)

⟨1.62765, 0.22321]
TE Tuning Map (cents)

[1200.012, 1901.936, 2786.315⟩
TE Mistunings (cents)

[0.012, -0.019, 0.001⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.990921 |

Adjusted Error | 0.022436 cents |

TE Error | 0.009663 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 8 | 13 | 19 | 23 | 28 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 3 | 4 | 6 | ] |

⟨ | 0 | 5 | 7 | 7 | 4 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.1691, 140.3920]
TE Step Tunings (cents)

⟨27.58869, 37.60110]
TE Tuning Map (cents)

[1198.338, 1900.298, 2780.251, 3379.420, 4156.582⟩
TE Mistunings (cents)

[-1.662, -1.657, -6.063, 10.594, 5.264⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.421891 |

Adjusted Error | 8.073023 cents |

TE Error | 2.333627 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 3 | 4 | 6 | 6 | ] |

⟨ | 0 | 5 | 7 | 7 | 4 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.2713, 140.3832]
TE Step Tunings (cents)

⟨27.16732, 37.73862]
TE Tuning Map (cents)

[1198.543, 1900.459, 2780.496, 3379.768, 4157.161, 4437.927⟩
TE Mistunings (cents)

[-1.457, -1.496, -5.817, 10.942, 5.843, -2.601⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.225216 |

Adjusted Error | 7.969480 cents |

TE Error | 2.153658 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 14 | 22 | 32 | 39 | 49 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 8 | 6 | -4 | ] |

⟨ | 0 | -4 | -16 | -9 | 21 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.4501, 426.5073]
TE Step Tunings (cents)

⟨36.14860, 5.77453]
TE Tuning Map (cents)

[1201.450, 1898.321, 2787.484, 3370.135, 4150.853⟩
TE Mistunings (cents)

[1.450, -3.634, 1.171, 1.309, -0.465⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.293619 |

Adjusted Error | 4.334363 cents |

TE Error | 1.252912 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | ] |

⟨ | 5 | 8 | 12 | 14 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 0 | 3 | ] |

⟨ | 0 | 3 | 12 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.9371, 232.3746]
TE Step Tunings (cents)

⟨39.06418, -2.01049]
TE Tuning Map (cents)

[1200.937, 1898.061, 2788.495, 3370.437⟩
TE Mistunings (cents)

[0.937, -3.894, 2.181, 1.611⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.188080 |

Adjusted Error | 4.001451 cents |

TE Error | 1.425346 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 18 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 0 | 3 | 0 | ] |

⟨ | 0 | 3 | 12 | -1 | 18 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.2016, 231.5487]
TE Step Tunings (cents)

⟨14.25923, 43.45790]
TE Tuning Map (cents)

[1201.202, 1895.848, 2778.585, 3372.056, 4167.877⟩
TE Mistunings (cents)

[1.202, -6.107, -7.729, 3.230, 16.559⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.411381 |

Adjusted Error | 11.114145 cents |

TE Error | 3.212708 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | 96 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 0 | 3 | 0 | 1 | ] |

⟨ | 0 | 3 | 12 | -1 | 18 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.1585, 231.5163]
TE Step Tunings (cents)

⟨13.63084, 43.57709]
TE Tuning Map (cents)

[1201.159, 1895.707, 2778.195, 3371.959, 4167.293, 4442.387⟩
TE Mistunings (cents)

[1.159, -6.248, -8.118, 3.133, 15.975, 1.859⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.262379 |

Adjusted Error | 10.886186 cents |

TE Error | 2.941863 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 20 | 32 | 47 | 57 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 7 | 10 | 15 | 17 | ] |

⟨ | 0 | -12 | -17 | -27 | -30 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1196, 541.8260]
TE Step Tunings (cents)

⟨35.44409, 5.06764]
TE Tuning Map (cents)

[1200.120, 1898.925, 2790.154, 3372.491, 4147.253⟩
TE Mistunings (cents)

[0.120, -3.030, 3.840, 3.665, -4.065⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.417715 |

Adjusted Error | 4.765950 cents |

TE Error | 1.377668 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 20 | 32 | 47 | 57 | 70 | 75 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 7 | 10 | 15 | 17 | 15 | ] |

⟨ | 0 | -12 | -17 | -27 | -30 | -25 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.4530, 541.5309]
TE Step Tunings (cents)

⟨35.54004, 4.88559]
TE Tuning Map (cents)

[1199.453, 1897.801, 2788.506, 3370.462, 4144.776, 4453.524⟩
TE Mistunings (cents)

[-0.547, -4.154, 2.192, 1.636, -6.542, 12.996⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.121970 |

Adjusted Error | 7.448625 cents |

TE Error | 2.012903 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 13 | 19 | ||
---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 196 | 225 | ] |

⟨ | 24 | 38 | 56 | 89 | 102 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 13 | 19 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | 1 | 3 | ] |

⟨ | 0 | -2 | 16 | 13 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2613, 249.1909]
TE Step Tunings (cents)

⟨20.72632, 4.24026]
TE Tuning Map (cents)

[1200.261, 1902.141, 2786.792, 4439.742, 5095.929⟩
TE Mistunings (cents)

[0.261, 0.186, 0.479, -0.785, -1.584⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.867583 |

Adjusted Error | 1.055341 cents |

TE Error | 0.248437 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 13 | 19 | 37 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 196 | 225 | 276 | ] |

⟨ | 24 | 38 | 56 | 89 | 102 | 125 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 13 | 19 | 37 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | 1 | 3 | 5 | ] |

⟨ | 0 | -2 | 16 | 13 | 6 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2990, 249.1928]
TE Step Tunings (cents)

⟨20.86804, 3.92888]
TE Tuning Map (cents)

[1200.299, 1902.212, 2786.786, 4439.805, 5096.054, 6250.688⟩
TE Mistunings (cents)

[0.299, 0.257, 0.472, -0.723, -1.459, -0.656⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.713536 |

Adjusted Error | 1.220018 cents |

TE Error | 0.234193 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 13 | 37 | ||
---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 196 | 276 | ] |

⟨ | 77 | 122 | 179 | 285 | 401 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 13 | 37 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | 1 | 5 | ] |

⟨ | 0 | -2 | 16 | 13 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2237, 249.1807]
TE Step Tunings (cents)

⟨16.66551, 4.11625]
TE Tuning Map (cents)

[1200.224, 1902.086, 2786.667, 4439.573, 6250.299⟩
TE Mistunings (cents)

[0.224, 0.131, 0.354, -0.955, -1.045⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.966926 |

Adjusted Error | 1.007191 cents |

TE Error | 0.193339 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |

⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 2 | 0 | ] |

⟨ | 0 | 6 | 5 | 3 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.7103, 318.1084]
TE Step Tunings (cents)

⟨70.72327, 35.21530]
TE Tuning Map (cents)

[1201.710, 1908.650, 2792.252, 3357.746, 4135.409⟩
TE Mistunings (cents)

[1.710, 6.695, 5.939, -11.080, -15.909⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.484613 |

Adjusted Error | 12.380360 cents |

TE Error | 3.578727 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 2 | 0 | 0 | ] |

⟨ | 0 | 6 | 5 | 3 | 13 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.9930, 317.8250]
TE Step Tunings (cents)

⟨28.70966, 40.59726]
TE Tuning Map (cents)

[1201.993, 1906.950, 2791.118, 3357.461, 4131.725, 4449.550⟩
TE Mistunings (cents)

[1.993, 4.995, 4.804, -11.365, -19.593, 9.022⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.484504 |

Adjusted Error | 12.871553 cents |

TE Error | 3.478385 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 190 | 301 | 441 | 533 | 657 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 10 | 14 | 21 | 24 | 32 | ] |

⟨ | 0 | 5 | 6 | 11 | 7 | ] ⟩ |

TE Generator Tunings (cents)

⟨120.0004, 44.4185]
TE Step Tunings (cents)

⟨3.94768, 0.70595]
TE Tuning Map (cents)

[1200.004, 1902.099, 2786.520, 3368.614, 4150.943⟩
TE Mistunings (cents)

[0.004, 0.144, 0.206, -0.212, -0.375⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.258840 |

Adjusted Error | 0.283382 cents |

TE Error | 0.081916 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 10 | 14 | 21 | 24 | 32 | 37 | ] |

⟨ | 0 | 5 | 6 | 11 | 7 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨120.0067, 44.4006]
TE Step Tunings (cents)

⟨3.56471, 1.25050]
TE Tuning Map (cents)

[1200.067, 1902.096, 2786.544, 3368.567, 4151.018, 4440.247⟩
TE Mistunings (cents)

[0.067, 0.141, 0.230, -0.259, -0.300, -0.281⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 14.908712 |

Adjusted Error | 0.317019 cents |

TE Error | 0.085671 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |

⟨ | 190 | 301 | 441 | 533 | 657 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 24 | 29 | 36 | ] |

⟨ | 0 | -1 | -5 | -6 | -9 | ] ⟩ |

TE Generator Tunings (cents)

⟨120.0208, 18.7632]
TE Step Tunings (cents)

⟨3.56180, 3.87986]
TE Tuning Map (cents)

[1200.208, 1901.569, 2786.683, 3368.023, 4151.879⟩
TE Mistunings (cents)

[0.208, -0.386, 0.369, -0.802, 0.561⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.049777 |

Adjusted Error | 0.751108 cents |

TE Error | 0.217119 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 24 | 29 | 36 | 37 | ] |

⟨ | 0 | -1 | -5 | -6 | -9 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨120.0182, 18.7510]
TE Step Tunings (cents)

⟨3.78548, 3.72668]
TE Tuning Map (cents)

[1200.182, 1901.540, 2786.682, 3368.022, 4151.897, 4440.674⟩
TE Mistunings (cents)

[0.182, -0.415, 0.368, -0.804, 0.579, 0.146⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.751846 |

Adjusted Error | 0.737430 cents |

TE Error | 0.199282 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 14 | ] |

⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 4 | 5 | 7 | ] |

⟨ | 0 | 2 | 1 | 1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.5822, 356.2589]
TE Step Tunings (cents)

⟨17.45174, 112.93573]
TE Tuning Map (cents)

[1199.164, 1911.682, 2754.588, 3354.170, 4197.075⟩
TE Mistunings (cents)

[-0.836, 9.727, -31.726, -14.656, 45.757⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.923713 |

Adjusted Error | 31.979188 cents |

TE Error | 9.244058 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | ] |

⟨ | 10 | 16 | 23 | 28 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 4 | 5 | ] |

⟨ | 0 | 2 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨603.3490, 350.3879]
TE Step Tunings (cents)

⟨58.10758, 97.42676]
TE Tuning Map (cents)

[1206.698, 1907.474, 2763.784, 3367.133⟩
TE Mistunings (cents)

[6.698, 5.519, -22.530, -1.693⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.919674 |

Adjusted Error | 17.277237 cents |

TE Error | 6.154276 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |

⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 4 | 5 | 4 | ] |

⟨ | 0 | 2 | 1 | 1 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨603.6249, 348.6008]
TE Step Tunings (cents)

⟨67.87058, 93.57675]
TE Tuning Map (cents)

[1207.250, 1904.452, 2763.101, 3366.726, 4157.504⟩
TE Mistunings (cents)

[7.250, 2.497, -23.213, -2.100, 6.186⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.107518 |

Adjusted Error | 19.492663 cents |

TE Error | 5.634643 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 14 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 4 | 5 | 8 | ] |

⟨ | 0 | 2 | 1 | 1 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨604.6073, 347.5822]
TE Step Tunings (cents)

⟨-14.64658, 90.55721]
TE Tuning Map (cents)

[1209.215, 1904.379, 2766.011, 3370.619, 4141.694⟩
TE Mistunings (cents)

[9.215, 2.424, -20.302, 1.793, -9.624⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.192936 |

Adjusted Error | 20.281104 cents |

TE Error | 5.862554 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | ] |

⟨ | 130 | 206 | 302 | 365 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | ] |

⟨ | 0 | -2 | 3 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨119.9913, 8.9006]
TE Step Tunings (cents)

⟨4.28317, 0.33428]
TE Tuning Map (cents)

[1199.913, 1902.060, 2786.502, 3368.657⟩
TE Mistunings (cents)

[-0.087, 0.105, 0.188, -0.169⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.153794 |

Adjusted Error | 0.208667 cents |

TE Error | 0.074329 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | 34 | ] |

⟨ | 0 | -2 | 3 | 1 | 8 | ] ⟩ |

TE Generator Tunings (cents)

⟨119.9921, 8.9294]
TE Step Tunings (cents)

⟨3.90929, 1.11088]
TE Tuning Map (cents)

[1199.921, 1902.015, 2786.607, 3368.709, 4151.167⟩
TE Mistunings (cents)

[-0.079, 0.060, 0.293, -0.117, -0.150⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 12.066818 |

Adjusted Error | 0.255326 cents |

TE Error | 0.073806 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | 34 | 37 | ] |

⟨ | 0 | -2 | 3 | 1 | 8 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨119.9964, 8.9165]
TE Step Tunings (cents)

⟨4.08155, 0.75342]
TE Tuning Map (cents)

[1199.964, 1902.109, 2786.667, 3368.816, 4151.210, 4439.867⟩
TE Mistunings (cents)

[-0.036, 0.154, 0.353, -0.010, -0.108, -0.661⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 11.197247 |

Adjusted Error | 0.390407 cents |

TE Error | 0.105503 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -5 | 12 | 27 | ] |

⟨ | 0 | 1 | 0 | 2 | -1 | -3 | ] |

⟨ | 0 | 0 | 1 | 2 | -3 | -8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.7549, 1901.6515, 2784.5682]
TE Step Tunings (cents)

⟨13.73960, 5.18024, -0.09851]
TE Tuning Map (cents)

[1200.755, 1901.651, 2784.568, 3368.665, 4153.702, 4438.881⟩
TE Mistunings (cents)

[0.755, -0.304, -1.745, -0.161, 2.384, -1.647⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.255259 |

Adjusted Error | 2.053601 cents |

TE Error | 0.554961 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | ] |

⟨ | 3 | 5 | 7 | 8 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 8 | ] |

⟨ | 0 | -1 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨402.0601, 118.9804]
TE Step Tunings (cents)

⟨118.98037, 45.11901]
TE Tuning Map (cents)

[1206.180, 1891.320, 2814.421, 3335.461⟩
TE Mistunings (cents)

[6.180, -10.635, 28.107, -33.365⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.061595 |

Adjusted Error | 27.036638 cents |

TE Error | 9.630645 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 80 | 127 | 186 | 225 | 277 | ] |

⟨ | 60 | 95 | 139 | 168 | 207 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 20 | 32 | 47 | 57 | 70 | ] |

⟨ | 0 | -1 | -2 | -3 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨59.9929, 16.7666]
TE Step Tunings (cents)

⟨9.69314, 7.07344]
TE Tuning Map (cents)

[1199.858, 1903.006, 2786.133, 3369.295, 4149.203⟩
TE Mistunings (cents)

[-0.142, 1.051, -0.181, 0.470, -2.115⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.396047 |

Adjusted Error | 1.441182 cents |

TE Error | 0.416595 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 140 | 222 | 325 | 393 | 484 | 518 | ] |

⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 20 | 32 | 47 | 57 | 70 | 74 | ] |

⟨ | 0 | -1 | -2 | -3 | -3 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨59.9996, 16.9197]
TE Step Tunings (cents)

⟨7.67911, 1.56145]
TE Tuning Map (cents)

[1199.992, 1903.067, 2786.141, 3369.218, 4149.212, 4439.970⟩
TE Mistunings (cents)

[-0.008, 1.112, -0.172, 0.392, -2.106, -0.558⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.466997 |

Adjusted Error | 1.441653 cents |

TE Error | 0.389590 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | ] |

⟨ | 17 | 27 | 40 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 3 | 4 | ] |

⟨ | 0 | -6 | -7 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.1991, 283.8664]
TE Step Tunings (cents)

⟨32.93199, 62.73360]
TE Tuning Map (cents)

[1198.199, 1891.399, 2805.732⟩
TE Mistunings (cents)

[-1.801, -10.556, 19.418⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.635840 |

Adjusted Error | 14.533727 cents |

TE Error | 6.259336 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | ] |

⟨ | 27 | 43 | 63 | 76 | ] |

⟨ | 10 | 16 | 23 | 28 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | 1 | ] |

⟨ | 0 | 1 | 0 | 1 | ] |

⟨ | 0 | 0 | 3 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7590, 1903.7715, 129.7983]
TE Step Tunings (cents)

⟨27.88381, 23.44660, 3.69085]
TE Tuning Map (cents)

[1199.759, 1903.772, 2788.913, 3363.127⟩
TE Mistunings (cents)

[-0.241, 1.817, 2.599, -5.699⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.130368 |

Adjusted Error | 3.645614 cents |

TE Error | 1.298594 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | 35 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | ] |

⟨ | 27 | 43 | 63 | 76 | 94 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | 1 | -3 | ] |

⟨ | 0 | 1 | 0 | 1 | 4 | ] |

⟨ | 0 | 0 | 3 | 2 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.4063, 1904.5751, 129.9744]
TE Step Tunings (cents)

⟨6.27906, 23.35729, 25.66027]
TE Tuning Map (cents)

[1199.406, 1904.575, 2788.736, 3363.930, 4150.056⟩
TE Mistunings (cents)

[-0.594, 2.620, 2.422, -4.896, -1.262⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.198434 |

Adjusted Error | 4.193645 cents |

TE Error | 1.212235 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |

⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | 1 | -3 | 2 | ] |

⟨ | 0 | 1 | 0 | 1 | 4 | 1 | ] |

⟨ | 0 | 0 | 3 | 2 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0478, 1905.1888, 129.6779]
TE Step Tunings (cents)

⟨17.68683, 23.80469, 7.63005]
TE Tuning Map (cents)

[1200.048, 1905.189, 2789.129, 3364.592, 4150.290, 4434.962⟩
TE Mistunings (cents)

[0.048, 3.234, 2.816, -4.234, -1.028, -5.565⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.171286 |

Adjusted Error | 4.838926 cents |

TE Error | 1.307662 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | 41 | ] |

⟨ | 27 | 43 | 63 | 76 | 94 | 100 | 111 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | 70 | 77 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | 1 | -3 | 2 | -1 | ] |

⟨ | 0 | 1 | 0 | 1 | 4 | 1 | 3 | ] |

⟨ | 0 | 0 | 3 | 2 | 1 | 1 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0341, 1905.2007, 129.7033]
TE Step Tunings (cents)

⟨7.54276, 23.94571, 25.16170]
TE Tuning Map (cents)

[1200.034, 1905.201, 2789.178, 3364.641, 4150.404, 4434.972, 4904.678⟩
TE Mistunings (cents)

[0.034, 3.246, 2.864, -4.185, -0.914, -5.556, -0.278⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.163832 |

Adjusted Error | 4.950143 cents |

TE Error | 1.211055 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | ||
---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | 111 | 115 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | 70 | 77 | 80 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | ||
---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | 1 | -3 | 2 | -1 | -2 | ] |

⟨ | 0 | 1 | 0 | 1 | 4 | 1 | 3 | 4 | ] |

⟨ | 0 | 0 | 3 | 2 | 1 | 1 | 3 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2266, 1905.8251, 129.2935]
TE Step Tunings (cents)

⟨22.54582, 11.51404, 13.55696]
TE Tuning Map (cents)

[1200.227, 1905.825, 2788.334, 3364.639, 4151.914, 4435.572, 4905.129, 5093.553⟩
TE Mistunings (cents)

[0.227, 3.870, 2.020, -4.187, 0.596, -4.956, 0.174, -3.960⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.171566 |

Adjusted Error | 5.134734 cents |

TE Error | 1.208762 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |

⟨ | 0 | 1 | 1 | 1 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨299.6589, 89.7791]
TE Step Tunings (cents)

⟨89.77912, 30.32157]
TE Tuning Map (cents)

[1198.636, 1887.733, 2786.709, 3386.027, 4164.903⟩
TE Mistunings (cents)

[-1.364, -14.222, 0.396, 17.201, 13.585⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.158119 |

Adjusted Error | 18.000718 cents |

TE Error | 5.203374 cents/octave |

Equal Temperament Mappings

2 | 9 | 5 | 7 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 6 | 19 | 14 | 17 | 22 | ] |

⟨ | 19 | 60 | 44 | 53 | 70 | ] ⟩ |

Reduced Mapping

2 | 9 | 5 | 7 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 2 | 2 | 4 | ] |

⟨ | 0 | 1 | 2 | 5 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1203.3657, 191.5946]
TE Step Tunings (cents)

⟨30.19977, 53.79827]
TE Tuning Map (cents)

[1203.366, 3801.692, 2789.920, 3364.704, 4430.274⟩
TE Mistunings (cents)

[3.366, -2.218, 3.607, -4.122, -10.254⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.789857 |

Adjusted Error | 8.118179 cents |

TE Error | 2.193842 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | -3 | 2 | 7 | ] |

⟨ | 0 | 1 | 1 | 4 | 1 | -2 | ] |

⟨ | 0 | 0 | 2 | 4 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.9152, 1902.4287, -159.1261]
TE Step Tunings (cents)

⟨9.20691, 12.81646, 8.14581]
TE Tuning Map (cents)

[1200.915, 1902.429, 2785.092, 3370.465, 4145.133, 4442.423⟩
TE Mistunings (cents)

[0.915, 0.474, -1.222, 1.639, -6.185, 1.895⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.221633 |

Adjusted Error | 3.379180 cents |

TE Error | 0.913183 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 46 | 73 | 107 | 129 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 5 | 7 | ] |

⟨ | 0 | 1 | -2 | -8 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.4466, 103.5853]
TE Step Tunings (cents)

⟨15.32554, 22.06493]
TE Tuning Map (cents)

[1198.893, 1901.925, 2790.062, 3367.444⟩
TE Mistunings (cents)

[-1.107, -0.030, 3.749, -1.382⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.627079 |

Adjusted Error | 2.833293 cents |

TE Error | 1.009239 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 5 | 7 | 9 | ] |

⟨ | 0 | 1 | -2 | -8 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.4488, 103.6189]
TE Step Tunings (cents)

⟨14.55982, 22.26478]
TE Tuning Map (cents)

[1198.898, 1901.965, 2790.006, 3367.190, 4151.612⟩
TE Mistunings (cents)

[-1.102, 0.010, 3.692, -1.636, 0.294⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.192346 |

Adjusted Error | 3.129178 cents |

TE Error | 0.904535 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 5 | 7 | 9 | 10 | ] |

⟨ | 0 | 1 | -2 | -8 | -12 | -15 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.4468, 103.6080]
TE Step Tunings (cents)

⟨14.80203, 7.39947]
TE Tuning Map (cents)

[1198.894, 1901.948, 2790.018, 3367.263, 4151.724, 4440.347⟩
TE Mistunings (cents)

[-1.106, -0.007, 3.704, -1.563, 0.406, -0.181⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.561293 |

Adjusted Error | 3.057136 cents |

TE Error | 0.826155 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 8 | 10 | ] |

⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 4 | 5 | ] |

⟨ | 0 | 2 | 1 | -4 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1197.8896, 360.0244]
TE Step Tunings (cents)

⟨6.57532, 117.81636]
TE Tuning Map (cents)

[1197.890, 1917.938, 2755.804, 3351.461, 4189.326⟩
TE Mistunings (cents)

[-2.110, 15.983, -30.510, -17.365, 38.008⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.061977 |

Adjusted Error | 32.370346 cents |

TE Error | 9.357129 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | ] |

⟨ | 7 | 11 | 16 | 20 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 4 | ] |

⟨ | 0 | 2 | 1 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.9794, 356.5546]
TE Step Tunings (cents)

⟨93.92316, 37.39254]
TE Tuning Map (cents)

[1200.979, 1914.089, 2758.513, 3377.699⟩
TE Mistunings (cents)

[0.979, 12.134, -27.800, 8.873⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.972583 |

Adjusted Error | 20.481512 cents |

TE Error | 7.295662 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |

⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 4 | 2 | ] |

⟨ | 0 | 2 | 1 | -4 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7252, 354.1814]
TE Step Tunings (cents)

⟨57.36200, 79.81912]
TE Tuning Map (cents)

[1199.725, 1908.088, 2753.632, 3382.175, 4170.357⟩
TE Mistunings (cents)

[-0.275, 6.133, -32.682, 13.350, 19.039⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.030746 |

Adjusted Error | 25.235583 cents |

TE Error | 7.294719 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | ] |

⟨ | 3 | 5 | 7 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | ] |

⟨ | 0 | 2 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1206.4097, 350.4563]
TE Step Tunings (cents)

⟨155.04084, 40.37461]
TE Tuning Map (cents)

[1206.410, 1907.322, 2763.276⟩
TE Mistunings (cents)

[6.410, 5.367, -23.038⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.520928 |

Adjusted Error | 16.472965 cents |

TE Error | 7.094520 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | ] |

⟨ | 3 | 5 | 7 | 9 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 2 | ] |

⟨ | 0 | 2 | 1 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1206.2462, 338.1317]
TE Step Tunings (cents)

⟨191.85106, 146.28064]
TE Tuning Map (cents)

[1206.246, 1882.510, 2750.624, 3426.887⟩
TE Mistunings (cents)

[6.246, -19.445, -35.690, 58.062⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.500706 |

Adjusted Error | 41.008929 cents |

TE Error | 14.607675 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |

⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 2 | 2 | ] |

⟨ | 0 | 2 | 1 | 3 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1204.1482, 343.3072]
TE Step Tunings (cents)

⟨169.08063, 174.22658]
TE Tuning Map (cents)

[1204.148, 1890.763, 2751.604, 3438.218, 4124.833⟩
TE Mistunings (cents)

[4.148, -11.192, -34.710, 69.392, -26.485⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.540188 |

Adjusted Error | 47.938641 cents |

TE Error | 13.857375 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 1 | 2 | 3 | 3 | 4 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 3 | 4 | ] |

⟨ | 0 | -13 | -21 | -6 | -17 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.5005, 38.5809]
TE Step Tunings (cents)

⟨38.58088, 4.49313]
TE Tuning Map (cents)

[1200.500, 1899.449, 2791.303, 3370.016, 4146.127⟩
TE Mistunings (cents)

[0.500, -2.506, 4.989, 1.190, -5.191⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.454361 |

Adjusted Error | 4.842669 cents |

TE Error | 1.399845 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 3 | 3 | 4 | 4 | ] |

⟨ | 0 | -13 | -21 | -6 | -17 | -9 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3181, 38.4218]
TE Step Tunings (cents)

⟨38.42184, 8.24110]
TE Tuning Map (cents)

[1199.318, 1899.152, 2791.096, 3367.423, 4144.101, 4451.476⟩
TE Mistunings (cents)

[-0.682, -2.803, 4.782, -1.403, -7.217, 10.948⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.283704 |

Adjusted Error | 6.953864 cents |

TE Error | 1.879199 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | ] |

⟨ | 4 | 6 | 9 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | ] |

⟨ | 0 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨299.6536, 99.3923]
TE Step Tunings (cents)

⟨99.39225, 1.47683]
TE Tuning Map (cents)

[1198.614, 1897.314, 2796.275⟩
TE Mistunings (cents)

[-1.386, -4.641, 9.961⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.054166 |

Adjusted Error | 7.206471 cents |

TE Error | 3.103658 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 4 | 6 | 9 | 11 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | ] |

⟨ | 0 | 1 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨299.0548, 99.2099]
TE Step Tunings (cents)

⟨99.20990, 1.42513]
TE Tuning Map (cents)

[1196.219, 1893.539, 2790.703, 3388.813⟩
TE Mistunings (cents)

[-3.781, -8.416, 4.390, 19.987⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.914754 |

Adjusted Error | 13.806908 cents |

TE Error | 4.918120 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 8 | 13 | 19 | 23 | 28 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 14 | ] |

⟨ | 0 | 1 | 1 | 1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨297.8775, 108.2476]
TE Step Tunings (cents)

⟨81.38235, 26.86521]
TE Tuning Map (cents)

[1191.510, 1895.512, 2789.145, 3384.900, 4170.285⟩
TE Mistunings (cents)

[-8.490, -6.443, 2.831, 16.074, 18.967⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.000471 |

Adjusted Error | 19.132446 cents |

TE Error | 5.530517 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 4 | 7 | 10 | 12 | 14 | 15 | ] |

⟨ | 0 | -1 | -1 | -1 | 0 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨297.2914, 184.5453]
TE Step Tunings (cents)

⟨40.94707, 71.79909]
TE Tuning Map (cents)

[1189.166, 1896.495, 2788.369, 3382.952, 4162.080, 4459.371⟩
TE Mistunings (cents)

[-10.834, -5.460, 2.055, 14.126, 10.762, 18.844⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.009635 |

Adjusted Error | 20.876177 cents |

TE Error | 5.641540 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | ] |

⟨ | 50 | 79 | 116 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 6 | 3 | ] |

⟨ | 0 | -13 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2973, 407.6749]
TE Step Tunings (cents)

⟨21.31014, 1.41719]
TE Tuning Map (cents)

[1200.297, 1902.010, 2785.542⟩
TE Mistunings (cents)

[0.297, 0.055, -0.772⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.679404 |

Adjusted Error | 0.599564 cents |

TE Error | 0.258218 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 50 | 79 | 116 | 140 | 173 | 185 | ] |

⟨ | 3 | 5 | 7 | 8 | 10 | 11 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 3 | -4 | -3 | 2 | ] |

⟨ | 0 | -13 | -2 | 20 | 19 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.3993, 408.3627]
TE Step Tunings (cents)

⟨23.68886, 5.65206]
TE Tuning Map (cents)

[1201.399, 1899.680, 2787.472, 3361.657, 4154.694, 4444.612⟩
TE Mistunings (cents)

[1.399, -2.275, 1.159, -7.169, 3.376, 4.084⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.939798 |

Adjusted Error | 5.438048 cents |

TE Error | 1.469568 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 183 | 196 | ] |

⟨ | 50 | 79 | 116 | 173 | 185 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 3 | -3 | 2 | ] |

⟨ | 0 | -13 | -2 | 19 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.8035, 407.9652]
TE Step Tunings (cents)

⟨15.40068, 7.69134]
TE Tuning Map (cents)

[1200.803, 1901.274, 2786.480, 4148.928, 4441.433⟩
TE Mistunings (cents)

[0.803, -0.681, 0.166, -2.390, 0.905⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.447208 |

Adjusted Error | 1.938898 cents |

TE Error | 0.523964 cents/octave |

Contorted Magic (order 2)

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | ] |

⟨ | 60 | 95 | 139 | 168 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 5 | 10 | ] |

⟨ | 0 | -5 | -1 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.5412, 219.8461]
TE Step Tunings (cents)

⟨10.57050, 16.14219]
TE Tuning Map (cents)

[1201.082, 1903.476, 2782.860, 3367.259⟩
TE Mistunings (cents)

[1.082, 1.521, -3.454, -1.567⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.597358 |

Adjusted Error | 3.015814 cents |

TE Error | 1.074254 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 38 | 60 | 88 | 106 | 131 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 5 | 10 | 8 | ] |

⟨ | 0 | -5 | -1 | -12 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.8336, 220.0719]
TE Step Tunings (cents)

⟨24.46975, 17.45613]
TE Tuning Map (cents)

[1201.667, 1903.809, 2784.096, 3367.474, 4146.453⟩
TE Mistunings (cents)

[1.667, 1.854, -2.217, -1.352, -4.865⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.333439 |

Adjusted Error | 4.171165 cents |

TE Error | 1.205737 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | 82 | ] |

⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 5 | 10 | 8 | 14 | ] |

⟨ | 0 | -5 | -1 | -12 | -3 | -18 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.9670, 220.4344]
TE Step Tunings (cents)

⟨18.51483, 20.91073]
TE Tuning Map (cents)

[1201.934, 1902.663, 2784.401, 3364.457, 4146.433, 4445.718⟩
TE Mistunings (cents)

[1.934, 0.708, -1.913, -4.369, -4.885, 5.191⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.826548 |

Adjusted Error | 5.010982 cents |

TE Error | 1.354158 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 289 | 458 | 671 | ] |

⟨ | 494 | 783 | 1147 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 12 | 5 | ] |

⟨ | 0 | -35 | -9 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0201, 357.0937]
TE Step Tunings (cents)

⟨1.33149, 1.65024]
TE Tuning Map (cents)

[1200.020, 1901.962, 2786.257⟩
TE Mistunings (cents)

[0.020, 0.007, -0.057⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.626986 |

Adjusted Error | 0.042694 cents |

TE Error | 0.018387 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 84 | 133 | 195 | 311 | ] |

⟨ | 121 | 192 | 281 | 448 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 12 | 5 | 4 | ] |

⟨ | 0 | -35 | -9 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7711, 357.0070]
TE Step Tunings (cents)

⟨6.08352, 5.69219]
TE Tuning Map (cents)

[1199.771, 1902.009, 2785.793, 4442.077⟩
TE Mistunings (cents)

[-0.229, 0.054, -0.521, 1.550⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.094965 |

Adjusted Error | 0.977824 cents |

TE Error | 0.264245 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 171 | 271 | 397 | 480 | ] |

⟨ | 1335 | 2116 | 3100 | 3748 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 3 | -3 | -9 | -8 | ] |

⟨ | 0 | 17 | 35 | 36 | ] ⟩ |

TE Generator Tunings (cents)

⟨400.0013, 182.4672]
TE Step Tunings (cents)

⟨2.33972, 0.59919]
TE Tuning Map (cents)

[1200.004, 1901.939, 2786.342, 3368.810⟩
TE Mistunings (cents)

[0.004, -0.016, 0.028, -0.016⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 17.348590 |

Adjusted Error | 0.023954 cents |

TE Error | 0.008533 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 5 | 8 | 12 | 14 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 2 | ] |

⟨ | 0 | -1 | -4 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1195.4122, 496.5212]
TE Step Tunings (cents)

⟨91.78184, 18.80602]
TE Tuning Map (cents)

[1195.412, 1894.303, 2795.564, 3383.867⟩
TE Mistunings (cents)

[-4.588, -7.652, 9.250, 15.041⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.897840 |

Adjusted Error | 13.237136 cents |

TE Error | 4.715163 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 5 | 8 | 12 | 14 | 17 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 2 | 1 | ] |

⟨ | 0 | -1 | -4 | 2 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1194.1045, 494.3059]
TE Step Tunings (cents)

⟨83.32039, 38.85196]
TE Tuning Map (cents)

[1194.105, 1893.903, 2799.195, 3376.821, 4159.940⟩
TE Mistunings (cents)

[-5.895, -8.052, 12.881, 7.995, 8.622⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.178787 |

Adjusted Error | 15.902907 cents |

TE Error | 4.596971 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |

⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 2 | 6 | 5 | ] |

⟨ | 0 | -1 | -4 | 2 | -6 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1193.3659, 498.6835]
TE Step Tunings (cents)

⟨106.68574, 89.31315]
TE Tuning Map (cents)

[1193.366, 1888.048, 2778.730, 3384.099, 4168.094, 4470.779⟩
TE Mistunings (cents)

[-6.634, -13.907, -7.584, 15.273, 16.776, 30.251⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.882143 |

Adjusted Error | 23.963119 cents |

TE Error | 6.475749 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 7 | 11 | 16 | 20 | 24 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 2 | 6 | ] |

⟨ | 0 | -1 | -4 | 2 | -6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1194.8521, 499.0733]
TE Step Tunings (cents)

⟨91.04309, 14.61929]
TE Tuning Map (cents)

[1194.852, 1890.631, 2783.115, 3387.851, 4174.673⟩
TE Mistunings (cents)

[-5.148, -11.324, -3.199, 19.025, 23.355⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.963541 |

Adjusted Error | 20.227906 cents |

TE Error | 5.847176 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 17 | 19 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | 44 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 2 | 1 | 7 | ] |

⟨ | 0 | -1 | -4 | 2 | 6 | -8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1195.1591, 493.0981]
TE Step Tunings (cents)

⟨58.61804, 75.17241]
TE Tuning Map (cents)

[1195.159, 1897.220, 2808.244, 3376.515, 4153.748, 4421.329⟩
TE Mistunings (cents)

[-4.841, -4.735, 21.930, 7.689, 2.430, -19.199⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.349678 |

Adjusted Error | 18.897365 cents |

TE Error | 5.106789 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 494 | 783 | 1147 | 1387 | 1709 | 1828 | ] |

⟨ | 684 | 1084 | 1588 | 1920 | 2366 | 2531 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 1 | -2 | 2 | 7 | ] |

⟨ | 0 | 1 | 0 | 7 | 5 | 3 | ] |

⟨ | 0 | 0 | 2 | -8 | -6 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0175, 1901.9810, 1093.1197]
TE Step Tunings (cents)

⟨0.75195, 0.82817, 0.85949]
TE Tuning Map (cents)

[1200.035, 1901.981, 2786.257, 3368.874, 4151.222, 4440.467⟩
TE Mistunings (cents)

[0.035, 0.026, -0.057, 0.049, -0.096, -0.061⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.726719 |

Adjusted Error | 0.088505 cents |

TE Error | 0.023917 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 3 | 1 | 3 | 2 | ] |

⟨ | 0 | 14 | -6 | 16 | 4 | 15 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6935, 135.8013]
TE Step Tunings (cents)

⟨6.69403, 21.51787]
TE Tuning Map (cents)

[1200.694, 1901.218, 2787.273, 3373.514, 4145.286, 4438.406⟩
TE Mistunings (cents)

[0.694, -0.737, 0.959, 4.688, -6.032, -2.122⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.781183 |

Adjusted Error | 4.004279 cents |

TE Error | 1.082109 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | ] |

⟨ | 26 | 41 | 60 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 2 | 5 | 6 | ] |

⟨ | 0 | -4 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.6864, 274.7945]
TE Step Tunings (cents)

⟨31.79016, 19.30728]
TE Tuning Map (cents)

[1201.373, 1904.254, 2779.735⟩
TE Mistunings (cents)

[1.373, 2.299, -6.579⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.058442 |

Adjusted Error | 4.647023 cents |

TE Error | 2.001364 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | ] |

⟨ | 4 | 6 | 9 | 11 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 6 | 7 | ] |

⟨ | 0 | -4 | -3 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0467, 274.3022]
TE Step Tunings (cents)

⟨51.44224, 17.09105]
TE Tuning Map (cents)

[1200.093, 1903.025, 2777.374, 3377.420⟩
TE Mistunings (cents)

[0.093, 1.070, -8.940, 8.594⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.793221 |

Adjusted Error | 6.970653 cents |

TE Error | 2.482997 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 26 | 41 | 60 | 73 | 90 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 6 | 7 | 6 | ] |

⟨ | 0 | -4 | -3 | -3 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.1922, 274.5431]
TE Step Tunings (cents)

⟨32.09258, 19.01337]
TE Tuning Map (cents)

[1200.384, 1902.788, 2777.524, 3377.716, 4150.239⟩
TE Mistunings (cents)

[0.384, 0.833, -8.790, 8.890, -1.079⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.154473 |

Adjusted Error | 7.717000 cents |

TE Error | 2.230713 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -2 | -6 | ] |

⟨ | 0 | 2 | 0 | 9 | 9 | ] |

⟨ | 0 | 0 | 1 | -1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3884, 950.8215, 2788.2598]
TE Step Tunings (cents)

⟨12.50657, 10.18078, -1.92865]
TE Tuning Map (cents)

[1199.388, 1901.643, 2788.260, 3370.357, 4149.323⟩
TE Mistunings (cents)

[-0.612, -0.312, 1.946, 1.531, -1.995⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.308475 |

Adjusted Error | 2.043853 cents |

TE Error | 0.590806 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |

⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -2 | -6 | -1 | ] |

⟨ | 0 | 2 | 0 | 9 | 9 | 3 | ] |

⟨ | 0 | 0 | 1 | -1 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3566, 950.7994, 2788.1041]
TE Step Tunings (cents)

⟨12.24569, 8.61908, 1.69975]
TE Tuning Map (cents)

[1199.357, 1901.599, 2788.104, 3370.377, 4149.159, 4441.146⟩
TE Mistunings (cents)

[-0.643, -0.356, 1.790, 1.551, -2.159, 0.618⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.268371 |

Adjusted Error | 2.016510 cents |

TE Error | 0.544938 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 12 | 19 | 28 | 34 | 41 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 0 | 0 | 0 | 0 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨99.6710, 34.8622]
TE Step Tunings (cents)

⟨64.80875, 34.86220]
TE Tuning Map (cents)

[1196.051, 1893.748, 2790.787, 3388.812, 4151.318⟩
TE Mistunings (cents)

[-3.949, -8.207, 4.473, 19.987, -0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.392080 |

Adjusted Error | 15.221382 cents |

TE Error | 4.399966 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 3 | 3 | 2 | ] |

⟨ | 0 | 9 | 5 | -3 | 7 | 26 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1405, 78.2280]
TE Step Tunings (cents)

⟨-1.93382, 26.72061]
TE Tuning Map (cents)

[1200.141, 1904.192, 2791.421, 3365.738, 4148.018, 4434.209⟩
TE Mistunings (cents)

[0.141, 2.237, 5.107, -3.088, -3.300, -6.319⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.880939 |

Adjusted Error | 5.208511 cents |

TE Error | 1.407539 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | ] |

⟨ | 58 | 92 | 135 | 163 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 3 | 7 | ] |

⟨ | 0 | -3 | 6 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.3067, 164.9535]
TE Step Tunings (cents)

⟨10.80327, 16.56796]
TE Tuning Map (cents)

[1198.613, 1902.366, 2787.641, 3370.379⟩
TE Mistunings (cents)

[-1.387, 0.411, 1.327, 1.554⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.628444 |

Adjusted Error | 2.273362 cents |

TE Error | 0.809788 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 3 | 7 | 5 | ] |

⟨ | 0 | -3 | 6 | -5 | 7 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.3096, 164.9576]
TE Step Tunings (cents)

⟨10.70538, 16.60518]
TE Tuning Map (cents)

[1198.619, 1902.365, 2787.674, 3370.379, 4151.251⟩
TE Mistunings (cents)

[-1.381, 0.410, 1.361, 1.553, -0.067⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.730106 |

Adjusted Error | 2.505948 cents |

TE Error | 0.724381 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 3 | 7 | 5 | 3 | ] |

⟨ | 0 | -3 | 6 | -5 | 7 | 16 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.3410, 165.0629]
TE Step Tunings (cents)

⟨17.66849, 7.90497]
TE Tuning Map (cents)

[1198.682, 1902.175, 2788.400, 3370.073, 4152.145, 4439.029⟩
TE Mistunings (cents)

[-1.318, 0.220, 2.086, 1.247, 0.827, -1.499⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.595975 |

Adjusted Error | 2.608914 cents |

TE Error | 0.705028 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 7 | 6 | 3 | ] |

⟨ | 0 | 3 | -6 | -1 | 10 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.8052, 235.0197]
TE Step Tunings (cents)

⟨24.51185, 7.20656]
TE Tuning Map (cents)

[1199.610, 1904.670, 2788.518, 3363.812, 4149.613⟩
TE Mistunings (cents)

[-0.390, 2.715, 2.205, -5.014, -1.705⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.802631 |

Adjusted Error | 4.214202 cents |

TE Error | 1.218178 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 10 | 16 | 23 | 28 | 35 | 37 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 7 | 6 | 3 | 7 | ] |

⟨ | 0 | 3 | -6 | -1 | 10 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9612, 235.0725]
TE Step Tunings (cents)

⟨7.01567, 24.56013]
TE Tuning Map (cents)

[1199.922, 1905.140, 2789.294, 3364.695, 4150.608, 4434.801⟩
TE Mistunings (cents)

[-0.078, 3.185, 2.980, -4.131, -0.709, -5.726⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.471183 |

Adjusted Error | 4.846798 cents |

TE Error | 1.309790 cents/octave |

Equal Temperament Mappings

2 | 3 | 7/5 | 11/5 | 13/5 | ||
---|---|---|---|---|---|---|

[ ⟨ | 29 | 46 | 14 | 33 | 40 | ] |

⟨ | 41 | 65 | 20 | 47 | 57 | ] ⟩ |

Reduced Mapping

2 | 3 | 7/5 | 11/5 | 13/5 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -2 | -3 | -4 | ] |

⟨ | 0 | -1 | 6 | 10 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.9836, 496.4505]
TE Step Tunings (cents)

⟨28.25310, 9.25960]
TE Tuning Map (cents)

[1198.984, 1901.517, 580.735, 1367.554, 1657.921⟩
TE Mistunings (cents)

[-1.016, -0.438, -1.777, 2.549, 3.707⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 5.295594 |

Adjusted Error | 3.666874 cents |

TE Error | 2.313540 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1783 | 2826 | 4140 | ] |

⟨ | 3125 | 4953 | 7256 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 15 | 16 | ] |

⟨ | 0 | -51 | -52 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0006, 315.6481]
TE Step Tunings (cents)

⟨0.25306, 0.23961]
TE Tuning Map (cents)

[1200.001, 1901.957, 2786.309⟩
TE Mistunings (cents)

[0.001, 0.002, -0.004⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.468279 |

Adjusted Error | 0.003059 cents |

TE Error | 0.001318 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 8 | 5 | 6 | 19 | ] |

⟨ | 0 | -6 | -11 | 2 | 3 | -38 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.2583, 183.2662]
TE Step Tunings (cents)

⟨2.79734, 5.25846]
TE Tuning Map (cents)

[1200.517, 1901.694, 2786.138, 3367.824, 4151.348, 4440.792⟩
TE Mistunings (cents)

[0.517, -0.261, -0.176, -1.002, 0.030, 0.265⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.917398 |

Adjusted Error | 0.993187 cents |

TE Error | 0.268397 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 224 | 355 | 520 | ] |

⟨ | 87 | 138 | 202 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 14 | 6 | ] |

⟨ | 0 | -27 | -8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1125, 551.8361]
TE Step Tunings (cents)

⟨5.24097, 0.30040]
TE Tuning Map (cents)

[1200.113, 1902.000, 2785.986⟩
TE Mistunings (cents)

[0.113, 0.045, -0.328⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.353412 |

Adjusted Error | 0.244883 cents |

TE Error | 0.105466 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 50 | 79 | 116 | 140 | ] |

⟨ | 87 | 138 | 202 | 244 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 14 | 6 | 12 | ] |

⟨ | 0 | -27 | -8 | -20 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4715, 551.9991]
TE Step Tunings (cents)

⟨5.05860, 10.89128]
TE Tuning Map (cents)

[1200.472, 1902.626, 2786.837, 3365.677⟩
TE Mistunings (cents)

[0.472, 0.671, 0.523, -3.149⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.367636 |

Adjusted Error | 1.835937 cents |

TE Error | 0.653974 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 244 | 301 | ] |

⟨ | 50 | 79 | 116 | 140 | 173 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 14 | 6 | 12 | 3 | ] |

⟨ | 0 | -27 | -8 | -20 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2568, 551.8832]
TE Step Tunings (cents)

⟨11.74492, 3.56898]
TE Tuning Map (cents)

[1200.257, 1902.748, 2786.475, 3365.417, 4152.654⟩
TE Mistunings (cents)

[0.257, 0.793, 0.161, -3.409, 1.336⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.381019 |

Adjusted Error | 2.157438 cents |

TE Error | 0.623640 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |

⟨ | 50 | 79 | 116 | 140 | 173 | 185 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 14 | 6 | 12 | 3 | 6 | ] |

⟨ | 0 | -27 | -8 | -20 | 1 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1524, 551.8284]
TE Step Tunings (cents)

⟨12.08354, 2.97769]
TE Tuning Map (cents)

[1200.152, 1902.766, 2786.287, 3365.260, 4152.286, 4441.772⟩
TE Mistunings (cents)

[0.152, 0.811, -0.027, -3.566, 0.968, 1.244⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.023687 |

Adjusted Error | 2.183871 cents |

TE Error | 0.590165 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 301 | 322 | ] |

⟨ | 224 | 355 | 520 | 775 | 829 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 14 | 6 | 3 | 6 | ] |

⟨ | 0 | -27 | -8 | 1 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9718, 551.7624]
TE Step Tunings (cents)

⟨2.32638, 4.45347]
TE Tuning Map (cents)

[1199.972, 1902.021, 2785.732, 4151.678, 4441.019⟩
TE Mistunings (cents)

[-0.028, 0.066, -0.582, 0.360, 0.491⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.498734 |

Adjusted Error | 0.506800 cents |

TE Error | 0.136957 cents/octave |

Equal Temperament Mappings

2 | 5 | 11 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 87 | 202 | 301 | 322 | ] |

⟨ | 37 | 86 | 128 | 137 | ] ⟩ |

Reduced Mapping

2 | 5 | 11 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 3 | 6 | ] |

⟨ | 0 | -8 | 1 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8959, 551.6509]
TE Step Tunings (cents)

⟨12.85077, 2.21296]
TE Tuning Map (cents)

[1199.896, 2786.169, 4151.339, 4441.121⟩
TE Mistunings (cents)

[-0.104, -0.145, 0.021, 0.594⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.474972 |

Adjusted Error | 0.372354 cents |

TE Error | 0.100624 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 224 | 355 | 520 | 629 | 775 | ] |

⟨ | 311 | 493 | 722 | 873 | 1076 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 14 | 6 | -28 | 3 | ] |

⟨ | 0 | -27 | -8 | 67 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9959, 551.7727]
TE Step Tunings (cents)

⟨1.90439, 2.48686]
TE Tuning Map (cents)

[1199.996, 1902.079, 2785.794, 3368.887, 4151.760⟩
TE Mistunings (cents)

[-0.004, 0.124, -0.520, 0.062, 0.442⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.183589 |

Adjusted Error | 0.418450 cents |

TE Error | 0.120959 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 14 | 6 | -28 | 3 | 6 | ] |

⟨ | 0 | -27 | -8 | 67 | 1 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9695, 551.7609]
TE Step Tunings (cents)

⟨4.41851, 2.41637]
TE Tuning Map (cents)

[1199.969, 1902.029, 2785.730, 3368.834, 4151.669, 4441.012⟩
TE Mistunings (cents)

[-0.031, 0.074, -0.584, 0.008, 0.351, 0.485⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 12.060265 |

Adjusted Error | 0.462754 cents |

TE Error | 0.125054 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | ] |

⟨ | 1 | 2 | 2 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | ] |

⟨ | 0 | -3 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1210.2699, 174.5816]
TE Step Tunings (cents)

⟨174.58158, -11.80110]
TE Tuning Map (cents)

[1210.270, 1896.795, 2769.703⟩
TE Mistunings (cents)

[10.270, -5.160, -16.611⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.140571 |

Adjusted Error | 17.336749 cents |

TE Error | 7.466531 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 4 | 5 | 6 | 7 | ] |

⟨ | 0 | 1 | 4 | 4 | 6 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.2609, 94.0046]
TE Step Tunings (cents)

⟨94.00458, 35.23343]
TE Tuning Map (cents)

[1198.522, 1891.787, 2773.062, 3372.323, 4159.593, 4476.840⟩
TE Mistunings (cents)

[-1.478, -10.168, -13.252, 3.497, 8.275, 36.313⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.265551 |

Adjusted Error | 20.238809 cents |

TE Error | 5.469298 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 0 | 6 | ] |

⟨ | 0 | 6 | 5 | 0 | 1 | ] |

⟨ | 0 | 0 | 0 | 1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3808, 317.0421, 3368.5016]
TE Step Tunings (cents)

⟨7.38207, 5.28237, 3.94917]
TE Tuning Map (cents)

[1200.381, 1902.253, 2785.591, 3368.502, 4150.826⟩
TE Mistunings (cents)

[0.381, 0.298, -0.722, -0.324, -0.492⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.305746 |

Adjusted Error | 0.862347 cents |

TE Error | 0.249274 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 0 | 6 | 0 | ] |

⟨ | 0 | 6 | 5 | 0 | 1 | 14 | ] |

⟨ | 0 | 0 | 0 | 1 | -1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3561, 317.1025, 3368.4666]
TE Step Tunings (cents)

⟨5.27367, 6.71953, 4.45383]
TE Tuning Map (cents)

[1200.356, 1902.615, 2785.868, 3368.467, 4150.772, 4439.435⟩
TE Mistunings (cents)

[0.356, 0.660, -0.445, -0.359, -0.546, -1.093⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.309713 |

Adjusted Error | 1.030586 cents |

TE Error | 0.278504 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 171 | 271 | 397 | ] |

⟨ | 323 | 512 | 750 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | ] |

⟨ | 0 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨63.1586, 7.2418]
TE Step Tunings (cents)

⟨3.20620, 2.01781]
TE Tuning Map (cents)

[1200.013, 1901.999, 2786.219⟩
TE Mistunings (cents)

[0.013, 0.044, -0.095⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.001499 |

Adjusted Error | 0.068354 cents |

TE Error | 0.029438 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 171 | 271 | 397 | 480 | ] |

⟨ | 323 | 512 | 750 | 907 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | ] |

⟨ | 0 | 1 | 1 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨63.1599, 7.1437]
TE Step Tunings (cents)

⟨4.87612, 1.13381]
TE Tuning Map (cents)

[1200.038, 1901.941, 2786.179, 3368.906⟩
TE Mistunings (cents)

[0.038, -0.014, -0.134, 0.080⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.303278 |

Adjusted Error | 0.105920 cents |

TE Error | 0.037729 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 15 | 22 | 26 | 33 | 34 | ] |

⟨ | 0 | -2 | -3 | -2 | -5 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.4088, 49.7357]
TE Step Tunings (cents)

⟨15.79841, 2.34050]
TE Tuning Map (cents)

[1200.679, 1901.661, 2785.787, 3369.158, 4153.812, 4436.428⟩
TE Mistunings (cents)

[0.679, -0.294, -0.527, 0.332, 2.494, -4.099⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.575934 |

Adjusted Error | 2.295347 cents |

TE Error | 0.620290 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 99 | 157 | 230 | 278 | 342 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 9 | 15 | 22 | 26 | 30 | ] |

⟨ | 0 | -2 | -3 | -2 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.3884, 49.5240]
TE Step Tunings (cents)

⟨11.21044, 3.97317]
TE Tuning Map (cents)

[1200.495, 1901.778, 2785.972, 3369.050, 4150.223⟩
TE Mistunings (cents)

[0.495, -0.177, -0.341, 0.224, -1.095⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.385776 |

Adjusted Error | 0.961246 cents |

TE Error | 0.277862 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 612 | 970 | 1421 | ] |

⟨ | 441 | 699 | 1024 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 9 | 15 | 22 | ] |

⟨ | 0 | -2 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.3333, 49.0141]
TE Step Tunings (cents)

⟨1.69299, 0.37163]
TE Tuning Map (cents)

[1200.000, 1901.971, 2786.290⟩
TE Mistunings (cents)

[-0.000, 0.016, -0.023⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.418750 |

Adjusted Error | 0.019312 cents |

TE Error | 0.008317 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 171 | 271 | 397 | 480 | ] |

⟨ | 441 | 699 | 1024 | 1238 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 9 | 15 | 22 | 26 | ] |

⟨ | 0 | -2 | -3 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.3357, 49.0214]
TE Step Tunings (cents)

⟨2.00342, 1.94430]
TE Tuning Map (cents)

[1200.022, 1901.993, 2786.322, 3368.687⟩
TE Mistunings (cents)

[0.022, 0.038, 0.009, -0.139⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.723799 |

Adjusted Error | 0.083445 cents |

TE Error | 0.029724 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 9 | 15 | 22 | 26 | 37 | ] |

⟨ | 0 | -2 | -3 | -2 | -16 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.3229, 48.8616]
TE Step Tunings (cents)

⟨4.18570, 0.70472]
TE Tuning Map (cents)

[1199.906, 1902.121, 2786.519, 3368.673, 4151.163⟩
TE Mistunings (cents)

[-0.094, 0.166, 0.206, -0.153, -0.155⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 14.347856 |

Adjusted Error | 0.279114 cents |

TE Error | 0.080682 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 9 | 1 | 1 | 12 | 0 | ] |

⟨ | 0 | 2 | 3 | 2 | 0 | ] |

⟨ | 0 | 0 | 0 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.3357, 884.3288, 4151.3179]
TE Step Tunings (cents)

⟨2.23725, 3.65478, 0.52677]
TE Tuning Map (cents)

[1200.022, 1901.993, 2786.322, 3368.687, 4151.318⟩
TE Mistunings (cents)

[0.022, 0.038, 0.009, -0.139, -0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.488530 |

Adjusted Error | 0.091972 cents |

TE Error | 0.026586 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 171 | 271 | 397 | 480 | 592 | 633 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 1 | 1 | 12 | 0 | -31 | ] |

⟨ | 0 | 2 | 3 | 2 | 0 | 5 | ] |

⟨ | 0 | 0 | 0 | 0 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.3276, 884.3660, 4151.5679]
TE Step Tunings (cents)

⟨3.60698, -0.06699, 1.35022]
TE Tuning Map (cents)

[1199.949, 1902.060, 2786.426, 3368.664, 4151.568, 4440.242⟩
TE Mistunings (cents)

[-0.051, 0.105, 0.112, -0.162, 0.250, -0.286⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.685706 |

Adjusted Error | 0.233383 cents |

TE Error | 0.063069 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 99 | 157 | 230 | 278 | 343 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 9 | 15 | 22 | 26 | 33 | ] |

⟨ | 0 | -2 | -3 | -2 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.3514, 49.4015]
TE Step Tunings (cents)

⟨10.01058, 4.84244]
TE Tuning Map (cents)

[1200.163, 1901.469, 2785.527, 3368.335, 4153.590⟩
TE Mistunings (cents)

[0.163, -0.486, -0.786, -0.491, 2.272⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.792622 |

Adjusted Error | 1.292073 cents |

TE Error | 0.373493 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 99 | 157 | 230 | 278 | 343 | 367 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 15 | 22 | 26 | 33 | 37 | ] |

⟨ | 0 | -2 | -3 | -2 | -5 | -10 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.3468, 49.3464]
TE Step Tunings (cents)

⟨9.42267, 5.26958]
TE Tuning Map (cents)

[1200.121, 1901.509, 2785.591, 3368.324, 4153.713, 4440.368⟩
TE Mistunings (cents)

[0.121, -0.446, -0.723, -0.502, 2.395, -0.159⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.347484 |

Adjusted Error | 1.267325 cents |

TE Error | 0.342480 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 9 | 14 | 21 | 25 | 31 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | ] |

⟨ | 0 | 2 | -1 | 2 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.4072, 16.8633]
TE Step Tunings (cents)

⟨16.86335, -1.49958]
TE Tuning Map (cents)

[1200.665, 1901.428, 2784.688, 3368.907, 4152.487⟩
TE Mistunings (cents)

[0.665, -0.527, -1.626, 0.081, 1.169⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.240527 |

Adjusted Error | 1.664828 cents |

TE Error | 0.481243 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | 31 | 33 | ] |

⟨ | 0 | 2 | -1 | 2 | 1 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨133.4247, 16.9650]
TE Step Tunings (cents)

⟨16.96501, -2.29543]
TE Tuning Map (cents)

[1200.822, 1901.875, 2784.953, 3369.547, 4153.130, 4436.944⟩
TE Mistunings (cents)

[0.822, -0.080, -1.361, 0.721, 1.812, -3.583⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.818699 |

Adjusted Error | 2.290939 cents |

TE Error | 0.619099 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | -4 | -13 | 0 | ] |

⟨ | 0 | 1 | 4 | 10 | 0 | ] |

⟨ | 0 | 0 | 0 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.2422, 1898.4580, 4151.3179]
TE Step Tunings (cents)

⟨31.97721, 1.46038, 10.12759]
TE Tuning Map (cents)

[1201.242, 1898.458, 2788.863, 3368.432, 4151.318⟩
TE Mistunings (cents)

[1.242, -3.497, 2.550, -0.394, 0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.139617 |

Adjusted Error | 4.275290 cents |

TE Error | 1.235836 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | -4 | -13 | 0 | -20 | ] |

⟨ | 0 | 1 | 4 | 10 | 0 | 15 | ] |

⟨ | 0 | 0 | 0 | 0 | 1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.6315, 1898.5660, 4151.3179]
TE Step Tunings (cents)

⟨30.28950, -6.47856, 17.91578]
TE Tuning Map (cents)

[1201.631, 1898.566, 2787.738, 3364.451, 4151.318, 4445.861⟩
TE Mistunings (cents)

[1.631, -3.389, 1.425, -4.375, -0.000, 5.334⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.155952 |

Adjusted Error | 5.258362 cents |

TE Error | 1.421010 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 224 | 355 | 520 | 629 | 775 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 10 | 0 | 6 | 20 | ] |

⟨ | 0 | -29 | 8 | -11 | -57 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0220, 348.2255]
TE Step Tunings (cents)

⟨1.08829, 5.20663]
TE Tuning Map (cents)

[1200.022, 1901.680, 2785.804, 3369.651, 4151.585⟩
TE Mistunings (cents)

[0.022, -0.275, -0.510, 0.825, 0.267⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.775038 |

Adjusted Error | 0.640096 cents |

TE Error | 0.185029 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 3 | 2 | 7 | ] |

⟨ | 0 | 1 | 1 | 0 | 1 | -2 | ] |

⟨ | 0 | 0 | 4 | 3 | 2 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6458, 1902.5247, -78.6566]
TE Step Tunings (cents)

⟨13.88622, 12.94092, 6.03071]
TE Tuning Map (cents)

[1200.646, 1902.525, 2788.544, 3365.967, 4146.503, 4442.158⟩
TE Mistunings (cents)

[0.646, 0.570, 2.230, -2.858, -4.815, 1.630⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.226666 |

Adjusted Error | 3.253024 cents |

TE Error | 0.879091 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 3 | 2 | 7 | 6 | ] |

⟨ | 0 | 1 | 1 | 0 | 1 | -2 | -1 | ] |

⟨ | 0 | 0 | 4 | 3 | 2 | 2 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6213, 1902.7264, -78.7966]
TE Step Tunings (cents)

⟨13.19453, 12.54235, 7.06415]
TE Tuning Map (cents)

[1200.621, 1902.726, 2788.161, 3365.474, 4146.376, 4441.304, 4907.019⟩
TE Mistunings (cents)

[0.621, 0.771, 1.848, -3.352, -4.942, 0.776, 2.063⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.220878 |

Adjusted Error | 3.461810 cents |

TE Error | 0.846934 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | ||
---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | 132 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | 195 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | ||
---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 3 | 2 | 7 | 6 | 9 | ] |

⟨ | 0 | 1 | 1 | 0 | 1 | -2 | -1 | -3 | ] |

⟨ | 0 | 0 | 4 | 3 | 2 | 2 | 5 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6266, 1902.7249, -78.8007]
TE Step Tunings (cents)

⟨12.58700, 7.10804, 13.13688]
TE Tuning Map (cents)

[1200.627, 1902.725, 2788.149, 3365.478, 4146.377, 4441.335, 4907.031, 5097.464⟩
TE Mistunings (cents)

[0.627, 0.770, 1.835, -3.348, -4.941, 0.807, 2.075, -0.049⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.258670 |

Adjusted Error | 3.365443 cents |

TE Error | 0.792255 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | ||
---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | 195 | 208 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | 123 | 131 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | 127 | 132 | 140 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | ||
---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 3 | 2 | 7 | 6 | 9 | 3 | ] |

⟨ | 0 | 1 | 1 | 0 | 1 | -2 | -1 | -3 | 1 | ] |

⟨ | 0 | 0 | 4 | 3 | 2 | 2 | 5 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.7312, 1902.9800, -78.8827]
TE Step Tunings (cents)

⟨13.11959, 7.69535, 12.06662]
TE Tuning Map (cents)

[1200.731, 1902.980, 2788.180, 3365.545, 4146.677, 4441.393, 4906.994, 5097.640, 5426.291⟩
TE Mistunings (cents)

[0.731, 1.025, 1.867, -3.280, -4.641, 0.865, 2.038, 0.127, -1.984⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.241926 |

Adjusted Error | 3.458487 cents |

TE Error | 0.764550 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 65 | 103 | 151 | ] |

⟨ | 152 | 241 | 353 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | ] |

⟨ | 0 | -9 | 7 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8082, 55.2840]
TE Step Tunings (cents)

⟨4.51155, 5.96419]
TE Tuning Map (cents)

[1199.808, 1902.060, 2786.605⟩
TE Mistunings (cents)

[-0.192, 0.105, 0.291⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.604625 |

Adjusted Error | 0.319725 cents |

TE Error | 0.137698 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | ] |

⟨ | 43 | 68 | 100 | 121 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | 3 | ] |

⟨ | 0 | -9 | 7 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.9997, 55.2812]
TE Step Tunings (cents)

⟨20.90832, 17.18643]
TE Tuning Map (cents)

[1199.000, 1900.469, 2784.968, 3375.874⟩
TE Mistunings (cents)

[-1.000, -1.486, -1.346, 7.048⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.132455 |

Adjusted Error | 4.097116 cents |

TE Error | 1.459422 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | ] |

⟨ | 87 | 138 | 202 | 244 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | 4 | ] |

⟨ | 0 | -9 | 7 | -26 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9207, 55.1186]
TE Step Tunings (cents)

⟨4.36109, 12.68939]
TE Tuning Map (cents)

[1199.921, 1903.774, 2785.672, 3366.598⟩
TE Mistunings (cents)

[-0.079, 1.819, -0.642, -2.228⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.784514 |

Adjusted Error | 1.999443 cents |

TE Error | 0.712216 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 190 | 301 | 441 | 533 | 657 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | -1 | -9 | -5 | -9 | ] |

⟨ | 0 | 11 | 36 | 28 | 42 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0989, 227.4387]
TE Step Tunings (cents)

⟨3.11389, 5.36628]
TE Tuning Map (cents)

[1200.198, 1901.726, 2786.902, 3367.788, 4151.534⟩
TE Mistunings (cents)

[0.198, -0.229, 0.588, -1.038, 0.216⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.517691 |

Adjusted Error | 0.795864 cents |

TE Error | 0.230056 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 190 | 301 | 441 | 533 | 657 | 703 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | -1 | -9 | -5 | -9 | -7 | ] |

⟨ | 0 | 11 | 36 | 28 | 42 | 38 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0807, 227.4286]
TE Step Tunings (cents)

⟨2.81352, 5.45777]
TE Tuning Map (cents)

[1200.161, 1901.634, 2786.704, 3367.598, 4151.275, 4441.722⟩
TE Mistunings (cents)

[0.161, -0.321, 0.390, -1.228, -0.043, 1.195⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.654716 |

Adjusted Error | 0.944738 cents |

TE Error | 0.255304 cents/octave |

Equal Temperament Mappings

2 | 3 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 129 | 159 | 170 | 188 | ] |

⟨ | 17 | 27 | 48 | 59 | 63 | 70 | ] |

⟨ | 58 | 92 | 163 | 201 | 215 | 237 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 7 | 12 | -13 | ] |

⟨ | 0 | 1 | 0 | -4 | -7 | 9 | ] |

⟨ | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3615, 1903.0184, 3368.8116]
TE Step Tunings (cents)

⟨11.19388, 5.71177, 10.12660]
TE Tuning Map (cents)

[1199.361, 1903.018, 3368.812, 4152.268, 4440.020, 4904.278⟩
TE Mistunings (cents)

[-0.639, 1.063, -0.014, 0.950, -0.507, -0.677⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.177887 |

Adjusted Error | 1.651598 cents |

TE Error | 0.404064 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | 215 | 237 | ] |

⟨ | 121 | 192 | 281 | 340 | 419 | 448 | 495 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 0 | 7 | 12 | -13 | ] |

⟨ | 0 | 1 | 0 | 0 | -4 | -7 | 9 | ] |

⟨ | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ] |

⟨ | 0 | 0 | 0 | 1 | 1 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3615, 1903.0184, 2786.3137, 3368.8116]
TE Step Tunings (cents)

⟨2.91870, 3.13312, 6.99347, 1.28170]
TE Tuning Map (cents)

[1199.361, 1903.018, 2786.314, 3368.812, 4152.268, 4440.020, 4904.278⟩
TE Mistunings (cents)

[-0.639, 1.063, 0.000, -0.014, 0.950, -0.507, -0.677⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.022979 |

Adjusted Error | 1.529082 cents |

TE Error | 0.374091 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |

⟨ | 12 | 19 | 28 | 34 | 41 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 8 | 11 | ] |

⟨ | 0 | -1 | 0 | 2 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨399.1943, 85.6766]
TE Step Tunings (cents)

⟨56.48782, 29.18880]
TE Tuning Map (cents)

[1197.583, 1910.295, 2794.360, 3364.908, 4134.108⟩
TE Mistunings (cents)

[-2.417, 8.340, 8.047, -3.918, -17.210⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.665120 |

Adjusted Error | 13.149191 cents |

TE Error | 3.800969 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | -4 | 0 | 1 | ] |

⟨ | 0 | 1 | 4 | 0 | -2 | ] |

⟨ | 0 | 0 | 0 | 1 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.2821, 1898.2241, 3372.0269]
TE Step Tunings (cents)

⟨32.76447, 7.93679, 6.45301]
TE Tuning Map (cents)

[1201.282, 1898.224, 2787.768, 3372.027, 4148.888⟩
TE Mistunings (cents)

[1.282, -3.731, 1.454, 3.201, -2.430⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.131905 |

Adjusted Error | 4.735930 cents |

TE Error | 1.368991 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 0 | -10 | -7 | ] |

⟨ | 0 | 1 | 0 | 2 | 0 | ] |

⟨ | 0 | 0 | 1 | 2 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.2901, 1901.5430, 2784.6434]
TE Step Tunings (cents)

⟨15.46126, 3.74697, 0.41131]
TE Tuning Map (cents)

[1200.580, 1901.543, 2784.643, 3369.472, 4151.900⟩
TE Mistunings (cents)

[0.580, -0.412, -1.670, 0.646, 0.582⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.235104 |

Adjusted Error | 1.549333 cents |

TE Error | 0.447858 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 196 | ] |

⟨ | 67 | 106 | 156 | 248 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 13 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | -2 | 12 | 8 | ] |

⟨ | 0 | 10 | -27 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2713, 430.2487]
TE Step Tunings (cents)

⟨20.15300, 1.97257]
TE Tuning Map (cents)

[1200.271, 1901.945, 2786.540, 4439.186⟩
TE Mistunings (cents)

[0.271, -0.010, 0.227, -1.342⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.464096 |

Adjusted Error | 0.857234 cents |

TE Error | 0.231657 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | ] |

⟨ | 5 | 8 | 12 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | ] |

⟨ | 0 | -1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1181.3029, 448.9085]
TE Step Tunings (cents)

⟨118.06310, 165.42272]
TE Tuning Map (cents)

[1181.303, 1913.697, 2811.514⟩
TE Mistunings (cents)

[-18.697, 11.742, 25.201⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.442834 |

Adjusted Error | 30.636037 cents |

TE Error | 13.194223 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | ] |

⟨ | 3 | 5 | 7 | 9 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 2 | 4 | ] |

⟨ | 0 | -1 | 1 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1181.0653, 450.7714]
TE Step Tunings (cents)

⟨171.24892, 108.27359]
TE Tuning Map (cents)

[1181.065, 1911.359, 2812.902, 3371.947⟩
TE Mistunings (cents)

[-18.935, 9.404, 26.588, 3.121⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.584293 |

Adjusted Error | 32.195608 cents |

TE Error | 11.468307 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 156 | 247 | 362 | 438 | 539 | 577 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 26 | 41 | 60 | 73 | 89 | 96 | ] |

⟨ | 0 | 1 | 2 | 0 | 5 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨46.1573, 8.7307]
TE Step Tunings (cents)

⟨6.22686, 2.50384]
TE Tuning Map (cents)

[1200.090, 1901.181, 2786.901, 3369.485, 4151.655, 4439.834⟩
TE Mistunings (cents)

[0.090, -0.774, 0.587, 0.659, 0.337, -0.694⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.370455 |

Adjusted Error | 0.967711 cents |

TE Error | 0.261512 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |

⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 18 | ] |

⟨ | 0 | 0 | -1 | 0 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨239.4094, 81.7287]
TE Step Tunings (cents)

⟨81.72871, -5.77672]
TE Tuning Map (cents)

[1197.047, 1915.275, 2791.184, 3351.732, 4145.912⟩
TE Mistunings (cents)

[-2.953, 13.320, 4.871, -17.094, -5.406⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.260419 |

Adjusted Error | 17.176938 cents |

TE Error | 4.965249 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |

⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 4 | -2 | -2 | 3 | ] |

⟨ | 0 | -5 | 9 | 10 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1195.4439, 575.6559]
TE Step Tunings (cents)

⟨44.13213, 1.93818]
TE Tuning Map (cents)

[1195.444, 1903.496, 2790.015, 3365.671, 4161.988⟩
TE Mistunings (cents)

[-4.556, 1.541, 3.701, -3.155, 10.670⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.600856 |

Adjusted Error | 9.155422 cents |

TE Error | 2.646511 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |

⟨ | 2 | 3 | 5 | 6 | 7 | 8 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 4 | -2 | -2 | 3 | -4 | ] |

⟨ | 0 | -5 | 9 | 10 | 1 | 16 | ] ⟩ |

TE Generator Tunings (cents)

⟨1195.6630, 575.9712]
TE Step Tunings (cents)

⟨43.72052, 7.60448]
TE Tuning Map (cents)

[1195.663, 1902.796, 2792.415, 3368.386, 4162.960, 4432.888⟩
TE Mistunings (cents)

[-4.337, 0.841, 6.101, -0.440, 11.642, -7.640⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.694632 |

Adjusted Error | 9.744740 cents |

TE Error | 2.633401 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] |

⟨ | 10 | 16 | 23 | 28 | 35 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 0 | 1 | -4 | ] |

⟨ | 0 | 1 | 0 | 0 | 2 | ] |

⟨ | 0 | 0 | 1 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.8749, 1896.3869, 2775.3068]
TE Step Tunings (cents)

⟨48.97726, 41.54332, 3.24162]
TE Tuning Map (cents)

[1201.750, 1896.387, 2775.307, 3376.182, 4164.581⟩
TE Mistunings (cents)

[1.750, -5.568, -11.007, 7.356, 13.263⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.100777 |

Adjusted Error | 11.927682 cents |

TE Error | 3.447873 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 103 | 163 | 239 | 289 | 356 | ] |

⟨ | 140 | 222 | 325 | 393 | 484 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 19 | 8 | 10 | 8 | ] |

⟨ | 0 | -46 | -15 | -19 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4067, 454.4716]
TE Step Tunings (cents)

⟨4.47153, 5.28456]
TE Tuning Map (cents)

[1200.407, 1902.033, 2786.179, 3369.106, 4149.594⟩
TE Mistunings (cents)

[0.407, 0.078, -0.134, 0.280, -1.724⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.232107 |

Adjusted Error | 1.013822 cents |

TE Error | 0.293060 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] |

⟨ | 140 | 222 | 325 | 393 | 484 | 518 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 19 | 8 | 10 | 8 | 9 | ] |

⟨ | 0 | -46 | -15 | -19 | -12 | -14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3732, 454.4578]
TE Step Tunings (cents)

⟨4.30784, 5.40476]
TE Tuning Map (cents)

[1200.373, 1902.034, 2786.119, 3369.034, 4149.492, 4440.950⟩
TE Mistunings (cents)

[0.373, 0.078, -0.195, 0.209, -1.826, 0.422⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.551973 |

Adjusted Error | 1.008637 cents |

TE Error | 0.272572 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 34 | 54 | 79 | ] |

⟨ | 60 | 95 | 139 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 2 | 2 | 3 | ] |

⟨ | 0 | 5 | 7 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0173, 140.6277]
TE Step Tunings (cents)

⟨18.71076, 9.39781]
TE Tuning Map (cents)

[1200.035, 1903.173, 2784.446⟩
TE Mistunings (cents)

[0.035, 1.218, -1.868⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.910433 |

Adjusted Error | 1.492195 cents |

TE Error | 0.642653 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 26 | 41 | 60 | 73 | ] |

⟨ | 60 | 95 | 139 | 168 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 3 | 7 | ] |

⟨ | 0 | 5 | 7 | -6 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.9338, 140.1267]
TE Step Tunings (cents)

⟨2.73484, 18.84603]
TE Tuning Map (cents)

[1201.868, 1902.501, 2783.688, 3365.776⟩
TE Mistunings (cents)

[1.868, 0.546, -2.625, -3.050⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.413955 |

Adjusted Error | 3.456893 cents |

TE Error | 1.231370 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 34 | 54 | 79 | 118 | ] |

⟨ | 8 | 13 | 19 | 28 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 3 | 6 | ] |

⟨ | 0 | 5 | 7 | 4 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.3177, 140.7817]
TE Step Tunings (cents)

⟨36.19086, -3.98172]
TE Tuning Map (cents)

[1198.635, 1902.544, 2783.425, 4159.033⟩
TE Mistunings (cents)

[-1.365, 0.589, -2.889, 7.715⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.641390 |

Adjusted Error | 5.049334 cents |

TE Error | 1.459585 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 34 | 54 | 79 | 118 | 126 | ] |

⟨ | 8 | 13 | 19 | 28 | 30 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 2 | 3 | 6 | 6 | ] |

⟨ | 0 | 5 | 7 | 4 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.3154, 140.7816]
TE Step Tunings (cents)

⟨36.18894, -3.97413]
TE Tuning Map (cents)

[1198.631, 1902.539, 2783.418, 4159.019, 4440.582⟩
TE Mistunings (cents)

[-1.369, 0.584, -2.896, 7.701, 0.055⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.368519 |

Adjusted Error | 4.830973 cents |

TE Error | 1.305513 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 171 | 271 | 397 | 480 | ] |

⟨ | 22 | 35 | 51 | 62 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 11 | -3 | 20 | ] |

⟨ | 0 | -23 | 13 | -42 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0934, 491.2643]
TE Step Tunings (cents)

⟨6.97449, 0.33888]
TE Tuning Map (cents)

[1200.093, 1901.948, 2786.156, 3368.767⟩
TE Mistunings (cents)

[0.093, -0.007, -0.158, -0.059⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.989098 |

Adjusted Error | 0.164929 cents |

TE Error | 0.058749 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | ] |

⟨ | 3 | 5 | 7 | 8 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 3 | ] |

⟨ | 0 | 2 | 1 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1221.0611, 337.7412]
TE Step Tunings (cents)

⟨207.83736, 129.90388]
TE Tuning Map (cents)

[1221.061, 1896.544, 2779.863, 3325.442⟩
TE Mistunings (cents)

[21.061, -5.411, -6.450, -43.384⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.593321 |

Adjusted Error | 37.184446 cents |

TE Error | 13.245367 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | ] |

⟨ | 26 | 41 | 60 | 73 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | -1 | ] |

⟨ | 0 | -1 | -4 | 9 | ] ⟩ |

TE Generator Tunings (cents)

⟨1203.6458, 507.7589]
TE Step Tunings (cents)

⟨38.37218, 18.25286]
TE Tuning Map (cents)

[1203.646, 1899.533, 2783.547, 3366.184⟩
TE Mistunings (cents)

[3.646, -2.422, -2.766, -2.642⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.828956 |

Adjusted Error | 5.944067 cents |

TE Error | 2.117319 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | 24 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | -1 | 6 | ] |

⟨ | 0 | -1 | -4 | 9 | -6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1202.3659, 507.8733]
TE Step Tunings (cents)

⟨30.66578, 51.98449]
TE Tuning Map (cents)

[1202.366, 1896.858, 2777.970, 3368.494, 4166.955⟩
TE Mistunings (cents)

[2.366, -5.097, -8.343, -0.332, 15.637⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.812780 |

Adjusted Error | 10.862374 cents |

TE Error | 3.139930 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 16 | 20 | 24 | 26 | ] |

⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | -1 | 6 | 2 | ] |

⟨ | 0 | -1 | -4 | 9 | -6 | 4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1202.5577, 508.0227]
TE Step Tunings (cents)

⟨31.97044, 51.51393]
TE Tuning Map (cents)

[1202.558, 1897.093, 2778.140, 3369.647, 4167.210, 4437.206⟩
TE Mistunings (cents)

[2.558, -4.862, -8.174, 0.821, 15.892, -3.321⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.719377 |

Adjusted Error | 10.718452 cents |

TE Error | 2.896535 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 4 | 6 | 9 | 11 | 13 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 6 | 7 | 11 | ] |

⟨ | 0 | -4 | -3 | -3 | -9 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.6223, 272.7899]
TE Step Tunings (cents)

⟨54.04257, 2.57701]
TE Tuning Map (cents)

[1199.245, 1906.952, 2779.364, 3378.987, 4140.737⟩
TE Mistunings (cents)

[-0.755, 4.997, -6.949, 10.161, -10.581⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.948675 |

Adjusted Error | 10.017260 cents |

TE Error | 2.895637 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | 81 | ] |

⟨ | 18 | 29 | 42 | 49 | 63 | 67 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 5 | 6 | -3 | 11 | 11 | ] |

⟨ | 0 | -4 | -3 | 19 | -9 | -8 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9480, 272.0893]
TE Step Tunings (cents)

⟨49.01132, 6.75816]
TE Tuning Map (cents)

[1199.896, 1911.383, 2783.420, 3369.852, 4150.625, 4422.714⟩
TE Mistunings (cents)

[-0.104, 9.428, -2.893, 1.026, -0.693, -17.813⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.570109 |

Adjusted Error | 11.730533 cents |

TE Error | 3.170038 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 9 | 14 | 21 | 25 | ] |

⟨ | 2 | 3 | 4 | 7 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 5 | -3 | ] |

⟨ | 0 | -1 | -6 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1206.5806, 538.0372]
TE Step Tunings (cents)

⟨130.50615, 16.01260]
TE Tuning Map (cents)

[1206.581, 1875.124, 2804.680, 3374.742⟩
TE Mistunings (cents)

[6.581, -26.831, 18.366, 5.916⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.632061 |

Adjusted Error | 27.963985 cents |

TE Error | 9.960972 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 0 | 3 | 5 | 1 | ] |

⟨ | 0 | 3 | 0 | -1 | 4 | 2 | ] |

⟨ | 0 | 0 | 1 | 0 | -1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2334, 233.4118, 2782.8836]
TE Step Tunings (cents)

⟨13.36558, -1.75036, 19.80868]
TE Tuning Map (cents)

[1200.233, 1900.469, 2782.884, 3367.288, 4151.931, 4449.941⟩
TE Mistunings (cents)

[0.233, -1.486, -3.430, -1.538, 0.613, 9.413⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.163292 |

Adjusted Error | 4.757609 cents |

TE Error | 1.285688 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 2513 | 3983 | 5835 | ] |

⟨ | 612 | 970 | 1421 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | -1 | 11 | ] |

⟨ | 0 | 14 | -47 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0016, 221.5682]
TE Step Tunings (cents)

⟨0.44577, 0.13037]
TE Tuning Map (cents)

[1200.002, 1901.953, 2786.313⟩
TE Mistunings (cents)

[0.002, -0.002, -0.001⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 12.170501 |

Adjusted Error | 0.002764 cents |

TE Error | 0.001190 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] |

⟨ | 37 | 59 | 86 | 104 | 128 | 137 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | -3 | 6 | -5 | 3 | 6 | ] |

⟨ | 0 | 10 | -8 | 17 | 1 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.7891, 550.3503]
TE Step Tunings (cents)

⟨16.45362, 21.72709]
TE Tuning Map (cents)

[1198.789, 1907.136, 2789.932, 3362.010, 4146.718, 4440.983⟩
TE Mistunings (cents)

[-1.211, 5.181, 3.619, -6.816, -4.600, 0.455⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.654418 |

Adjusted Error | 7.127194 cents |

TE Error | 1.926040 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 342 | 542 | 794 | 960 | 1183 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | 3 | 2 | ] |

⟨ | 0 | 2 | 3 | 2 | 1 | ] |

⟨ | 0 | 0 | 4 | 2 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0491, 350.9820, -466.6977]
TE Step Tunings (cents)

⟨1.45508, 2.37963, -0.21476]
TE Tuning Map (cents)

[1200.049, 1902.013, 2786.302, 3368.716, 4151.173⟩
TE Mistunings (cents)

[0.049, 0.058, -0.011, -0.110, -0.145⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.350839 |

Adjusted Error | 0.130007 cents |

TE Error | 0.037580 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 311 | 493 | 722 | 873 | 1076 | 1151 | ] |

⟨ | 301 | 477 | 699 | 845 | 1041 | 1114 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | 3 | 2 | 4 | ] |

⟨ | 0 | 2 | 3 | 2 | 1 | -9 | ] |

⟨ | 0 | 0 | 4 | 2 | -3 | -6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9870, 351.0502, -466.6900]
TE Step Tunings (cents)

⟨1.85059, 1.39606, 0.88423]
TE Tuning Map (cents)

[1199.987, 1902.087, 2786.352, 3368.681, 4151.094, 4440.636⟩
TE Mistunings (cents)

[-0.013, 0.132, 0.038, -0.145, -0.224, 0.108⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.818233 |

Adjusted Error | 0.185676 cents |

TE Error | 0.050177 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 373 | 591 | 866 | 1047 | 1290 | 1380 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | 3 | 4 | 5 | ] |

⟨ | 0 | 2 | 3 | 2 | 4 | 3 | ] |

⟨ | 0 | 0 | 10 | 5 | 11 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0387, 350.9502, -186.6322]
TE Step Tunings (cents)

⟨2.46947, 0.46446, 1.35749]
TE Tuning Map (cents)

[1200.039, 1901.939, 2786.645, 3368.856, 4151.001, 4440.193⟩
TE Mistunings (cents)

[0.039, -0.016, 0.331, 0.030, -0.317, -0.334⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.676451 |

Adjusted Error | 0.296676 cents |

TE Error | 0.080173 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | 188 | ] |

⟨ | 121 | 192 | 281 | 340 | 419 | 448 | 495 | ] |

⟨ | 270 | 428 | 627 | 758 | 934 | 999 | 1104 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 5 | -4 | -5 | -4 | -1 | ] |

⟨ | 0 | 1 | 3 | -3 | -3 | -4 | -2 | ] |

⟨ | 0 | 0 | 9 | -14 | -16 | -17 | -10 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9096, 1901.9711, -991.0288]
TE Step Tunings (cents)

⟨-1.43783, 0.04857, 4.66731]
TE Tuning Map (cents)

[1199.910, 1901.971, 2786.202, 3368.852, 4151.000, 4439.968, 4906.437⟩
TE Mistunings (cents)

[-0.090, 0.016, -0.112, 0.026, -0.318, -0.560, 1.481⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.562315 |

Adjusted Error | 0.643247 cents |

TE Error | 0.157371 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 114 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 0 | 0 | 0 | 0 | 0 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨38.7486, 15.5566]
TE Step Tunings (cents)

⟨23.19198, 15.55658]
TE Tuning Map (cents)

[1201.205, 1898.679, 2789.896, 3371.125, 4146.096, 4440.528⟩
TE Mistunings (cents)

[1.205, -3.276, 3.583, 2.299, -5.222, -0.000⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.118931 |

Adjusted Error | 5.022641 cents |

TE Error | 1.357309 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 0 | 3 | -1 | ] |

⟨ | 0 | 3 | 0 | -1 | 11 | ] |

⟨ | 0 | 0 | 1 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6471, 233.4167, 2785.7134]
TE Step Tunings (cents)

⟨18.27576, 15.28759, 1.46146]
TE Tuning Map (cents)

[1200.647, 1900.897, 2785.713, 3368.525, 4152.651⟩
TE Mistunings (cents)

[0.647, -1.058, -0.600, -0.301, 1.333⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.244216 |

Adjusted Error | 1.615807 cents |

TE Error | 0.467073 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | ] |

⟨ | 41 | 65 | 95 | 115 | ] |

⟨ | 46 | 73 | 107 | 129 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 0 | 3 | ] |

⟨ | 0 | 3 | 0 | -1 | ] |

⟨ | 0 | 0 | 1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4862, 233.7822, 2786.3137]
TE Step Tunings (cents)

⟨12.50212, 12.88714, 6.18582]
TE Tuning Map (cents)

[1200.486, 1901.833, 2786.314, 3367.676⟩
TE Mistunings (cents)

[0.486, -0.122, -0.000, -1.150⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.159340 |

Adjusted Error | 0.898786 cents |

TE Error | 0.320154 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 99 | 157 | 230 | 278 | ] |

⟨ | 224 | 355 | 520 | 629 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 6 | 10 | 3 | ] |

⟨ | 0 | -23 | -40 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8484, 230.3068]
TE Step Tunings (cents)

⟨4.74934, 3.25743]
TE Tuning Map (cents)

[1199.848, 1902.033, 2786.210, 3369.238⟩
TE Mistunings (cents)

[-0.152, 0.078, -0.103, 0.412⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.906094 |

Adjusted Error | 0.310636 cents |

TE Error | 0.110651 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 171 | 271 | 397 | ] |

⟨ | 205 | 325 | 476 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | ] |

⟨ | 0 | 20 | 11 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0419, 35.0977]
TE Step Tunings (cents)

⟨5.23284, 1.48891]
TE Tuning Map (cents)

[1200.042, 1901.995, 2786.158⟩
TE Mistunings (cents)

[0.042, 0.040, -0.156⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.204356 |

Adjusted Error | 0.111271 cents |

TE Error | 0.047922 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 171 | 271 | 397 | 480 | ] |

⟨ | 34 | 54 | 79 | 96 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 0 | ] |

⟨ | 0 | 20 | 11 | 96 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0712, 35.0924]
TE Step Tunings (cents)

⟨6.92811, 0.45191]
TE Tuning Map (cents)

[1200.071, 1901.920, 2786.159, 3368.875⟩
TE Mistunings (cents)

[0.071, -0.035, -0.154, 0.049⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.101044 |

Adjusted Error | 0.142316 cents |

TE Error | 0.050694 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 152 | 241 | 353 | 427 | 526 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -22 | -9 | ] |

⟨ | 0 | 1 | 0 | 1 | 2 | ] |

⟨ | 0 | 0 | 1 | 10 | 4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9177, 1902.0945, 2786.4995]
TE Step Tunings (cents)

⟨3.88740, 0.92364, 0.32016]
TE Tuning Map (cents)

[1199.918, 1902.095, 2786.500, 3368.901, 4150.928⟩
TE Mistunings (cents)

[-0.082, 0.140, 0.186, 0.075, -0.390⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.356837 |

Adjusted Error | 0.286717 cents |

TE Error | 0.082880 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | ] |

⟨ | 53 | 84 | 123 | 149 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | ] |

⟨ | 0 | -1 | 8 | 14 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1250, 497.9667]
TE Step Tunings (cents)

⟨10.51411, 14.51031]
TE Tuning Map (cents)

[1200.125, 1902.283, 2783.609, 3371.159⟩
TE Mistunings (cents)

[0.125, 0.328, -2.705, 2.333⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.340841 |

Adjusted Error | 2.037206 cents |

TE Error | 0.725667 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | 13 | ] |

⟨ | 0 | -1 | 8 | 14 | -23 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3108, 497.9720]
TE Step Tunings (cents)

⟨14.32163, 11.56838]
TE Tuning Map (cents)

[1200.311, 1902.650, 2783.465, 3370.676, 4150.684⟩
TE Mistunings (cents)

[0.311, 0.695, -2.848, 1.850, -0.633⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.025735 |

Adjusted Error | 2.326486 cents |

TE Error | 0.672505 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | 13 | 12 | ] |

⟨ | 0 | -1 | 8 | 14 | -23 | -20 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1727, 497.9591]
TE Step Tunings (cents)

⟨11.96746, 13.38692]
TE Tuning Map (cents)

[1200.173, 1902.386, 2783.500, 3370.909, 4149.186, 4442.891⟩
TE Mistunings (cents)

[0.173, 0.431, -2.814, 2.083, -2.132, 2.363⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.232965 |

Adjusted Error | 2.577287 cents |

TE Error | 0.696481 cents/octave |

Equal Temperament Mappings

2 | 5/3 | 7/3 | 13/11 | ||
---|---|---|---|---|---|

[ ⟨ | 4 | 3 | 5 | 1 | ] |

⟨ | 9 | 6 | 10 | 2 | ] ⟩ |

Reduced Mapping

2 | 5/3 | 7/3 | 13/11 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 0 | ] |

⟨ | 0 | 3 | 5 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0000, 292.4181]
TE Step Tunings (cents)

⟨231.76332, 30.32741]
TE Tuning Map (cents)

[1200.000, 877.254, 1462.091, 292.418⟩
TE Mistunings (cents)

[0.000, -7.104, -4.780, 3.208⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 1.776901 |

Adjusted Error | 10.326198 cents |

TE Error | 8.447531 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] |

⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 0 | -2 | 1 | 0 | ] |

⟨ | 0 | 1 | 2 | 2 | 2 | 3 | ] |

⟨ | 0 | 0 | 4 | -3 | 1 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9839, 1902.7366, -254.3343]
TE Step Tunings (cents)

⟨11.46953, -1.92829, 8.14214]
TE Tuning Map (cents)

[1199.968, 1902.737, 2788.136, 3368.508, 4151.123, 4436.538⟩
TE Mistunings (cents)

[-0.032, 0.782, 1.822, -0.318, -0.195, -3.989⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.486440 |

Adjusted Error | 2.156855 cents |

TE Error | 0.582865 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 80 | 127 | 186 | 225 | 277 | 296 | ] |

⟨ | 38 | 60 | 88 | 106 | 131 | 140 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | -3 | -2 | -11 | -4 | -4 | ] |

⟨ | 0 | 13 | 14 | 35 | 23 | 24 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0578, 284.8435]
TE Step Tunings (cents)

⟨11.50703, 7.35667]
TE Tuning Map (cents)

[1200.116, 1902.793, 2787.694, 3368.888, 4151.170, 4436.014⟩
TE Mistunings (cents)

[0.116, 0.838, 1.380, 0.062, -0.148, -4.514⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.342457 |

Adjusted Error | 2.208053 cents |

TE Error | 0.596700 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | ] |

⟨ | 1 | 1 | 2 | 3 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 3 | ] |

⟨ | 0 | 3 | 2 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1193.2399, 229.4622]
TE Step Tunings (cents)

⟨229.46225, 45.92861]
TE Tuning Map (cents)

[1193.240, 1881.627, 2845.404, 3350.257⟩
TE Mistunings (cents)

[-6.760, -20.328, 59.090, -18.569⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.872852 |

Adjusted Error | 42.147623 cents |

TE Error | 15.013286 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 94 | 149 | 218 | 264 | 325 | 348 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 5 | 2 | 8 | -2 | ] |

⟨ | 0 | 6 | -1 | 10 | -3 | 26 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.2900, 216.9345]
TE Step Tunings (cents)

⟨9.00959, 5.87117]
TE Tuning Map (cents)

[1200.580, 1901.897, 2784.516, 3369.925, 4151.517, 4439.717⟩
TE Mistunings (cents)

[0.580, -0.058, -1.798, 1.099, 0.199, -0.811⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.702621 |

Adjusted Error | 1.614450 cents |

TE Error | 0.436286 cents/octave |

Equal Temperament Mappings

2 | 9 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 6 | 19 | 14 | 21 | 22 | ] |

⟨ | 13 | 41 | 30 | 45 | 48 | ] ⟩ |

Reduced Mapping

2 | 9 | 5 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 2 | 3 | 4 | ] |

⟨ | 0 | 1 | 2 | 3 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1202.7334, 186.1510]
TE Step Tunings (cents)

⟨14.49651, 85.82726]
TE Tuning Map (cents)

[1202.733, 3794.351, 2777.769, 4166.653, 4438.632⟩
TE Mistunings (cents)

[2.733, -9.559, -8.545, 15.335, -1.896⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.534218 |

Adjusted Error | 11.704229 cents |

TE Error | 3.162929 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 66 | 70 | ] |

⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 2 | -1 | 0 | 4 | ] |

⟨ | 0 | 5 | 1 | 12 | 11 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1202.3024, 379.8436]
TE Step Tunings (cents)

⟨62.77168, 3.21350]
TE Tuning Map (cents)

[1202.302, 1899.218, 2784.448, 3355.820, 4178.279, 4429.366⟩
TE Mistunings (cents)

[2.302, -2.737, -1.865, -13.006, 26.961, -11.162⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.788313 |

Adjusted Error | 15.124191 cents |

TE Error | 4.087134 cents/octave |

Contorted Meantone (order 2)

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | ] |

⟨ | 24 | 38 | 56 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | ] |

⟨ | 0 | -2 | -8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.3969, 252.1739]
TE Step Tunings (cents)

⟨45.18863, 14.28387]
TE Tuning Map (cents)

[1201.397, 1898.446, 2788.196⟩
TE Mistunings (cents)

[1.397, -3.509, 1.883⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.421604 |

Adjusted Error | 3.673804 cents |

TE Error | 1.582221 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | ] |

⟨ | 5 | 8 | 12 | 14 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 3 | ] |

⟨ | 0 | -2 | -8 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1203.8528, 253.4461]
TE Step Tunings (cents)

⟨63.37782, -0.06516]
TE Tuning Map (cents)

[1203.853, 1900.813, 2787.842, 3358.112⟩
TE Mistunings (cents)

[3.853, -1.142, 1.529, -10.713⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.335513 |

Adjusted Error | 7.734272 cents |

TE Error | 2.755003 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |

⟨ | 5 | 8 | 12 | 14 | 18 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 3 | 6 | ] |

⟨ | 0 | -2 | -8 | -1 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1204.4719, 254.9740]
TE Step Tunings (cents)

⟨70.39817, 43.77952]
TE Tuning Map (cents)

[1204.472, 1898.996, 2778.096, 3358.442, 4167.143⟩
TE Mistunings (cents)

[4.472, -2.959, -8.218, -10.384, 15.825⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.481913 |

Adjusted Error | 13.001171 cents |

TE Error | 3.758181 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 3 | 6 | 6 | ] |

⟨ | 0 | -2 | -8 | -1 | -12 | -11 | ] ⟩ |

TE Generator Tunings (cents)

⟨1204.4822, 254.5504]
TE Step Tunings (cents)

⟨49.74069, 68.26991]
TE Tuning Map (cents)

[1204.482, 1899.864, 2781.525, 3358.896, 4172.288, 4426.839⟩
TE Mistunings (cents)

[4.482, -2.091, -4.788, -9.930, 20.970, -13.689⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.432137 |

Adjusted Error | 14.253851 cents |

TE Error | 3.851934 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 37 | 59 | 86 | 104 | 128 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 5 | 1 | 3 | 1 | ] |

⟨ | 0 | -18 | 7 | -1 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.4647, 227.2086]
TE Step Tunings (cents)

⟨17.46364, 5.01550]
TE Tuning Map (cents)

[1198.465, 1902.570, 2788.925, 3368.186, 4152.176⟩
TE Mistunings (cents)

[-1.535, 0.615, 2.611, -0.640, 0.858⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.437073 |

Adjusted Error | 3.049553 cents |

TE Error | 0.881518 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 37 | 59 | 86 | 104 | 128 | 137 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 5 | 1 | 3 | 1 | 2 | ] |

⟨ | 0 | -18 | 7 | -1 | 13 | 9 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.4046, 227.1909]
TE Step Tunings (cents)

⟨17.23092, 5.37868]
TE Tuning Map (cents)

[1198.405, 1902.587, 2788.741, 3368.023, 4151.886, 4441.527⟩
TE Mistunings (cents)

[-1.595, 0.632, 2.427, -0.803, 0.568, 0.999⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.125067 |

Adjusted Error | 3.013343 cents |

TE Error | 0.814320 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | ] |

⟨ | 16 | 25 | 37 | 45 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | 3 | ] |

⟨ | 0 | 3 | 7 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.0993, 228.5428]
TE Step Tunings (cents)

⟨53.38679, 58.38534]
TE Tuning Map (cents)

[1201.099, 1886.728, 2800.899, 3374.755⟩
TE Mistunings (cents)

[1.099, -15.227, 14.585, 5.929⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.378885 |

Adjusted Error | 16.455245 cents |

TE Error | 5.861476 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 18 | ] |

⟨ | 16 | 25 | 37 | 45 | 55 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | 3 | 1 | ] |

⟨ | 0 | 3 | 7 | -1 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.4896, 227.6556]
TE Step Tunings (cents)

⟨38.02055, 63.21168]
TE Tuning Map (cents)

[1201.490, 1884.456, 2795.079, 3376.813, 4161.012⟩
TE Mistunings (cents)

[1.490, -17.499, 8.765, 7.987, 9.694⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.617285 |

Adjusted Error | 19.218186 cents |

TE Error | 5.555302 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 5 | 8 | 12 | 14 | 18 | 19 | ] |

⟨ | 16 | 25 | 37 | 45 | 55 | 59 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 1 | 3 | 1 | 2 | ] |

⟨ | 0 | 3 | 7 | -1 | 13 | 9 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.2346, 227.4634]
TE Step Tunings (cents)

⟨35.71050, 63.91763]
TE Tuning Map (cents)

[1201.235, 1883.625, 2793.478, 3376.240, 4158.259, 4449.640⟩
TE Mistunings (cents)

[1.235, -18.330, 7.165, 7.415, 6.941, 9.112⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.504274 |

Adjusted Error | 19.219791 cents |

TE Error | 5.193921 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 125 | 198 | 290 | 351 | 432 | ] |

⟨ | 113 | 179 | 262 | 317 | 391 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -6 | -13 | 28 | ] |

⟨ | 0 | -1 | 20 | 38 | -59 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.5580, 499.3986]
TE Step Tunings (cents)

⟨5.81327, 4.19380]
TE Tuning Map (cents)

[1200.558, 1901.717, 2784.624, 3369.892, 4151.108⟩
TE Mistunings (cents)

[0.558, -0.238, -1.690, 1.066, -0.210⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.432514 |

Adjusted Error | 1.556031 cents |

TE Error | 0.449794 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | ] |

⟨ | 125 | 198 | 290 | 351 | 432 | 462 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | ] |

⟨ | 0 | -1 | 20 | 38 | -59 | -44 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6292, 499.4206]
TE Step Tunings (cents)

⟨5.13970, 4.95874]
TE Tuning Map (cents)

[1200.629, 1901.838, 2784.637, 3369.804, 4151.801, 4439.335⟩
TE Mistunings (cents)

[0.629, -0.117, -1.676, 0.978, 0.483, -1.193⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.647025 |

Adjusted Error | 1.632274 cents |

TE Error | 0.441103 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | ] |

⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | ] |

⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.5073, 499.3704]
TE Step Tunings (cents)

⟨10.09128, 5.01601]
TE Tuning Map (cents)

[1200.507, 1901.644, 2784.365, 3369.482, 4151.349, 4438.861, 4907.958⟩
TE Mistunings (cents)

[0.507, -0.311, -1.949, 0.656, 0.031, -1.666, 3.003⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.859629 |

Adjusted Error | 2.071149 cents |

TE Error | 0.506708 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | ||
---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | 480 | ] |

⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | 51 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | ||
---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | 3 | ] |

⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | 3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4435, 499.3426]
TE Step Tunings (cents)

⟨10.10615, 4.87070]
TE Tuning Map (cents)

[1200.443, 1901.544, 2784.191, 3369.254, 4151.204, 4438.682, 4907.706, 5099.358⟩
TE Mistunings (cents)

[0.443, -0.411, -2.122, 0.428, -0.114, -1.846, 2.751, 1.845⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.247279 |

Adjusted Error | 2.131421 cents |

TE Error | 0.501756 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | ||
---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | 480 | 511 | ] |

⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | 51 | 54 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | ||
---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | 3 | 17 | ] |

⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | 3 | -30 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4658, 499.3503]
TE Step Tunings (cents)

⟨10.12505, 4.69458]
TE Tuning Map (cents)

[1200.466, 1901.581, 2784.212, 3369.257, 4151.373, 4438.833, 4907.808, 5099.448, 5427.409⟩
TE Mistunings (cents)

[0.466, -0.374, -2.102, 0.431, 0.055, -1.695, 2.853, 1.935, -0.866⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.892603 |

Adjusted Error | 2.162569 cents |

TE Error | 0.478068 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | ||
---|---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | 480 | 511 | 549 | ] |

⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | 51 | 54 | 58 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | ||
---|---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | 3 | 17 | 19 | ] |

⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | 3 | -30 | -34 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4417, 499.3421]
TE Step Tunings (cents)

⟨10.10300, 4.90021]
TE Tuning Map (cents)

[1200.442, 1901.541, 2784.192, 3369.259, 4151.182, 4438.664, 4907.697, 5099.352, 5427.245, 5830.760⟩
TE Mistunings (cents)

[0.442, -0.414, -2.121, 0.433, -0.136, -1.864, 2.742, 1.839, -1.029, 1.183⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.586234 |

Adjusted Error | 2.239524 cents |

TE Error | 0.460999 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 113 | 179 | 262 | 317 | 391 | 418 | 462 | 480 | 511 | 549 | 560 | ] |

⟨ | 12 | 19 | 28 | 34 | 41 | 44 | 49 | 51 | 54 | 58 | 59 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -6 | -13 | 28 | 22 | 7 | 3 | 17 | 19 | 27 | ] |

⟨ | 0 | -1 | 20 | 38 | -59 | -44 | -7 | 3 | -30 | -34 | -53 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.4196, 499.3364]
TE Step Tunings (cents)

⟨10.06190, 5.28539]
TE Tuning Map (cents)

[1200.420, 1901.503, 2784.209, 3369.326, 4150.905, 4438.432, 4907.583, 5099.268, 5427.043, 5830.537, 5946.503⟩
TE Mistunings (cents)

[0.420, -0.452, -2.104, 0.500, -0.413, -2.095, 2.628, 1.755, -1.231, 0.960, 1.468⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.542768 |

Adjusted Error | 2.230799 cents |

TE Error | 0.450285 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | ] |

⟨ | 77 | 122 | 179 | 216 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -8 | ] |

⟨ | 0 | -1 | 8 | 26 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7997, 498.6774]
TE Step Tunings (cents)

⟨4.56800, 14.86992]
TE Tuning Map (cents)

[1199.800, 1900.922, 2789.619, 3367.214⟩
TE Mistunings (cents)

[-0.200, -1.033, 3.306, -1.612⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.924477 |

Adjusted Error | 2.357693 cents |

TE Error | 0.839827 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | ] |

⟨ | 7 | 11 | 16 | 19 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | -1 | -5 | -14 | ] |

⟨ | 0 | 6 | 17 | 39 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3441, 516.8578]
TE Step Tunings (cents)

⟨19.97251, 5.84840]
TE Tuning Map (cents)

[1199.344, 1901.803, 2789.863, 3366.638⟩
TE Mistunings (cents)

[-0.656, -0.152, 3.549, -2.188⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.118588 |

Adjusted Error | 2.581738 cents |

TE Error | 0.919634 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 65 | 103 | 151 | ] |

⟨ | 72 | 114 | 167 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | -1 | -5 | ] |

⟨ | 0 | 6 | 17 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1833, 516.9227]
TE Step Tunings (cents)

⟨12.75386, 5.15531]
TE Tuning Map (cents)

[1200.183, 1901.353, 2786.770⟩
TE Mistunings (cents)

[0.183, -0.602, 0.456⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.989113 |

Adjusted Error | 0.623652 cents |

TE Error | 0.268592 cents/octave |

Equal Temperament Mappings

2 | 5/3 | 7/3 | 11/3 | ||
---|---|---|---|---|---|

[ ⟨ | 8 | 6 | 10 | 15 | ] |

⟨ | 23 | 17 | 28 | 43 | ] ⟩ |

Reduced Mapping

2 | 5/3 | 7/3 | 11/3 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 2 | 2 | ] |

⟨ | 0 | -2 | -6 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1723, 156.0779]
TE Step Tunings (cents)

⟨10.72638, 48.45049]
TE Tuning Map (cents)

[1200.172, 888.017, 1463.878, 2244.267⟩
TE Mistunings (cents)

[0.172, 3.658, -2.993, -5.096⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 1.943479 |

Adjusted Error | 5.781580 cents |

TE Error | 3.084383 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 1 | 3 | 7 | -1 | ] |

⟨ | 0 | 2 | 1 | 1 | -2 | 4 | ] |

⟨ | 0 | 0 | 2 | 1 | 3 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9868, 951.0539, 617.8062]
TE Step Tunings (cents)

⟨4.06424, 0.15280, 0.70482]
TE Tuning Map (cents)

[1199.974, 1902.108, 2786.653, 3368.820, 4151.218, 4439.841⟩
TE Mistunings (cents)

[-0.026, 0.153, 0.339, -0.005, -0.100, -0.686⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.406619 |

Adjusted Error | 0.389866 cents |

TE Error | 0.105357 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |

⟨ | 21 | 33 | 49 | 59 | 73 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 15 | 19 | 23 | ] |

⟨ | 0 | 0 | 2 | 1 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨172.0869, 100.5302]
TE Step Tunings (cents)

⟨42.58302, 28.97361]
TE Tuning Map (cents)

[1204.608, 1892.955, 2782.363, 3370.181, 4159.058⟩
TE Mistunings (cents)

[4.608, -9.000, -3.950, 1.355, 7.740⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.329799 |

Adjusted Error | 12.143339 cents |

TE Error | 3.510212 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 14 | 22 | 32 | 39 | 48 | 52 | ] |

⟨ | 21 | 33 | 49 | 59 | 73 | 78 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 7 | 11 | 15 | 19 | 23 | 26 | ] |

⟨ | 0 | 0 | 2 | 1 | 2 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨171.6919, 104.4103]
TE Step Tunings (cents)

⟨30.15302, 37.12862]
TE Tuning Map (cents)

[1201.843, 1888.611, 2784.199, 3366.557, 4157.735, 4463.990⟩
TE Mistunings (cents)

[1.843, -13.344, -2.114, -2.269, 6.417, 23.462⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.327913 |

Adjusted Error | 16.507610 cents |

TE Error | 4.460986 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | ] |

⟨ | 152 | 241 | 353 | 427 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 9 | 2 | 7 | ] |

⟨ | 0 | -23 | 1 | -13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7350, 386.7774]
TE Step Tunings (cents)

⟨3.14758, 7.25105]
TE Tuning Map (cents)

[1199.735, 1901.735, 2786.247, 3370.039⟩
TE Mistunings (cents)

[-0.265, -0.220, -0.066, 1.213⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.015477 |

Adjusted Error | 0.738770 cents |

TE Error | 0.263155 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 152 | 241 | 353 | 427 | 526 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 9 | 2 | 7 | 17 | ] |

⟨ | 0 | -23 | 1 | -13 | -42 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7357, 386.7733]
TE Step Tunings (cents)

⟨2.49161, 7.38484]
TE Tuning Map (cents)

[1199.736, 1901.836, 2786.245, 3370.097, 4151.029⟩
TE Mistunings (cents)

[-0.264, -0.119, -0.069, 1.271, -0.289⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.153355 |

Adjusted Error | 0.830905 cents |

TE Error | 0.240185 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 121 | 192 | 281 | 340 | 419 | 448 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 9 | 2 | 7 | 17 | -5 | ] |

⟨ | 0 | -23 | 1 | -13 | -42 | 27 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.4419, 386.6458]
TE Step Tunings (cents)

⟨5.91465, 8.39742]
TE Tuning Map (cents)

[1199.442, 1902.122, 2785.530, 3369.697, 4151.386, 4442.229⟩
TE Mistunings (cents)

[-0.558, 0.167, -0.784, 0.871, 0.068, 1.701⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 7.535278 |

Adjusted Error | 1.303632 cents |

TE Error | 0.352291 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1783 | 2826 | 4140 | ] |

⟨ | 3684 | 5839 | 8554 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | -2 | 4 | ] |

⟨ | 0 | 47 | -22 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9990, 91.5309]
TE Step Tunings (cents)

⟨0.20837, 0.22489]
TE Tuning Map (cents)

[1199.999, 1901.955, 2786.316⟩
TE Mistunings (cents)

[-0.001, 0.000, 0.002⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 16.667474 |

Adjusted Error | 0.001788 cents |

TE Error | 0.000770 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 12 | 19 | 28 | 34 | 42 | 44 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 7 | 11 | -3 | ] |

⟨ | 0 | -1 | -4 | -10 | -18 | 16 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9495, 502.7151]
TE Step Tunings (cents)

⟨32.83388, 15.17495]
TE Tuning Map (cents)

[1199.950, 1897.184, 2788.938, 3372.495, 4150.572, 4443.593⟩
TE Mistunings (cents)

[-0.050, -4.771, 2.624, 3.669, -0.745, 3.066⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.003648 |

Adjusted Error | 5.401098 cents |

TE Error | 1.459583 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | ] |

⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 2 | -2 | ] |

⟨ | 0 | 1 | 0 | 1 | 1 | ] |

⟨ | 0 | 0 | 3 | -1 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.2352, 1901.6519, 929.3140]
TE Step Tunings (cents)

⟨9.09511, 9.52165, 12.20363]
TE Tuning Map (cents)

[1199.235, 1901.652, 2787.942, 3370.808, 4149.751⟩
TE Mistunings (cents)

[-0.765, -0.303, 1.628, 1.982, -1.566⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.164735 |

Adjusted Error | 2.085398 cents |

TE Error | 0.602815 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 2 | -2 | 3 | ] |

⟨ | 0 | 1 | 0 | 1 | 1 | -2 | ] |

⟨ | 0 | 0 | 3 | -1 | 5 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.2030, 1901.6993, 929.2893]
TE Step Tunings (cents)

⟨12.30339, -1.11422, 9.81410]
TE Tuning Map (cents)

[1199.203, 1901.699, 2787.868, 3370.816, 4149.740, 4440.657⟩
TE Mistunings (cents)

[-0.797, -0.256, 1.554, 1.990, -1.578, 0.129⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.232411 |

Adjusted Error | 2.038665 cents |

TE Error | 0.550925 cents/octave |

Equal Temperament Mappings

2 | 5 | 7/3 | 11/3 | ||
---|---|---|---|---|---|

[ ⟨ | 9 | 21 | 11 | 17 | ] |

⟨ | 40 | 93 | 49 | 75 | ] ⟩ |

Reduced Mapping

2 | 5 | 7/3 | 11/3 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 1 | 3 | ] |

⟨ | 0 | -3 | 1 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.5799, 269.2999]
TE Step Tunings (cents)

⟨15.22498, 26.53888]
TE Tuning Map (cents)

[1198.580, 2787.840, 1467.880, 2249.241⟩
TE Mistunings (cents)

[-1.420, 1.527, 1.009, -0.122⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 1.323178 |

Adjusted Error | 2.055351 cents |

TE Error | 0.885191 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | ] |

⟨ | 118 | 187 | 274 | 331 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 7 | 3 | ] |

⟨ | 0 | 3 | -24 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3400, 233.9964]
TE Step Tunings (cents)

⟨3.75956, 8.86608]
TE Tuning Map (cents)

[1200.340, 1902.329, 2786.465, 3367.024⟩
TE Mistunings (cents)

[0.340, 0.374, 0.152, -1.802⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.773290 |

Adjusted Error | 1.076192 cents |

TE Error | 0.383347 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 118 | 187 | 274 | 331 | 408 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 7 | 3 | -2 | ] |

⟨ | 0 | 3 | -24 | -1 | 28 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3458, 233.9989]
TE Step Tunings (cents)

⟨3.91559, 8.81192]
TE Tuning Map (cents)

[1200.346, 1902.343, 2786.447, 3367.039, 4151.277⟩
TE Mistunings (cents)

[0.346, 0.388, 0.134, -1.787, -0.041⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.930534 |

Adjusted Error | 1.186491 cents |

TE Error | 0.342973 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 77 | 122 | 179 | 216 | 266 | 285 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 7 | 3 | -2 | 0 | ] |

⟨ | 0 | 3 | -24 | -1 | 28 | 19 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1241, 233.9232]
TE Step Tunings (cents)

⟨10.22187, 10.14321]
TE Tuning Map (cents)

[1200.124, 1901.894, 2786.713, 3366.449, 4149.600, 4444.540⟩
TE Mistunings (cents)

[0.124, -0.061, 0.399, -2.377, -1.718, 4.012⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.760649 |

Adjusted Error | 2.233306 cents |

TE Error | 0.603524 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 52 | 82 | 121 | 146 | 180 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 6 | 4 | 8 | ] |

⟨ | 0 | 8 | -5 | 6 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.8543, 162.5525]
TE Step Tunings (cents)

⟨27.38614, 11.48487]
TE Tuning Map (cents)

[1199.709, 1900.275, 2786.363, 3374.732, 4148.624⟩
TE Mistunings (cents)

[-0.291, -1.680, 0.049, 5.906, -2.694⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.140526 |

Adjusted Error | 3.865380 cents |

TE Error | 1.117345 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 118 | 187 | 274 | 408 | ] |

⟨ | 22 | 35 | 51 | 76 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 6 | 8 | ] |

⟨ | 0 | 8 | -5 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0926, 162.7338]
TE Step Tunings (cents)

⟨10.20587, -0.18668]
TE Tuning Map (cents)

[1200.185, 1901.963, 2786.886, 4149.805⟩
TE Mistunings (cents)

[0.185, 0.008, 0.573, -1.512⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.539510 |

Adjusted Error | 0.925540 cents |

TE Error | 0.267541 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | ] |

⟨ | 130 | 206 | 302 | 365 | ] |

⟨ | 152 | 241 | 353 | 427 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 0 | 2 | ] |

⟨ | 0 | 3 | 0 | 5 | ] |

⟨ | 0 | 0 | 1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9938, 433.8840, 2786.3137]
TE Step Tunings (cents)

⟨3.75386, 3.15369, 3.41928]
TE Tuning Map (cents)

[1199.988, 1901.646, 2786.314, 3369.408⟩
TE Mistunings (cents)

[-0.012, -0.309, 0.000, 0.582⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.280092 |

Adjusted Error | 0.399850 cents |

TE Error | 0.142430 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 152 | 241 | 353 | 427 | 526 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 0 | 2 | 3 | ] |

⟨ | 0 | 3 | 0 | 5 | -1 | ] |

⟨ | 0 | 0 | 1 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9487, 433.9084, 2786.0238]
TE Step Tunings (cents)

⟨3.59483, 4.54972, 1.91932]
TE Tuning Map (cents)

[1199.897, 1901.674, 2786.024, 3369.440, 4151.961⟩
TE Mistunings (cents)

[-0.103, -0.281, -0.290, 0.614, 0.644⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.261229 |

Adjusted Error | 0.578737 cents |

TE Error | 0.167293 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | 0 | 2 | 3 | -2 | ] |

⟨ | 0 | 3 | 0 | 5 | -1 | 13 | ] |

⟨ | 0 | 0 | 1 | 0 | 1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9598, 433.8891, 2786.0074]
TE Step Tunings (cents)

⟨-0.23023, 2.08443, 4.22107]
TE Tuning Map (cents)

[1199.920, 1901.627, 2786.007, 3369.365, 4151.998, 4440.639⟩
TE Mistunings (cents)

[-0.080, -0.328, -0.306, 0.540, 0.680, 0.112⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.369031 |

Adjusted Error | 0.571410 cents |

TE Error | 0.154417 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 0 | -4 | -1 | ] |

⟨ | 0 | 2 | 0 | 9 | 5 | ] |

⟨ | 0 | 0 | 1 | -1 | 0 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0303, 950.5813, 2786.3017]
TE Step Tunings (cents)

⟨11.70677, 5.81690, 0.58215]
TE Tuning Map (cents)

[1200.061, 1901.163, 2786.302, 3368.808, 4152.876⟩
TE Mistunings (cents)

[0.061, -0.792, -0.012, -0.018, 1.558⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.323777 |

Adjusted Error | 1.045389 cents |

TE Error | 0.302185 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 34 | 54 | 79 | 96 | 118 | 126 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 0 | 0 | -4 | -1 | -2 | ] |

⟨ | 0 | 2 | 0 | 9 | 5 | 3 | ] |

⟨ | 0 | 0 | 1 | -1 | 0 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9899, 950.6472, 2786.9793]
TE Step Tunings (cents)

⟨7.76253, 10.32106, 0.19519]
TE Tuning Map (cents)

[1199.980, 1901.294, 2786.979, 3368.886, 4153.246, 4438.941⟩
TE Mistunings (cents)

[-0.020, -0.661, 0.666, 0.060, 1.928, -1.587⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.311801 |

Adjusted Error | 1.309375 cents |

TE Error | 0.353843 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 14 | 22 | 32 | 39 | 48 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -2 | -7 | -4 | -3 | ] |

⟨ | 0 | 10 | 26 | 19 | 18 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2284, 430.2738]
TE Step Tunings (cents)

⟨-0.17221, 22.69131]
TE Tuning Map (cents)

[1200.228, 1902.281, 2785.520, 3374.289, 4144.243⟩
TE Mistunings (cents)

[0.228, 0.326, -0.794, 5.463, -7.075⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.584859 |

Adjusted Error | 4.424822 cents |

TE Error | 1.279060 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | -2 | -7 | -4 | -3 | -11 | ] |

⟨ | 0 | 10 | 26 | 19 | 18 | 41 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1448, 430.2683]
TE Step Tunings (cents)

⟨23.03192, -1.46764]
TE Tuning Map (cents)

[1200.145, 1902.393, 2785.962, 3374.518, 4144.395, 4439.407⟩
TE Mistunings (cents)

[0.145, 0.438, -0.352, 5.692, -6.923, -1.121⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.800347 |

Adjusted Error | 4.359741 cents |

TE Error | 1.178168 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | ] |

⟨ | 34 | 54 | 79 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | ] |

⟨ | 0 | 6 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1661, 317.0504]
TE Step Tunings (cents)

⟨21.77955, 1.34853]
TE Tuning Map (cents)

[1200.166, 1902.303, 2785.418⟩
TE Mistunings (cents)

[0.166, 0.348, -0.895⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.550116 |

Adjusted Error | 0.635053 cents |

TE Error | 0.273502 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 152 | 241 | 353 | 427 | 526 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 0 | -8 | 1 | ] |

⟨ | 0 | 3 | 0 | -11 | -1 | ] |

⟨ | 0 | 0 | 1 | 4 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9540, -165.9317, 2785.8301]
TE Step Tunings (cents)

⟨3.75581, 4.69214, 2.48655]
TE Tuning Map (cents)

[1199.954, 1902.113, 2785.830, 3368.937, 4151.716⟩
TE Mistunings (cents)

[-0.046, 0.158, -0.484, 0.111, 0.398⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.341341 |

Adjusted Error | 0.409960 cents |

TE Error | 0.118505 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |

⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 0 | -8 | 1 | -6 | ] |

⟨ | 0 | 3 | 0 | -11 | -1 | -3 | ] |

⟨ | 0 | 0 | 1 | 4 | 1 | 4 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0189, -166.0060, 2785.7243]
TE Step Tunings (cents)

⟨0.84882, 4.13390, 2.44725]
TE Tuning Map (cents)

[1200.019, 1902.020, 2785.724, 3368.812, 4151.749, 4440.802⟩
TE Mistunings (cents)

[0.019, 0.065, -0.589, -0.013, 0.431, 0.274⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.460787 |

Adjusted Error | 0.446922 cents |

TE Error | 0.120775 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | ] |

⟨ | 130 | 206 | 302 | 365 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 7 | 7 | ] |

⟨ | 0 | -6 | -17 | -10 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0857, 83.1679]
TE Step Tunings (cents)

⟨5.14378, 6.38322]
TE Tuning Map (cents)

[1200.171, 1901.335, 2786.745, 3368.921⟩
TE Mistunings (cents)

[0.171, -0.620, 0.431, 0.095⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.178772 |

Adjusted Error | 0.655297 cents |

TE Error | 0.233421 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 7 | 7 | 9 | ] |

⟨ | 0 | -6 | -17 | -10 | -15 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.0506, 83.1740]
TE Step Tunings (cents)

⟨11.84457, 5.98780]
TE Tuning Map (cents)

[1200.101, 1901.158, 2786.396, 3368.614, 4152.845⟩
TE Mistunings (cents)

[0.101, -0.797, 0.082, -0.212, 1.527⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.663086 |

Adjusted Error | 1.054700 cents |

TE Error | 0.304877 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 7 | 7 | 9 | 11 | ] |

⟨ | 0 | -6 | -17 | -10 | -15 | -26 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9970, 83.1160]
TE Step Tunings (cents)

⟨10.37651, 7.80837]
TE Tuning Map (cents)

[1199.994, 1901.292, 2787.007, 3368.819, 4153.233, 4438.951⟩
TE Mistunings (cents)

[-0.006, -0.663, 0.693, -0.007, 1.915, -1.577⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.889000 |

Adjusted Error | 1.310185 cents |

TE Error | 0.354062 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | 294 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | 215 | 237 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 7 | 7 | 9 | 11 | 9 | ] |

⟨ | 0 | -6 | -17 | -10 | -15 | -26 | -6 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.1626, 83.1905]
TE Step Tunings (cents)

⟨11.87468, 5.95428]
TE Tuning Map (cents)

[1200.325, 1901.507, 2786.899, 3369.233, 4153.605, 4438.835, 4902.320⟩
TE Mistunings (cents)

[0.325, -0.448, 0.586, 0.407, 2.288, -1.693, -2.635⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.950802 |

Adjusted Error | 1.783239 cents |

TE Error | 0.436270 cents/octave |

Equal Temperament Mappings

2 | 3 | 7/5 | 11/5 | 13/5 | ||
---|---|---|---|---|---|---|

[ ⟨ | 29 | 46 | 14 | 33 | 40 | ] |

⟨ | 140 | 222 | 68 | 159 | 193 | ] ⟩ |

Reduced Mapping

2 | 3 | 7/5 | 11/5 | 13/5 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -2 | 3 | 2 | ] |

⟨ | 0 | -2 | 12 | -9 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2483, 248.5714]
TE Step Tunings (cents)

⟨7.20479, 7.08078]
TE Tuning Map (cents)

[1200.248, 1903.354, 582.360, 1363.602, 1654.782⟩
TE Mistunings (cents)

[0.248, 1.399, -0.152, -1.402, 0.569⟩
These calculations use inharmonic TE. You can also use subgroup TE

Complexity | 11.349123 |

Adjusted Error | 1.148979 cents |

TE Error | 0.724925 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | -5 | 12 | 2 | ] |

⟨ | 0 | 1 | 0 | 2 | -1 | 4 | ] |

⟨ | 0 | 0 | 1 | 2 | -3 | -2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.5798, 1901.8964, 2784.5069]
TE Step Tunings (cents)

⟨9.01861, 5.91915, 5.82178]
TE Tuning Map (cents)

[1200.580, 1901.896, 2784.507, 3369.908, 4151.540, 4439.731⟩
TE Mistunings (cents)

[0.580, -0.059, -1.807, 1.082, 0.222, -0.796⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.254823 |

Adjusted Error | 1.614370 cents |

TE Error | 0.436264 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | ] |

⟨ | 14 | 22 | 32 | 39 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 6 | 7 | ] |

⟨ | 0 | -3 | -5 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.6190, 164.2476]
TE Step Tunings (cents)

⟨49.50466, 7.86683]
TE Tuning Map (cents)

[1199.238, 1905.733, 2776.476, 3376.095⟩
TE Mistunings (cents)

[-0.762, 3.778, -9.838, 7.269⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.704799 |

Adjusted Error | 7.805081 cents |

TE Error | 2.780226 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 6 | 7 | 8 | ] |

⟨ | 0 | -3 | -5 | -5 | -4 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.1297, 164.6498]
TE Step Tunings (cents)

⟨47.71110, 10.75822]
TE Tuning Map (cents)

[1200.259, 1906.569, 2777.529, 3377.659, 4142.438⟩
TE Mistunings (cents)

[0.259, 4.614, -8.784, 8.833, -8.879⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.542366 |

Adjusted Error | 9.704246 cents |

TE Error | 2.805156 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 8 | 13 | 19 | 23 | 28 | 30 | ] |

⟨ | 14 | 22 | 32 | 39 | 48 | 51 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 4 | 6 | 7 | 8 | 9 | ] |

⟨ | 0 | -3 | -5 | -5 | -4 | -6 | ] ⟩ |

TE Generator Tunings (cents)

⟨600.4001, 164.2488]
TE Step Tunings (cents)

⟨51.05857, 56.59511]
TE Tuning Map (cents)

[1200.800, 1908.854, 2781.156, 3381.557, 4146.205, 4418.108⟩
TE Mistunings (cents)

[0.800, 6.899, -5.157, 12.731, -5.113, -22.420⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.417248 |

Adjusted Error | 13.843741 cents |

TE Error | 3.741107 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 270 | 428 | 627 | 758 | 934 | ] |

⟨ | 251 | 398 | 583 | 705 | 869 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 1 | 2 | ] |

⟨ | 0 | 2 | 0 | 14 | 37 | ] |

⟨ | 0 | 0 | 1 | -4 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0031, 950.9942, 2786.2875]
TE Step Tunings (cents)

⟨2.24219, 3.37499, 0.50724]
TE Tuning Map (cents)

[1200.003, 1901.988, 2786.287, 3368.772, 4151.341⟩
TE Mistunings (cents)

[0.003, 0.033, -0.026, -0.054, 0.023⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.653139 |

Adjusted Error | 0.048871 cents |

TE Error | 0.014127 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | ] |

⟨ | 103 | 163 | 239 | 289 | 356 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -8 | -10 | 6 | 3 | ] |

⟨ | 0 | 21 | 27 | -7 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6103, 547.9099]
TE Step Tunings (cents)

⟨6.03401, 8.96161]
TE Tuning Map (cents)

[1200.610, 1901.225, 2787.464, 3368.292, 4149.741⟩
TE Mistunings (cents)

[0.610, -0.730, 1.150, -0.533, -1.577⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.542674 |

Adjusted Error | 1.603178 cents |

TE Error | 0.463422 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 46 | 73 | 107 | 129 | 159 | 170 | ] |

⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | -8 | -10 | 6 | 3 | 11 | ] |

⟨ | 0 | 21 | 27 | -7 | 1 | -16 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6352, 547.9186]
TE Step Tunings (cents)

⟨5.76030, 9.08409]
TE Tuning Map (cents)

[1200.635, 1901.209, 2787.450, 3368.381, 4149.824, 4440.290⟩
TE Mistunings (cents)

[0.635, -0.746, 1.136, -0.445, -1.494, -0.238⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.823353 |

Adjusted Error | 1.570165 cents |

TE Error | 0.424319 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | -9 | ] |

⟨ | 0 | -1 | 8 | 14 | 30 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7153, 498.1566]
TE Step Tunings (cents)

⟨8.56452, 20.69700]
TE Tuning Map (cents)

[1199.715, 1901.274, 2785.538, 3375.047, 4147.261⟩
TE Mistunings (cents)

[-0.285, -0.681, -0.776, 6.221, -4.057⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.408639 |

Adjusted Error | 3.993516 cents |

TE Error | 1.154385 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | 45 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | -9 | -10 | ] |

⟨ | 0 | -1 | 8 | 14 | 30 | 33 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7427, 498.1457]
TE Step Tunings (cents)

⟨7.38201, 20.96526]
TE Tuning Map (cents)

[1199.743, 1901.340, 2785.423, 3374.811, 4146.686, 4441.381⟩
TE Mistunings (cents)

[-0.257, -0.615, -0.891, 5.986, -4.632, 0.853⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.751732 |

Adjusted Error | 3.926563 cents |

TE Error | 1.061107 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 118 | 187 | 274 | ] |

⟨ | 171 | 271 | 397 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | ||
---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | ] |

⟨ | 0 | -1 | 8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.0749, 498.2952]
TE Step Tunings (cents)

⟨3.16220, 4.83588]
TE Tuning Map (cents)

[1200.075, 1901.855, 2786.287⟩
TE Mistunings (cents)

[0.075, -0.100, -0.027⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.791396 |

Adjusted Error | 0.132425 cents |

TE Error | 0.057032 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 152 | 241 | 353 | 427 | 526 | ] |

⟨ | 46 | 73 | 107 | 129 | 159 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 1 | -1 | 13 | 13 | ] |

⟨ | 0 | 5 | 13 | -17 | -14 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.8219, 260.4833]
TE Step Tunings (cents)

⟨7.10313, 2.60802]
TE Tuning Map (cents)

[1199.644, 1902.238, 2786.461, 3369.469, 4150.919⟩
TE Mistunings (cents)

[-0.356, 0.283, 0.147, 0.643, -0.399⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.673499 |

Adjusted Error | 0.739729 cents |

TE Error | 0.213830 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |

⟨ | 3 | 5 | 7 | 9 | 11 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 9 | 11 | ] |

⟨ | 0 | -2 | 0 | -5 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨398.9029, 45.6629]
TE Step Tunings (cents)

⟨45.66290, -12.06319]
TE Tuning Map (cents)

[1196.709, 1903.189, 2792.320, 3361.812, 4159.618⟩
TE Mistunings (cents)

[-3.291, 1.234, 6.007, -7.014, 8.300⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.260992 |

Adjusted Error | 8.492025 cents |

TE Error | 2.454746 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | 100 | ] |

⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 3 | 5 | 7 | 9 | 11 | 11 | ] |

⟨ | 0 | -2 | 0 | -5 | -5 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨399.1142, 46.1473]
TE Step Tunings (cents)

⟨29.93562, 16.21170]
TE Tuning Map (cents)

[1197.343, 1903.277, 2793.800, 3361.291, 4159.520, 4436.404⟩
TE Mistunings (cents)

[-2.657, 1.322, 7.486, -7.534, 8.202, -4.124⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.442964 |

Adjusted Error | 8.574681 cents |

TE Error | 2.317206 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 12 | 19 | 28 | 34 | 42 | ] |

⟨ | 4 | 7 | 10 | 12 | 15 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 7 | 10 | 12 | 15 | ] |

⟨ | 0 | -2 | -2 | -2 | -3 | ] ⟩ |

TE Generator Tunings (cents)

⟨298.8163, 101.2776]
TE Step Tunings (cents)

⟨101.27763, -5.01659]
TE Tuning Map (cents)

[1195.265, 1889.159, 2785.608, 3383.240, 4178.411⟩
TE Mistunings (cents)

[-4.735, -12.796, -0.706, 14.414, 27.094⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.657250 |

Adjusted Error | 20.489223 cents |

TE Error | 5.922714 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |

⟨ | 24 | 38 | 56 | 67 | 83 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 13 | ] |

⟨ | 0 | 2 | 2 | 1 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨300.4441, 48.4138]
TE Step Tunings (cents)

⟨9.96138, 48.41379]
TE Tuning Map (cents)

[1201.776, 1899.492, 2800.824, 3353.299, 4147.842⟩
TE Mistunings (cents)

[1.776, -2.463, 14.511, -15.527, -3.476⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.165144 |

Adjusted Error | 13.507319 cents |

TE Error | 3.904491 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] |

⟨ | 24 | 38 | 56 | 67 | 83 | 89 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 4 | 6 | 9 | 11 | 13 | 14 | ] |

⟨ | 0 | 2 | 2 | 1 | 5 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨300.4817, 47.8513]
TE Step Tunings (cents)

⟨13.37364, 47.85133]
TE Tuning Map (cents)

[1201.927, 1898.593, 2800.038, 3353.150, 4145.518, 4446.000⟩
TE Mistunings (cents)

[1.927, -3.362, 13.724, -15.676, -5.800, 5.472⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.148433 |

Adjusted Error | 13.455038 cents |

TE Error | 3.636065 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |

⟨ | 494 | 783 | 1147 | 1387 | 1709 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 38 | 60 | 88 | 106 | 131 | ] |

⟨ | 0 | 1 | 1 | 3 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨31.5800, 7.1448]
TE Step Tunings (cents)

⟨1.85803, 1.14290]
TE Tuning Map (cents)

[1200.041, 1901.946, 2786.187, 3368.917, 4151.273⟩
TE Mistunings (cents)

[0.041, -0.009, -0.127, 0.091, -0.045⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.082822 |

Adjusted Error | 0.118925 cents |

TE Error | 0.034377 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |

⟨ | 270 | 428 | 627 | 758 | 934 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 18 | 28 | 41 | 50 | 62 | ] |

⟨ | 0 | 2 | 3 | 2 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨66.6697, 17.6227]
TE Step Tunings (cents)

⟨2.33774, 1.48350]
TE Tuning Map (cents)

[1200.054, 1901.996, 2786.325, 3368.729, 4151.143⟩
TE Mistunings (cents)

[0.054, 0.041, 0.011, -0.097, -0.175⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.264229 |

Adjusted Error | 0.133017 cents |

TE Error | 0.038450 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 270 | 428 | 627 | 758 | 934 | 999 | ] |

⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 18 | 28 | 41 | 50 | 62 | 65 | ] |

⟨ | 0 | 2 | 3 | 2 | 1 | 6 | ] ⟩ |

TE Generator Tunings (cents)

⟨66.6667, 17.7504]
TE Step Tunings (cents)

⟨4.33482, 0.41108]
TE Tuning Map (cents)

[1200.000, 1902.168, 2786.585, 3368.835, 4151.084, 4439.836⟩
TE Mistunings (cents)

[0.000, 0.213, 0.271, 0.009, -0.234, -0.691⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 10.431761 |

Adjusted Error | 0.402904 cents |

TE Error | 0.108880 cents/octave |

Equal Temperament Mappings

2 | 3 | 7 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 87 | 107 | ] |

⟨ | 24 | 38 | 67 | 83 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 6 | 2 | ] |

⟨ | 0 | 2 | -11 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.7305, 349.3433]
TE Step Tunings (cents)

⟨27.87525, 14.06657]
TE Tuning Map (cents)

[1201.731, 1900.417, 3367.607, 4150.177⟩
TE Mistunings (cents)

[1.731, -1.538, -1.219, -1.140⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.157182 |

Adjusted Error | 3.558935 cents |

TE Error | 1.028763 cents/octave |

Equal Temperament Mappings

2 | 3 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 17 | 27 | 48 | 59 | 63 | ] |

⟨ | 41 | 65 | 115 | 142 | 152 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | 2 | 4 | ] |

⟨ | 0 | 2 | 13 | 5 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.7629, 351.3282]
TE Step Tunings (cents)

⟨19.30374, 21.23413]
TE Tuning Map (cents)

[1198.763, 1901.419, 3368.504, 4154.167, 4443.723⟩
TE Mistunings (cents)

[-1.237, -0.536, -0.322, 2.849, 3.196⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.745777 |

Adjusted Error | 2.905167 cents |

TE Error | 0.785087 cents/octave |

Equal Temperament Mappings

2 | 3 | 13 | ||
---|---|---|---|---|

[ ⟨ | 17 | 27 | 63 | ] |

⟨ | 24 | 38 | 89 | ] ⟩ |

Reduced Mapping

2 | 3 | 13 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | 4 | ] |

⟨ | 0 | 2 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.8943, 351.6847]
TE Step Tunings (cents)

⟨48.17267, 15.83162]
TE Tuning Map (cents)

[1198.894, 1902.264, 4443.892⟩
TE Mistunings (cents)

[-1.106, 0.309, 3.365⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.668335 |

Adjusted Error | 3.086669 cents |

TE Error | 0.834136 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 99 | 157 | 230 | 278 | ] |

⟨ | 41 | 65 | 95 | 115 | ] |

⟨ | 53 | 84 | 123 | 149 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 0 | 10 | ] |

⟨ | 0 | 1 | 0 | -6 | ] |

⟨ | 0 | 0 | 1 | 1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7174, 1902.3810, 2786.1613]
TE Step Tunings (cents)

⟨9.44929, 2.69056, 2.90424]
TE Tuning Map (cents)

[1199.717, 1902.381, 2786.161, 3369.049⟩
TE Mistunings (cents)

[-0.283, 0.426, -0.152, 0.223⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 0.172683 |

Adjusted Error | 0.566265 cents |

TE Error | 0.201708 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 99 | 157 | 230 | 278 | ] |

⟨ | 41 | 65 | 95 | 115 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | -5 | -1 | ] |

⟨ | 0 | 2 | 25 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7414, 351.4017]
TE Step Tunings (cents)

⟨10.57251, 3.73324]
TE Tuning Map (cents)

[1199.741, 1902.545, 2786.335, 3368.481⟩
TE Mistunings (cents)

[-0.259, 0.590, 0.022, -0.345⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.171558 |

Adjusted Error | 0.659216 cents |

TE Error | 0.234818 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 58 | 92 | 135 | 163 | 201 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | -5 | -1 | 2 | ] |

⟨ | 0 | 2 | 25 | 13 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.2860, 351.3115]
TE Step Tunings (cents)

⟨11.79788, 12.33747]
TE Tuning Map (cents)

[1199.286, 1901.909, 2786.356, 3367.763, 4155.129⟩
TE Mistunings (cents)

[-0.714, -0.046, 0.043, -1.063, 3.811⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.888038 |

Adjusted Error | 2.114583 cents |

TE Error | 0.611252 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 58 | 92 | 135 | 163 | 201 | 215 | ] |

⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | -5 | -1 | 2 | 4 | ] |

⟨ | 0 | 2 | 25 | 13 | 5 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨1198.8903, 351.2483]
TE Step Tunings (cents)

⟨14.49750, 8.73257]
TE Tuning Map (cents)

[1198.890, 1901.387, 2786.757, 3367.338, 4154.022, 4444.313⟩
TE Mistunings (cents)

[-1.110, -0.568, 0.443, -1.488, 2.704, 3.785⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.835694 |

Adjusted Error | 2.758677 cents |

TE Error | 0.745500 cents/octave |

Equal Temperament Mappings

2 | 3 | 7 | ||
---|---|---|---|---|

[ ⟨ | 41 | 65 | 115 | ] |

⟨ | 58 | 92 | 163 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | ||
---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | ] |

⟨ | 0 | 2 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.7305, 351.4056]
TE Step Tunings (cents)

⟨13.89184, 10.86491]
TE Tuning Map (cents)

[1199.730, 1902.542, 3368.543⟩
TE Mistunings (cents)

[-0.270, 0.587, -0.283⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.955053 |

Adjusted Error | 0.759991 cents |

TE Error | 0.270714 cents/octave |

Equal Temperament Mappings

2 | 3 | 7 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 17 | 27 | 48 | 59 | ] |

⟨ | 41 | 65 | 115 | 142 | ] ⟩ |

Reduced Mapping

2 | 3 | 7 | 11 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 1 | -1 | 2 | ] |

⟨ | 0 | 2 | 13 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.2648, 351.3193]
TE Step Tunings (cents)

⟨12.91356, 23.89596]
TE Tuning Map (cents)

[1199.265, 1901.903, 3367.886, 4155.126⟩
TE Mistunings (cents)

[-0.735, -0.052, -0.940, 3.808⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 1.708637 |

Adjusted Error | 2.362451 cents |

TE Error | 0.682901 cents/octave |

Contorted Gamera (order 2)

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 224 | 355 | 520 | 629 | ] |

⟨ | 198 | 314 | 460 | 556 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 2 | 12 | 20 | 6 | ] |

⟨ | 0 | -23 | -40 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9242, 230.3068]
TE Step Tunings (cents)

⟨3.25743, 2.37467]
TE Tuning Map (cents)

[1199.848, 1902.033, 2786.210, 3369.238⟩
TE Mistunings (cents)

[-0.152, 0.078, -0.103, 0.412⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 15.812189 |

Adjusted Error | 0.310636 cents |

TE Error | 0.110651 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 224 | 355 | 520 | 629 | 775 | ] |

⟨ | 198 | 314 | 460 | 556 | 685 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 12 | 20 | 6 | 5 | ] |

⟨ | 0 | -23 | -40 | -1 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9323, 230.3111]
TE Step Tunings (cents)

⟨3.36724, 2.25052]
TE Tuning Map (cents)

[1199.865, 1902.033, 2786.204, 3369.283, 4151.217⟩
TE Mistunings (cents)

[-0.135, 0.078, -0.110, 0.457, -0.101⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 16.044043 |

Adjusted Error | 0.347161 cents |

TE Error | 0.100352 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 224 | 355 | 520 | 629 | 775 | 829 | ] |

⟨ | 198 | 314 | 460 | 556 | 685 | 733 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 2 | 12 | 20 | 6 | 5 | 17 | ] |

⟨ | 0 | -23 | -40 | -1 | 5 | -25 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.9208, 230.3069]
TE Step Tunings (cents)

⟨3.39077, 2.22378]
TE Tuning Map (cents)

[1199.842, 1901.991, 2786.141, 3369.218, 4151.138, 4440.981⟩
TE Mistunings (cents)

[-0.158, 0.036, -0.173, 0.392, -0.180, 0.454⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 14.653856 |

Adjusted Error | 0.395108 cents |

TE Error | 0.106773 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | 183 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | 2 | ] |

⟨ | 0 | -2 | 16 | 28 | 7 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.7357, 249.0709]
TE Step Tunings (cents)

⟨18.64254, 7.33384]
TE Tuning Map (cents)

[1200.736, 1903.330, 2784.399, 3371.779, 4144.968⟩
TE Mistunings (cents)

[0.736, 1.375, -1.915, 2.953, -6.350⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.252037 |

Adjusted Error | 3.928863 cents |

TE Error | 1.135696 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] |

⟨ | 29 | 46 | 67 | 81 | 100 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | -3 | 2 | 1 | ] |

⟨ | 0 | -2 | 16 | 28 | 7 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.8201, 249.0884]
TE Step Tunings (cents)

⟨18.64241, 7.33698]
TE Tuning Map (cents)

[1200.820, 1903.463, 2784.594, 3372.014, 4145.259, 4438.969⟩
TE Mistunings (cents)

[0.820, 1.508, -1.720, 3.189, -6.059, -1.558⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.881291 |

Adjusted Error | 3.899198 cents |

TE Error | 1.053712 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | ] |

⟨ | 68 | 108 | 158 | 191 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 4 | ] |

⟨ | 0 | 12 | 10 | -9 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.3960, 158.5687]
TE Step Tunings (cents)

⟨11.89078, 8.37036]
TE Tuning Map (cents)

[1199.396, 1902.825, 2785.083, 3370.466⟩
TE Mistunings (cents)

[-0.604, 0.870, -1.230, 1.640⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.105329 |

Adjusted Error | 1.592925 cents |

TE Error | 0.567411 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 4 | 2 | ] |

⟨ | 0 | 12 | 10 | -9 | 11 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8057, 158.6514]
TE Step Tunings (cents)

⟨9.88501, 19.84020]
TE Tuning Map (cents)

[1199.806, 1903.817, 2786.320, 3371.360, 4144.777⟩
TE Mistunings (cents)

[-0.194, 1.862, 0.006, 2.534, -6.541⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.692909 |

Adjusted Error | 3.728395 cents |

TE Error | 1.077748 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 15 | 24 | 35 | 42 | 52 | 56 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 0 | 1 | 4 | 2 | 0 | ] |

⟨ | 0 | 12 | 10 | -9 | 11 | 28 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8001, 158.6286]
TE Step Tunings (cents)

⟨8.71408, 20.17149]
TE Tuning Map (cents)

[1199.800, 1903.543, 2786.086, 3371.543, 4144.515, 4441.600⟩
TE Mistunings (cents)

[-0.200, 1.588, -0.228, 2.717, -6.803, 1.073⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.887960 |

Adjusted Error | 3.682450 cents |

TE Error | 0.995139 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |

⟨ | 121 | 192 | 281 | 340 | 419 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -6 | 5 | -5 | -1 | ] |

⟨ | 0 | 34 | -12 | 35 | 20 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.5849, 267.6249]
TE Step Tunings (cents)

⟨6.18063, 3.27357]
TE Tuning Map (cents)

[1199.585, 1901.737, 2786.426, 3368.947, 4152.913⟩
TE Mistunings (cents)

[-0.415, -0.218, 0.112, 0.121, 1.595⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 9.354647 |

Adjusted Error | 0.988205 cents |

TE Error | 0.285655 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 121 | 192 | 281 | 340 | 419 | 448 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | -6 | 5 | -5 | -1 | -5 | ] |

⟨ | 0 | 34 | -12 | 35 | 20 | 39 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.6188, 267.6344]
TE Step Tunings (cents)

⟨5.94186, 3.53039]
TE Tuning Map (cents)

[1199.619, 1901.858, 2786.481, 3369.111, 4153.070, 4439.649⟩
TE Mistunings (cents)

[-0.381, -0.097, 0.167, 0.285, 1.752, -0.879⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.646074 |

Adjusted Error | 1.043829 cents |

TE Error | 0.282082 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 19 | 30 | 44 | 53 | 65 | 70 | ] |

⟨ | 43 | 68 | 100 | 121 | 149 | 159 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | 4 | 7 | 11 | 6 | ] |

⟨ | 0 | -2 | -8 | -20 | -36 | -11 | ] ⟩ |

TE Generator Tunings (cents)

⟨1201.0483, 251.7545]
TE Step Tunings (cents)

⟨16.00774, 20.85817]
TE Tuning Map (cents)

[1201.048, 1898.588, 2790.157, 3372.249, 4148.370, 4436.991⟩
TE Mistunings (cents)

[1.048, -3.367, 3.844, 3.423, -2.948, -3.537⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.542266 |

Adjusted Error | 5.118377 cents |

TE Error | 1.383181 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | ] |

⟨ | 21 | 33 | 49 | 59 | 73 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | 3 | 4 | ] |

⟨ | 0 | 12 | -14 | -4 | -11 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.2961, 58.4220]
TE Step Tunings (cents)

⟨26.56607, 5.28987]
TE Tuning Map (cents)

[1200.296, 1901.360, 2782.980, 3367.200, 4158.542⟩
TE Mistunings (cents)

[0.296, -0.595, -3.334, -1.626, 7.224⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.558291 |

Adjusted Error | 4.089166 cents |

TE Error | 1.182034 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 21 | 33 | 49 | 59 | 73 | 78 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | 3 | 4 | 4 | ] |

⟨ | 0 | 12 | -14 | -4 | -11 | -6 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8564, 58.4225]
TE Step Tunings (cents)

⟨27.01633, 4.38985]
TE Tuning Map (cents)

[1199.856, 1900.926, 2781.654, 3365.879, 4156.778, 4448.890⟩
TE Mistunings (cents)

[-0.144, -1.029, -4.660, -2.947, 5.460, 8.363⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 4.179604 |

Adjusted Error | 5.482239 cents |

TE Error | 1.481510 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 87 | 138 | 202 | 244 | 301 | 322 | ] |

⟨ | 111 | 176 | 258 | 312 | 384 | 411 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 3 | 4 | 10 | 16 | 10 | 13 | ] |

⟨ | 0 | 2 | -8 | -20 | 1 | -5 | ] ⟩ |

TE Generator Tunings (cents)

⟨399.8819, 151.4807]
TE Step Tunings (cents)

⟨6.43793, 5.76168]
TE Tuning Map (cents)

[1199.646, 1902.489, 2786.974, 3368.497, 4150.300, 4441.061⟩
TE Mistunings (cents)

[-0.354, 0.534, 0.660, -0.329, -1.018, 0.534⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.505774 |

Adjusted Error | 1.003176 cents |

TE Error | 0.271096 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 22 | 35 | 51 | 62 | 76 | ] |

⟨ | 2 | 3 | 5 | 6 | 7 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 2 | 3 | 5 | 6 | 7 | ] |

⟨ | 0 | 2 | -4 | -4 | -1 | ] ⟩ |

TE Generator Tunings (cents)

⟨599.2460, 53.5496]
TE Step Tunings (cents)

⟨53.54965, 10.19991]
TE Tuning Map (cents)

[1198.492, 1904.837, 2782.031, 3381.277, 4141.172⟩
TE Mistunings (cents)

[-1.508, 2.882, -4.282, 12.452, -10.145⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 2.143304 |

Adjusted Error | 9.443100 cents |

TE Error | 2.729668 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 53 | 84 | 123 | 149 | ] |

⟨ | 130 | 206 | 302 | 365 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | 8 | ] |

⟨ | 0 | -2 | 16 | -25 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8582, 249.1733]
TE Step Tunings (cents)

⟨3.64841, 7.74225]
TE Tuning Map (cents)

[1199.858, 1901.370, 2786.914, 3369.534⟩
TE Mistunings (cents)

[-0.142, -0.585, 0.600, 0.708⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.606342 |

Adjusted Error | 0.751799 cents |

TE Error | 0.267796 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | 8 | -9 | ] |

⟨ | 0 | -2 | 16 | -25 | 60 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.8485, 249.1674]
TE Step Tunings (cents)

⟨7.54025, 4.14370]
TE Tuning Map (cents)

[1199.848, 1901.362, 2786.830, 3369.602, 4151.409⟩
TE Mistunings (cents)

[-0.152, -0.593, 0.517, 0.776, 0.091⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.828443 |

Adjusted Error | 0.832499 cents |

TE Error | 0.240646 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 130 | 206 | 302 | 365 | 450 | 481 | ] |

⟨ | 53 | 84 | 123 | 149 | 183 | 196 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 2 | -1 | 8 | -9 | 1 | ] |

⟨ | 0 | -2 | 16 | -25 | 60 | 13 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9143, 249.1817]
TE Step Tunings (cents)

⟨7.57288, 4.06490]
TE Tuning Map (cents)

[1199.914, 1901.465, 2786.993, 3369.772, 4151.674, 4439.277⟩
TE Mistunings (cents)

[-0.086, -0.490, 0.679, 0.946, 0.356, -1.251⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 8.063003 |

Adjusted Error | 0.986989 cents |

TE Error | 0.266722 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | ] |

⟨ | 103 | 163 | 239 | 289 | 356 | 381 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | 3 | 2 | 2 | ] |

⟨ | 0 | 12 | -14 | -4 | 30 | 35 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6984, 58.3218]
TE Step Tunings (cents)

⟨3.65188, 10.20361]
TE Tuning Map (cents)

[1200.698, 1900.560, 2785.590, 3368.808, 4151.050, 4442.659⟩
TE Mistunings (cents)

[0.698, -1.395, -0.724, -0.018, -0.268, 2.131⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.840070 |

Adjusted Error | 1.968298 cents |

TE Error | 0.531909 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 41 | 65 | 95 | 115 | 142 | 152 | 168 | ] |

⟨ | 103 | 163 | 239 | 289 | 356 | 381 | 421 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | 17 | ||
---|---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 1 | 3 | 3 | 2 | 2 | 2 | ] |

⟨ | 0 | 12 | -14 | -4 | 30 | 35 | 43 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6577, 58.2933]
TE Step Tunings (cents)

⟨0.91956, 11.29083]
TE Tuning Map (cents)

[1200.658, 1900.177, 2785.867, 3368.800, 4150.114, 4441.580, 4907.927⟩
TE Mistunings (cents)

[0.658, -1.778, -0.446, -0.026, -1.204, 1.053, 2.971⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.006445 |

Adjusted Error | 2.422301 cents |

TE Error | 0.592617 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 27 | 43 | 63 | 76 | 94 | ] |

⟨ | 38 | 60 | 88 | 106 | 131 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | -1 | -1 | -2 | -3 | ] |

⟨ | 0 | 14 | 18 | 26 | 35 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.9333, 221.5931]
TE Step Tunings (cents)

⟨21.00402, 16.65328]
TE Tuning Map (cents)

[1199.933, 1902.370, 2788.742, 3361.554, 4155.958⟩
TE Mistunings (cents)

[-0.067, 0.415, 2.429, -7.272, 4.640⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.676363 |

Adjusted Error | 4.812559 cents |

TE Error | 1.391141 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | ] |

⟨ | 77 | 122 | 179 | 216 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 4 | 14 | 2 | ] |

⟨ | 0 | -6 | -29 | 2 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.5617, 483.4927]
TE Step Tunings (cents)

⟨11.52668, 4.81352]
TE Tuning Map (cents)

[1200.562, 1901.290, 2786.575, 3368.109⟩
TE Mistunings (cents)

[0.562, -0.665, 0.261, -0.717⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.248226 |

Adjusted Error | 1.058998 cents |

TE Error | 0.377223 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | ] |

⟨ | 77 | 122 | 179 | 216 | 266 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 4 | 14 | 2 | -5 | ] |

⟨ | 0 | -6 | -29 | 2 | 21 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6248, 483.5276]
TE Step Tunings (cents)

⟨12.25615, 4.13223]
TE Tuning Map (cents)

[1200.625, 1901.334, 2786.447, 3368.305, 4150.955⟩
TE Mistunings (cents)

[0.625, -0.621, 0.133, -0.521, -0.363⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.155639 |

Adjusted Error | 1.191168 cents |

TE Error | 0.344325 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 72 | 114 | 167 | 202 | 249 | 266 | ] |

⟨ | 77 | 122 | 179 | 216 | 266 | 285 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 4 | 14 | 2 | -5 | 19 | ] |

⟨ | 0 | -6 | -29 | 2 | 21 | -38 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6789, 483.5288]
TE Step Tunings (cents)

⟨10.67329, 5.61301]
TE Tuning Map (cents)

[1200.679, 1901.543, 2787.169, 3368.415, 4150.711, 4438.804⟩
TE Mistunings (cents)

[0.679, -0.412, 0.855, -0.411, -0.607, -1.724⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 6.426054 |

Adjusted Error | 1.459508 cents |

TE Error | 0.394415 cents/octave |

Equal Temperament Mappings

2 | 5 | 7 | 11 | 13 | 23 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 29 | 67 | 81 | 100 | 107 | 131 | ] |

⟨ | 34 | 79 | 96 | 118 | 126 | 154 | ] ⟩ |

Reduced Mapping

2 | 5 | 7 | 11 | 13 | 23 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | 5 | 9 | 8 | 7 | 7 | ] |

⟨ | 0 | -13 | -30 | -22 | -16 | -12 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.6140, 247.8140]
TE Step Tunings (cents)

⟨21.37809, 17.07793]
TE Tuning Map (cents)

[1200.614, 2781.488, 3371.106, 4153.004, 4439.274, 5430.530⟩
TE Mistunings (cents)

[0.614, -4.826, 2.280, 1.686, -1.254, 2.256⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 3.301901 |

Adjusted Error | 4.507333 cents |

TE Error | 0.996412 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 342 | 542 | 794 | 960 | 1183 | ] |

⟨ | 31 | 49 | 72 | 87 | 107 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | ||
---|---|---|---|---|---|---|

[ ⟨ | 1 | 3 | 2 | 3 | 6 | ] |

⟨ | 0 | -44 | 10 | -6 | -79 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.1008, 38.5988]
TE Step Tunings (cents)

⟨3.53739, -0.31242]
TE Tuning Map (cents)

[1200.101, 1901.954, 2786.190, 3368.710, 4151.298⟩
TE Mistunings (cents)

[0.101, -0.001, -0.124, -0.116, -0.020⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 13.008348 |

Adjusted Error | 0.187971 cents |

TE Error | 0.054336 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | 107 | 115 | ] |

⟨ | 68 | 108 | 158 | 191 | 236 | 252 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | 11 | 13 | ||
---|---|---|---|---|---|---|---|

[ ⟨ | 1 | -1 | 2 | 2 | -3 | 5 | ] |

⟨ | 0 | 16 | 2 | 5 | 40 | -8 | ] ⟩ |

TE Generator Tunings (cents)

⟨1199.1425, 193.7793]
TE Step Tunings (cents)

⟨13.57382, 11.44638]
TE Tuning Map (cents)

[1199.142, 1901.327, 2785.844, 3367.181, 4153.745, 4445.478⟩
TE Mistunings (cents)

[-0.858, -0.628, -0.470, -1.644, 2.427, 4.950⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.

Complexity | 5.207988 |

Adjusted Error | 2.849761 cents |

TE Error | 0.770114 cents/octave |

Equal Temperament Mappings

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 31 | 49 | 72 | 87 | ] |

⟨ | 118 | 187 | 274 | 331 | ] ⟩ |

Reduced Mapping

2 | 3 | 5 | 7 | ||
---|---|---|---|---|---|

[ ⟨ | 1 | 4 | 2 | 2 | ] |

⟨ | 0 | -15 | 2 | 5 | ] ⟩ |

TE Generator Tunings (cents)

⟨1200.3109, 193.2945]
TE Step Tunings (cents)

⟨2.83915, 9.42625]
TE Tuning Map (cents)

[1200.311, 1901.827, 2787.211, 3367.094⟩
TE Mistunings (cents)

[0.311, -0.128, 0.897, -1.732⟩
This is a trivial subgroup of the rational numbers so TE is TE is TE.